Password-based OpenSSL Encryption
Analysis of Key Derivation Protocol

Rita Ainane, Austin Garrett, Cory Johnson, Alexis Vivar

{rainane, agarret7, corymj, alexisv}@mit.edu

May 17, 2018

Contents
1 Introduction

2 Analyze OpenSSL PBKDF
2.1 OpenSSL Use Cases. it
2.2 OpenSSL encryption
2.3 Updates to OpenSSL PBKDF
2.3.1 OpenSSL 1.0.2 and PBKDF1
2.3.2 OpenSSL 1.1.0 and PBKDF2
2.4 OpenSSL potential problems
2.4.1 Technical
2.4.2 Human Error

3 Brute Force Attack

4 Recommendations
4.1 Version of OpenSSL
4.2 FEnc Parameters and Algorithms

O OOy UL Ut W NN

Ne}

1 Introduction

OpenSSL is an opensource toolkit for SSL/TLS cryptographic protocols, used by a majority
of the web in some form or another. OpenSSL provides myriad different tools, including
native C code libraries, and command line tools for direct encryption of files. As a result of
its extensive offerings, it has achieved become ubiquitous for developers intent on establishing
secure communication over the Internet.

However, there exist potential issues in specific parts of the OpenSSL project that raise
questions about the security of data when using certain features. In particular, secure
keys generated using OpenSSL’s password based key derivation function (PBKDF) have
several questionable properties which potentially jeapordize the security of the procedure.
This project analyzes the security of this private key generation protocol, and investigates
the impact on the integrity of systems which rely on the security of the project. Finally,
we provide recommendations to users to mitigate potential vulnerabilities present in the
OpenSSL toolkit.

2 Analyze OpenSSL PBKDF

2.1 OpenSSL Use Cases

The OpenSSL library provides basic cryptographic functionality and allows users to use
encryption algorithms and parameters via a simple command-line interface. The supported
cipher algorithms are as follows [6]:

e Ciphers: AES, Blowfish, Camellia, SEED, CAST-128, DES, IDEA, RC2, RC4, RC5,
Triple, DES, GOST 28147-89

e Cryptographic hash functions: MD5, MD4, MD2, SHA-1, SHA-2, RIPEMD-160, MDC-
2, GOST R 34.11-94, BLAKE2, Whirlpool

e Public-key cryptography: RSA, DSA, Diffie-Hellman key exchange, Elliptic curve,
GOST R 34.10-2001

An example use case of OpenSSL is as follows: Alice would like to send sensitive information
to Bob, but Bob is not a part of Alice’s network. This information should not leave Alice’s
network unsecured due to the risk of an eavesdropper obtaining Alice’s sensitive information.
Alice would like to ensure the confidentiality of her data as well as guarantee that only a
designated party - Bob - can decrypt her data.

OpenSSL provides Alice with the tools to generate keys, encrypt her data, implement public
key cryptography and more in order to secure her sensitive information. If Alice is running
a Unix-like environment, then OpenSSL is already installed. The process for Alice to secure
her communications is as follows [6]:

e On Bob’s (receiver) end: Bob uses OpenSSL to generate a public and private key
pair. The private key should be kept protected by Bob. Bob now communicates the
public key to the environment (which includes Alice). This key does not need to be
protected. Below is example code for generation of an RSA key pair and extraction of
the public key from a file [6]:

1. Generate and RSA public/private key pair:
openssl genrsa -aes256 -out user 2048

2. Extract the public key from the file
openssl rsa -in user -pubout > user.pub

e On Alice’s (sender) end: Alice uses user.pub public key to store Bobs public
key on her computer. She then uses OpenSSL to generate a secret key for symmetric
encryption and using user.pub public key she stores the secret key in a file and
encrypts it asymmetrically. Below is example code for this procedure [6]:

1. Generate a random secret key
openssl rand 48 -base64 -out password_file

2. Encrypt the password file using user.pub public key
openssl rsautl -in password_file -out password_encrypted -pubin
-inkey user.pub -encrypt

3. Encrypt the traffic using a symmetric algorithm (i.e. ae256) with the secret key
openssl enc -e -in client.tgz -out client.tgz.enc -aes256 -kfile
password_file

client.tgz should be protected, and sent alongside the password encrypted file to Bob.
This way, the communicated information is protected.

e On Bob’s end: Bob can decrypt the secret key file using his private key. He can then
use the secret key from the file to decrypt Alice’s sensitive communications. Below is
example code for this procedure [6]:

1. Decrypt the secret key file
openssl rsautl -decrypt -inkey user -in password_encrypted -out
password_file_decrypted

2. Decrypt Alice’s sensitive information
openssl enc -d -in client.tgz.enc -out client.tgz -aes256 -kfile
password_file_decrypted

