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Deep



Deep Learning



Image classification

Generating realistic 
high-resolution images

Game playing

Machine translation

Deep Learning: The Success Stories

Things are great, 
so what’s the problem?



Can We Truly Rely on ML?



(Supervised) Machine Learning:
A Quick Primer
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Supervised Machine Learning



Training: Find parameters θ* that make our 
classifier f(θ*) fit/”explain” the training data 

(and thus approx. f*)

Choice of the family f(·) is crucial

Too simple → underfitting

Supervised Machine Learning
f*= concept to learn

Here: f(θ) = a family of classifiers parametrized by θ
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Supervised Machine Learning

Too flexible → overfitting 

f*= concept to learn

ML developed a rich theory to guide us here (and this was its only goal)

Training: Find parameters θ* that make our 
classifier f(θ*) fit/”explain” the training data 

(and thus approx. f*)

Choice of the family f(·) is crucial

Here: f(θ) = a family of classifiers parametrized by θ



Robust and Secure ML:
The Challenges



Have we really achieved human-level performance?

A Glimpse Into ML Reliability



[Athalye, Engstrom, Ilyas, Kwok 2017]: 
3D-printed model classified as 
rifle from most viewpoints

[Engstrom, Tran, Tsipras, Schmidt, M 2018]: 
Rotation + Translation Suffices

“revolver” “mouse trap”

“panda” “gibbon”

[Goodfellow et al. 2014]: Imperceptible noise 
can fool state-of-the-art classifiers

Adversarial Examples

Should we be worried?



Security?

[Sharif et al. 2016]: Glasses the fool face classifiers

[Carlini et al. 2016]: Voice commands 
that are unintelligible to humans

[Jia Liang 2017]: Irrelevant sentences 
confused reading comprehension systems

[Huang et al. 2017]: Small input changes 
can decrease RL performance



Changes in environment

Safety?

Self-driving cars as not as 
safe as we think they are



Understanding  “failure modes” 
of machine learning

ML Alignment?

ML works differently to what we expect



Training Inference

Adversarial Examples

Is That It?



We can’t afford to be too picky about 
where we get the training data from

→ We train on data we cannot fully trust

What can go wrong?

Deep Learning is Data-Hungry



Common knowledge: Bad training data can degrade performance

But this gets worse: 
We can manipulate predictions

Dataset Training
Algorithm Model

(             , “George Clooney”) x 5

poison
“George Clooney”

Data Poisoning

And even worse…

[Koh Liang 2017]: 

Can poison multiple
images with a single
poisoned image



[Gu et al. 2017]: Can plant an undetectable backdoor that 
gives an almost total control over the model

[Chen et al. 2017]: Physical backdoors

Common knowledge: Bad training data can degrade performance

But this gets worse: 
We can manipulate predictions

Dataset Training
Algorithm Model

(             , “George Clooney”) x 5

poison
“George Clooney”

Data Poisoning

And even MORE bad…



Training Inference Profit??

Adversarial ExamplesData Poisoning

Is That It?



Google Cloud Vision API

Microsoft Azure (Language Services)

Prediction API:
Input

Prediction

ML as a Service



Training Inference Profit??

Adversarial ExamplesData Poisoning

Is That It?

Model Stealing



[Tramer et al. 2016]: Can recover a “copy” of 
the model using only the prediction API

Model Stealing

→ Adversary can monetize the trained model
→ Proprietary datasets for model training are no longer a competitive advantage



Are we doomed?

→ Towards ML models resistant to adversarial examples



Efforts So Far

“Arms race” between attacks and defenses

JSMA   →   Defensive Distillation   →   Tuned JSMA
[Papernot et al. ’15], [Papernot et al. ‘16], [Carlini et al. ‘17]

FGSM →  Feature Squeezing, Ensembles →  Tuned Lagrange
[Goodfellow et al. ‘15], [Abbasi et al. ‘17], [Xu et al. ‘17], [He et al. ‘17]

→ Exploration of the structure of adversarial examples
→ Mostly interest in their construction, i.e., attacks
→ Proposed defense mechanisms tend to be bypassed by 

new, more sophisticated attacks

→ In “practice”: security through obscurity/complexity

No good understanding yet of the extent to which one 
can or cannot be resistant to adversarial examples



Today: A principled (re)look at adv. robustness

Three principles underlying our approach:
→ Be precise about your threat model
→ Use (robust) optimization as a lens on adv. robustness
→ Let the intended security guarantees be the driver 

of the design of the corresponding defense mechanism

Resulting framework:
→ Enables us to train 

reliably* robust models
→ Provides a perspective on adversarial robustness 

(that also unifies and explains much of previous findings)

Towards Robust ML Models
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!"#! $%&& ', ) , *Goal of training:

Can use gradient descent 
method to find bad +

Differentiable

In
pu

t "

Output

Parameters ,

Where Do Adversarial Examples Come From?
Input Correct LabelModel Parameters

!-)# $%&& ', ) + +, *
To get an adv. 
example:

Which + are allowed?

