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Recitation 6 : Elliptic Curves & Number Theory

We review elliptic curves, �nite �elds GF(2k ) and the extended Euclid’s algorithm.

1 Elliptic Curves

We begin by de�ning Elliptic Curves.

De�nition 1.1 (Elliptic Curve). An Elliptic Curve over a �eld F is a curve given by an equation of the
form:

y2
� x3 + ax + b ,

where a , b ∈ F such that the discriminant ∆ � 4a3 + 27b2 , 0, that is, the polynomial x3 + ax + b has
distinct roots.
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Figure 1: The Elliptic Curve de�ned by y2 � x3
− 6x + 7 over R.

We want to de�ne a group structure over the points on the elliptic curve. We do that next.

De�nition 1.2. The Group E de�ned by the elliptic curve (y2 � x3 + ax + b) over �eld F is de�ned as the
set of points:

E �

{
(x , y) ∈ F2

| y2
� x3 + ax + b

}
∪

{
∞

}
,

with the identity element∞ and the group operation + de�ned as follows:
Let P(x1 , y1) and Q(x2 , y2) be points in E. Then,
1. (Identity) P +∞ � ∞ + P � P.
2. (Vertical Line) If x1 � x2 and y1 � −y2 then P + Q � ∞.
3. (Vertical Tangent) If y1 � 0 then P + P � ∞.

4. (Tangent) P + P � (x , y) where λ �
3x2

1 + a
2y1

, x � λ2
− 2x1, and y � −(λ(x − x1) + y1).

5. (General Case) Let x1 , x2 then P + Q � (x , y) where λ �
y2 − y1

x2 − x1
, x � λ2

− x1 − x2 and
y � −(λ(x − x1) + y1).
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Observe that the computation as described is independent of which �eld is used.

Theorem 1.3. (E, +) is a group.

The identity, commutativity, inverse all follow from the de�nition. We will not prove that the
operation is associative, but it is. We describe the geometric intuition behind these and the corre-
sponding calculations next.

The General Case : P + Q
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The line between (x1 , y1) and (x2 , y2) is given
by

y �
y2 − y1

x2 − x1
(x − x1) + y1

where λ � (y2 − y1)/(x2 − x1) is the slope and
ν � y1−λx1 is the intercept. So, to compute the
point R(x3 , y3), we need to compute the inter-
section of the curve E with the line above. That
is,

(λx + ν)2
� x3 + ax + b

Simplifying, we get that,

x3
− λ2x2 + x(a − 2λν) + (b + ν2)

We know two of the roots: x1 , x2. To �nd the
third, use the fact that the second term is the
sum of roots.a Hence, λ2 � x1 + x2 + x3. Hence
x3 � λ2

− x1 − x2. And y3 � λ(x3 − x1) + y1.
Then the point P + Q is (x3 ,−y3).

aThis follows from comparing (x−x1)(x−x2)(x−x3) �
x3
− (x1 + x2 + x3)x2 + . . . with the equation above.

Tangents: P + P
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The tangent at y � f (x) has slope f ′(x) (the
derivative). In this case, y �

√

x3 + ax + b.
Hence,

λ � f ′(x) �
(3x2 + a)
√

x3 + ax + b
�

3x2 + a
2y

So, the line through (x1 , y1) is,

y � λ(x − x1) + y1

Here also, we need to �nd the intersection of
the curve with the line, knowing that x1 is a
repeated root. So, we get x3 � λ2

− 2x1 and
y3 � (λ(x3 − x1) + y1). Then the point P + P is
(x3 ,−y3).
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2 Finite Fields

We recall the de�nition of a �nite �eld.

De�nition 2.1 (Field). A tuple (F, +, ·) is a �eld if the following properties are satis�ed:

1. (F, +) is a commutative group. That is,
(a) Closure. If a , b ∈ F then a + b ∈ F.
(b) Associativity. For all a , b , c ∈ F, (a + b) + c � a + (b + c).
(c) Identity. There is an identity element 0 ∈ F such that 0 + a � a + 0 � a for all a ∈ F.
(d) Inverse. For all elements a ∈ F, there exists −a ∈ F such that a + (−a) � −a + a � 0.
(e) Commutativity. a + b � b + a for all a , b ∈ F.

2. (F \ {0}, · ) is a commutative group. The identity element is called 1.

3. Distributivity. For all a , b , c ∈ F, (a + b) · c � a · c + b · c.

Examples of �elds include rational numbers Q, real numbers R. Integers Z are not a �eld
because they do not have multiplicative inverses for non-zero elements.

Theorem 2.2. Every �nite �eld has size pk for prime p and positive integer k. There exists a unique �nite
�eld of size pk for all primes p and positive integers k.

We will not show this. We will however describe a construction of �nite �elds of size 2k .

De�nition 2.3 (Irreducible Polynomial). A polynomial f (x) over a �eld F is irreducible if and only if
there do not exist polynomials g1 , g2 such that deg(g1) < deg( f ) and deg(g2) < deg( f ) and f (x) �

g1(x) · g2(x).

Let f (x) be an irreducible polynomial of degree k over GF(2). To give some examples: x2 + 1 �

(x + 1)(x + 1). While x2 + x + 1 is irreducible.

Theorem 2.4. Let f (x) be an irreducible polynomial of degree k over GF(2). Then GF(2)[x]/( f ) is a �eld
where GF(2)[x] is the set of all polynomials over GF(2).

Example 2.5. F22 � {0, 1, x , x + 1} with irreducible polynomial x2 + x + 1. Addition is to simply add
the polynomials overGF(2). And tomultiply, �rst multiply the two polynomials and then compute
the remainder modulo f (x) � x2 + x + 1. e.g., x(x + 1) � x2 + x � 1 after reducing mod f . And
(x + 1)(x + 1) � x2 + 2x + 1 � x2 + 1 � x. To �nd the inverse, use extended Euclid’s algorithm for
polynomials. This also enables division.

Similarly we can construct GF(28) used in AES by using the irreducible polynomial f (x) �

x8 + x4 + x3 + x + 1.

3 The Extended Euclid’s algorithm

The extended Euclid’s algorithm computes not only the gcd, but also a witness x , y such that ax +
b y � gcd(a , b).

This algorithm is e�cient because every two recursions, the size of the inputs decreases by one
bit. And hence the algorithm terminates in poly log depth. The proof of correctness is an argument
by strong induction. Observe that if the recursive call returned the correct value, then the current
invocation would also return a witness.
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def Euclid(a, b):

if b == 0:

return a

return Euclid(b, a % b)

def ExtEuclid(a, b):

if b == 0:

# As gcd(a,0) = a = a*1 + 0*0.

return (a, 1, 0)

(d, x1, y1) = ExtEuclid(b, a % b)

# As d = b*x1 + (a%b)*y1 and

# a = b*(a//b) + (a%b).

return (d, y1, x1 - (a//b)*y1)

gcd(7,5)

gcd(5,2)

gcd(2,1)

gcd(1,0)

out (1,1,0)

out (1,0,1)

out (1,1,-2)

out (1,-2,3)

Figure 2: Euclid’s Algorithm and Extended Euclid’s Algorithm for non-negative inputs.
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