2.2 OpenSSL encryption

OpenSSL provides a convenient feature to encrypt and decrypt files via the command-line
using the command enc. The command allows for password based encryption via various
block and stream ciphers, with the current standard being AES256. Via the below command,

a user can specify a ciphername along with various options for the file encryption [8]:
$ openssl enc -ciphername [options]

The below command allows users to search the available encryption algorithms supported
by enc. This command will output a list with the various ciphers, their key sizes as well as
modes of operation:

$ openssl list-cipher-algorithms

Users may choose an option from the outpu of this command to replace the -ciphername
option in the enc command. The users may also specify certain optional command for the
encryption. As a note, OpenSSL recommends that the -salt parameter always be used for
PBKDF since it adds randomness in the key geberation. If that parameter is not enabled,
then equal passwords would result in the same encryption keys. This results in an unnec-
essary adversarial advantage in decrypting the key. Below is a list of options that can be
specified:

-in filename : specify the input file
-out filename : specify the output file (created if non-existant, otherwise overwritten)
-e or -d : specify whether to encrypt (-e) or decrypt (-d). The default is -e.

-a, -A, -base64 : specify whether to apply Base64-encoding before or after operation.
-a and -base64 are equivalent. Adding the -A flag suppresses line breaks that occur
every 64 characters

-bufsize n : specify the buffer size for internal buffers.
-debug : enable debugging output.
-engine id : specify an engine (i.e. to use special hardware)

-iv IV : specify initialization vector as a hex number. Default is to derive initialization
vector from the password

-k password, -kfile filename : specify the password or a file containing the password
— deprecated, and -pass arg should be used instead.

-K key : specify the key used for encryption or decryption. Default is to derive key
from password.

-md messagedigest : specify the message digest used for key derivation from md2,
Md5, sha, or shal

-nopad : disables standard padding

-salt, -nosalt, -S salt : switch salting on or off. -S salt allows user to explicitly
specify the salt value.

-p, -P : prints the key, initialization vector and salt value. If -P, then these values will
be printed and encryption will not occur

-pass arg : specify password or password source. arg can be the password itself, or a
filename where the password is stored

-z : enables zlib-compression, which compresses a file via zlib after it is encrypted (and
if specified, base64 encoded). When decrypting, zlib will be applied first.

A command that would encrypt a file A.txt to B.enc with the password 6857rocks would
look like this:

openssl enc -aes-256-cbc -salt -in A.txt -out B.enc -pass pass:6857rocks

2.3 Updates to OpenSSL PBKDF

For more than twenty years, RSA Laboratories has published public key cryptography stan-
dards, which are revised and released as cryptography research advances. Current stable
releases of OpenSSL use a password-based key derivation function compliant with RSA Lab-
oratories’” PBKDF2 standard.

2.3.1 OpenSSL 1.0.2 and PBKDF1

Prior to the introduction of OpenSSL 1.1.0, OpenSSL’s key derivation process was based
on a modified implementation of PBKDF1 from Password-Based Cryptography Standard 5

(PKCS5) - RFC2898 as codified by the Internet Engineering Task Force (IETF).
The function EVP _BytesToKey derives a key and initialization vector (IV) as follows:

#include <openssl/evp.h>
int EVP_BytesToKey(const EVP_CIPHER *type, const EVP_MD *md,
const unsigned char *salt,
const unsigned char *data, int datal, int count,

unsigned char xkey, unsigned char *iv);

In 1.0.2, available hashes include MD2, MD5, and SHA1. Iteration count is accepted as a
parameter, and a salt command is required. EVP_BytesToKey concatenates the password

and salt, and hashes the result. Depending on the value specified for count, the result will
then be hashed again, and the subsequent result hashed again, until count is exhausted. The
default count is one (1) for the then-default MD5 (and now-default SHA256), meaning a
brute-force attack has only a single layer of hashing to penetrate the given password.

2.3.2 OpenSSL 1.1.0 and PBKDF2

After 1.1.0, OpenSSL was modified to be compliant with the PBKDF2 is updated to include
the SHA256 digest. Furthermore the generate

2.4 OpenSSL potential problems

2.4.1 Technical

The encryption tool used by OpenSSL appears to be secure, but implementation and human
factors has proven this not to be true in many cases. Prior to OpenSSL 1.1.0 if a mes-
saged digest was not specified, OpenSSL would default the cryptographic hash function to a
salted version of MD5 [2]. While MD5 possesses key qualities of a secure cryptographic hash
function - like one-wayness and determinism - it has been proven to be non-collision resistant.