Any # that is small wrt

• ℓ/-norm

• Rotation and/or translation

• VGG feature perturbation

• …
Optimization is at the core of this phenomenon



Towards ML Models that Are Adv. Robust
[M, Makelov, Schmidt, Tsipras, Vladu 2017]

Key observation: Existence of adversarial examples is NOT at odds 
with what we currently want our ML models to achieve

!(#,%)~( [*+,, -, ., / ]Standard generalization:

But: Adversarial noise is of measure zero

Need: Adv. robust generalization:

!(#,%)~( [12.3∈5 *+,, -, . + 3, / ]This is a security guarantee!



Towards ML Models that Are Adv. Robust
[M, Makelov, Schmidt, Tsipras, Vladu 2017]

Resulting training problem:

min$ Ê& [max*∈, -.// 0, 2 + 4, 5 ]

Finding an attackFinding a robust model

So, now, it is “just” about the optimization
To improve the model:

Train on good attacks 
(aka as “adversarial training” [Goodfellow Shlens Szegedy ‘15])

Does this work?



Key Component: Strong and Reliable Attack 

Need to solve: 
max$∈& '()) *, , + ., /



Key Component: Strong and Reliable Attack 

Need to solve: 
max$∈& ' (

Problem: ' ( is non-concave

Natural (only?) approach: (Multi-step) projected 
gradient descent/ascent (PGD) with random restarts



PGD as an Attack

Change of loss in the direction 
identified by different attacks:

CIFAR10 ε=8 (natural training):
FGSM (single gradient)
PGD (8 steps with η=2.5)



Optimization Landscape of the Loss

Observation: Even though there is a lot of distinct local 
maxima of ! " , their values are fairly concentrated

This suggests: Maxima we identify close to global ones
⇒ they give good descent directions (cf Danskin’s theorem) 



Solving our Saddle Point Problem

Our best models:
→ MNIST (ε=0.3): Accuracy 89% against the “best” (white-box) attack  
→ CIFAR10 (ε=8): Accuracy 46%  against the “best” (white-box) attack



Important: Model Capacity Matters
Accuracy and loss vs.

model capacity 
(PGD training on MNIST):

Need enough capacity to have the final value of 
our saddle point problem be small enough 

Why?



→ We follow the standard security methodology
• Evaluation with multiple strong attacks
• (Successful) public security challenge
• Effectiveness also confirmed via model 

inspection and (partial) verification        
[Carlini Katz Barrett Dill 2017]

→ We don’t have a proof and verification is hard (for now)

Security

How do we know it really worked?



Ineffective Defenses from:

Common issues:
→ Security by obscurity/complexity
→ No precise threat model
→ No sufficient evaluation attempts 

This Can Get Tricky

We need (and can!) do 
better as a community



ML 
system

Image

Prediction

NO: Can use the zeroth order methods
(finite differences) to approximate the gradient

[Chen et al. 2017]

If the adversary has only black-box access to our model parameters
(and thus can’t take gradient steps) are we safe?

[Engstrom, Ilyas, Schmidt, M 2018]: 
Can do much better using compressive 
sensing and online learning approaches

Adversarial Examples Without Gradient Access

→ Problem: Query complexity can be very high 



Theorem [Schmidt, Santurkar, Tsipras, Talwar, M 2018]: There can be as large as 
Ω(dimension) difference between the number of training points needed 
to generalize in “standard” way vs. generalizing in a robust way

Supported by 
experimental evidence:

Why Protecting Against Adv. Example is Difficult?
→ The underlying optimization problem might be tricky to solve 

→ But also: we might need more data than we have



Conclusions
→ We are getting somewhere in ML and this is exciting 
→ But: It is still Wild West out there
→ More critical thinking/caution (but not pessimism!) is required
→ Need to re-think the whole ML pipeline 

from the security/reliability perspective
→ Need to be precise about what we want our ML solutions to achieve 

and how to test/verify it

→ It will strengthen our understanding of current ML too
(and let us identify some new application domains/use cases)

This will require a lot of work but we can get there