MDS5 is a hash function that - once given an input - yields an output very quickly. Thus, an
adversary can hash a large number of passwords quickly [4]. Since MD5 has been proven to
be non collision resistant, it is possible for an adversary to find a collision from two of the
hashed passwords. If an adversary is in possession of the hash of a users file, the adversary
can also potentially find another password with the same hash via this attack. This renders
the users MD5 hashed information insecure, since an adversary can execute such an attack
in polynomial time.

MD5 is no longer considered a secure hash function, and before version 1.1.0, OpenSSL only
used one iteration of the salted MD5 algorithm - making a brute force attacks on MD5 hashed
information even more feasible for an adversary [2|. When implementing a cryptographic
hash function, it is usually standard to execute many rounds of the hash. This means that
given an input to a hash function and its output, the output is then treated as the new input
of yet another iteration of the hash function. This pattern is repeated many times for the
purpose of key stretching. Key stretching increases entropy for the encoded password, in
order to increase the time that an adversary would need to break the hash via brute force
attack [7]. Enc did not allow for multiple iterations of the hash, resulting in much weaker
password encryptions.

In version 1.1.0, OpenSSL switched their default digest from MD5 to SHA-256. SHA-256
is currently believed to be a more secure cryptographic hash function than MD5 and there-
fore adversarial attacks on SHA-256 hashed information should be harder to execute than
those on MD5 [3]|. Although the default digest changed in version 1.1.0, the syntax used
to encrypt did not. All options remain the same, OpenSSL still supports enc -ciphername
[options| including all of previous options mentioned in section 2.2.

OpenSSL version 1.0.1 will introduce yet another cryptographic hashing function to improve
encryption security - SHA-3. This is pivotal for OpenSSL encryption because both SHA256
and MDb5 are members of the Merkle-Damgard family of hash functions. While SHA256 is
considered to be more secure than MD5, it may be possible to eventually expose weaknesses
in SHA256 using the make similar mathematical assumptions that were used to show non-
collision resistance in MD5. SHA-3 on the other hand is a sponge function and thus not
a member of the the Merkle-Damgard family of hash function. SHA3’s hardness relies on
different mathematical assumptions than the previous cryptographic hashing functions and
thus is believed to be more computationally difficult to break, as well as not susceptible to
attacks that would be performed on sha2 or md5 [5].

2.4.2 Human Error

Cryptographic encryption schemes are constantly being broken, and OpenSSL provides up-
dates to its library to include new encryption algorithms and new parameters in order to
account for this. This to allow users to add as many layers of protection they deem fit.
Nonetheless, due to human error, encryptions may be much weaker than desired resulting in
a false sense of security. Below are some examples on how human error can cause a signifi-
cantly weaker encryption scheme than desired:

If a user fails to update their version of OpenSSL to the latest version, their encryptions
may not be as secure as they may hope. As previously mentioned, the default cryptographic
hashing algorithm was changed from MD5 to SHA-256. If a user were to fail to update their
version of OpenSSL to 1.1.0, and were still using the default encryption algorithm from the
previous version, there encryptions will not be as secure as they expected. This applies to
every update to the default hashing function. Once vulnerabilities are uncovered in SHA-
256, OpenSSL will once again update its default cryptographic hashing algorithm and thus
users should be aware of such changes.

Along with keeping up to date with latest versions of OpenSSL, users should also ensure
that they update all other relevant files as well. When using the enc command, the user may
specify the file in which the information is to be stored. If a user is using the default hashing
algorithm and updates to a newer version of OpenSSL with a different default digest and
does not update their files, this may lead to inconsistencies in decryption of the saved files.

Updating OpenSSL may result in new available encryption schemes and parameters. For ex-
ample, prior to version 1.1.0 the available cryptographic hashing function could not perform
key stretching and were thus limited to one iteration no matter the function. However, in
the newer versions of OpenSSL, options have been added specifying the following [§]:

-iter count : Use a given number of iterations on the password in deriving the en-
cryption key. High values increase the time required to brute-force the resulting file.
This option enables the use of PBKDF2 algorithm to derive the key.

-pbkdf2 : Use PBKDF2 algorithm with default iteration count unless otherwise spec-
ified.

These new parameters greatly improve the security of the encryption scheme and should be
used whenever implementing a cryptographic hash function in OpenSSL. However, because
the format of the enc command has not changed, users may be used to the old version syntax
and not be aware of the availability of these options.

3 Brute Force Attack

As stated before, MD5 is the default hash digest of version 1.0.2 OpenSSL, which is currently
in long time support. Many services using this version may be vulnerable to brute-force
attacks, which because of the single iteration, becomes incredibly quick. Given a basic
unsalted encryption scheme, cracking the password is trivial for low entropy passwords:

openssl enc -aes-256-cbc -nosalt -pass pass:X -p -in data.txt -out data.enc

Running on an NVIDIA GeForce 8800 Ultra, the MD5 hashing algorithm can be iterated
over 200 million times per second. [1] For an unsalted password with 32 bits of entropy,
this corresponds to a password that can be cracked in less than a minute. This attack was
performed 9 years ago, and since then GPU’s have become exponentially stronger. Even
with the 8-byte salt appended to the hash, with a low entropy password, it is apparent
that brute-force attacks could soon become feasible on encryptions performed with the the
OpenSSL enc tool.

4 Recommendations

OpenSSL, when used properly, is be a great tool for securing communications over computer
networks. It provides up to date security functions as well as a significant amount of options

to strengthen these functions. However when used improperly, a user may believe that their
information is more secure than it truly is. Below is a list of suggestions for users of OpenSSL
to help maximize the security of their encrypted information.

4.1 Version of OpenSSL

As mentioned in section 2.3.2, newer versions of OpenSSL often come with updates to the
cryptographic hash functions available for users, as well as new parameters that strengthen
the security of those functions. By having the most up to date version of OpenSSL a user
has access to a larger number of measures for strengthened security. SHA3 has recently been
offered as an extended digest, which offers fixes to many of the issues present in the MD5
and SHA256 hashing functions.

4.2 Enc Parameters and Algorithms

As mentioned, MD5 preceded SHA-256 as the default digest for the enc command. Ad-
ditionally, by default OpenSSL performs only one iteration of these cryptographic hashing
functions. But users have the option to specify parameters beyond just the default. Users
can specify certain parameters to greatly strengthen the security of their encryption.

As discussed in the section on Brute Forcing, salts are absolutely necessary to protect against
trivial attacks against the security of password-based schemes. The single iteration provides a
serious concern, and so to mitigate the potential vulnerabilities, entropy must be maximized
to slow down brute force attacks. Along these lines, choosing high entropy passwords could
significantly extend the amount of time required to crack the password.

Furthermore, a soon-to-be-released update to OpenSSL will offer SHA3, a more secure cryp-
tographic hashing function than SHA-256 and MD5. It may benefit users to choose this as
the PBKDF digest as opposed to SHA256. Additionally, the option -iter could be changed
to allow for key stretching in order to increase the time an adversary needs to decrypt the
original message. These tools help to restore the insecurity inherent in the default configu-
rations for the OpenSSL command line tool. In general, it is good practice to understand
the changes that come with updates to OpenSSL in order for users to understand how they
can utilize these updates to increase the security of their encryptions.

References

[
2l

13l
4]

5]

(6]

17l

8]

Md5 crack using gpu.

Cryptosense. Weak key derivation in openssl. https://cryptosense.com/blog/
weak-key-derivation-in-openssl/.

Sandeep Kumar and Er Piyush Gupta. A comparative analysis of sha and md5 algorithm.
5:4492 — 4495, 06 2014.

Patrick on. Storing passwords securely. https://patrickmn.com/security/
storing-passwords-securely/.

Stack Overflow. Differentiating sha-3 and previous sha algo-
rithms. https://crypto.stackexchange.com/questions/32457/
what-is-the-difference-between-sha-3keccak-and-previous-generation-sha-algorit.

Stack Overflow. Protecting sensitive information using openssl. http://ad-technica.
com/protecting-sensitive-information-using-openssl/.

Roger Smith. Security 106: The importance of key stretching. http://www.
efficientsoftware.co.nz/importance-key-stretching/.

OpenSSL Wiki. Enc. https://wiki.openssl.org/index.php/Enc.

10

https://cryptosense.com/blog/weak-key-derivation-in-openssl/
https://cryptosense.com/blog/weak-key-derivation-in-openssl/
https://patrickmn.com/security/storing-passwords-securely/
https://patrickmn.com/security/storing-passwords-securely/
https://crypto.stackexchange.com/questions/32457/what-is-the-difference-between-sha-3keccak-and-previous-generation-sha-algorit
https://crypto.stackexchange.com/questions/32457/what-is-the-difference-between-sha-3keccak-and-previous-generation-sha-algorit
http://ad-technica.com/protecting-sensitive-information-using-openssl/
http://ad-technica.com/protecting-sensitive-information-using-openssl/
http://www.efficientsoftware.co.nz/importance-key-stretching/
http://www.efficientsoftware.co.nz/importance-key-stretching/
https://wiki.openssl.org/index.php/Enc

	Introduction
	Analyze OpenSSL PBKDF
	OpenSSL Use Cases
	OpenSSL encryption
	Updates to OpenSSL PBKDF
	OpenSSL 1.0.2 and PBKDF1
	OpenSSL 1.1.0 and PBKDF2

	OpenSSL potential problems
	Technical
	Human Error

	Brute Force Attack
	Recommendations
	Version of OpenSSL
	Enc Parameters and Algorithms

