
Security Analysis of Zigbee

Xueqi Fan, Fransisca Susan, William Long, Shangyan Li

{xueqifan, fsusan, wlong, shangyan}@mit.edu

May 18, 2017

Abstract

This paper analyzes the security of Zigbee - a wireless communication protocol for Internet-
of-Things devices. We start with the components in a network using Zigbee standard. We
then give the readers an overview of the security policy, measures, and architecture. After the
series of introductions of the standard, we discuss the devices and methods used to find security
vulnerabilities and corresponding results. Lastly, we present a set of recommendations to Zigbee
standard that will likely improve their security.

1 Introduction

Internet of Things (IoT) has become increasingly popular in the past few years. Subsequently, the
security of the IoT devices becomes crucial, especially many devices have access to highly personal-
ized and sensitive data. Zigbee is one of the most widely used standards for wireless communication
between different IoT devices and has been adopted by many major companies, like Samsung and
Philips. Zigbee is an open standard for low-power, low-cost wireless personal area networks that in-
terconnect devices primarily for personal uses. The standard aims to provide a two-way and reliable
communication protocol for applications with a short range, typically 10-100 meters. Zigbee is im-
plemented with different application standards used in a variety of application areas, including home
automation, smart energy, remote control and health care.

Even though Zigbee was designed with the importance of security in mind, there have been trade-
offs made to keep the devices low-cost, low-energy and highly compatible. Some parts of the standard’s
security controls are poorly implemented, which inevitably lead to security risks. This paper highlights
the main security risks and results of attempted attacks on a few IoT devices implemented with Zigbee
standard.

2 Responsible Disclosure

In order to perform security analysis on Zigbee protocol, we purchased the Samsung SmartThings Hub
v2, the Smart Outlet, and the Iris Contact Sensor. According to the Digital Millennium Copyright
Act (DMCA) security research exemption for consumer devices, which was in effect since October 28,
2016, and lasts for two years, we are legally conducting this security analysis of Zigbee protocol by
testing on these purchased Zigbee devices[1].

In more details, the exemption ”authorized security researchers who are acting in good faith to
conduct controlled research on consumer devices so long as the research does not violate other laws.”[1]
Our project satisfies this description because first, we have only been using open sourced programs
as tools to test Zigbee devices and the devices are legally acquired. Then, we are performing the
analysis and ”hacking” with good-faith since we aim to examine the vulnerabilities of Zigbee protocol

1

as a final project for 6.857. This paper will also be published on 6.857 course website as additional
evidence for ”good-faith.” Lastly, the Zigbee devices we chose are included in the exemption because
they are designed for use by individual consumers, instead of industry.

3 Security Policy

3.1 Principals

First, we introduce the five principals in Zigbee’s security policy. A graph is included to illustrate the
technical components of a Zigbee network.

Figure 1: Zigbee Overview

3.1.1 Owner

The owner of Zigbee devices purchase the devices and need to establish the network with the coor-
dinator and add other routers and end devices to the network. The owner can also remotely control
the devices.

3.1.2 Other Users

Other users in the household are also a principal in the policy. They can remotely control the devices
and might be able to control the network by the permission of the owner.

3.1.3 Coordinator

Each Zigbee network must have one coordinator that manages the overall network[2]. A coordinator
usually functions as the trust center that provides security control of the network. The coordinator
is responsible for establishing the network. In that process, it chooses the channel that is used in
the network for the devices to communicate. Then the coordinator gives permission to other devices
to join or leave the network and keeps track of all the end devices and routers. Also, it configures
devices and enables end-to-end security between devices. More importantly, the coordinator stores
and distributes the network keys. In a Zigbee network, the coordinator cannot sleep and needs to be
continuously powered[3].

3.1.4 Router

Routers in a Zigbee network act as intermediate nodes between the coordinator and the end devices.
Routers have to join the network first by the permission of the coordinator. Then they can route

2

traffic between end devices and the coordinator, as well as transmit and receive data. A router also
able to allow other routers and end devices to join the network. Similar to the coordinator, routers
also cannot sleep as long as the network is established[3].

3.1.5 End Device

A Zigbee end device is the simplest type of device on a Zigbee network, and it is often low-power
or battery-power. End devices are what the customers are more familiar with, like motion sensors,
contact sensors, and smart light bulbs. The end devices also must join the network first to communicate
with other devices. However, unlike the coordinator and the routers, the end devices do not route
any traffic and cannot allow other devices to join the network. As a result of the inability to relay
messages from other devices, the end devices can only communicate within the network through their
parent nodes, often routers. Also different from the other two types of devices, the end devices can
enter low power mode and sleep to conserve power[2]. This feature makes battery power possible for
end devices.

4 Security Measures

Zigbee claims to provide state-of-the-art security tools allowing its member companies to create some
of the most secure IOT wireless devices. Its security is based on symmetric-key cryptography, in
which two parties must share the same keys to communicate. Zigbee uses the highly secure 128-bit
AES-based encryption system [13]. Zigbee protocol is built on the IEEE 802.15.4 wireless standard,
which has two layers, the physical layer (PHY) and the medium access control layer (MAC). Zigbee
builds the network layer (NWK) and the application layer (APL) on top of PHY and MAC. As a low-
cost protocol, Zigbee assumes an ’open trust’ model where the protocol stack layers trust each other.
Hence, cryptographic protection only exists between devices, but not between different layers in a
device. This allows keys reusing among layers of the same device. For simplicity of the interoperability
of devices, Zigbee uses the same security level for all devices on a given network and all layers of a
device. Furthermore, it establishes the principle ’the layer that originates a frame is responsible for
initially securing it’[4].

In addition, Zigbee command includes a frame counter to stop replay attacks (in which an attacker
could record and replay a command message). The receiving endpoint always checks the frame counter
and ignores duplicate messages.

Zigbee also supports frequency agility, in which its network is relocated in case of a jamming
attack. [6]

4.1 Security Model

To satisfy a wide range of applications while maintaining low cost and power, Zigbee claims to offer
two network architectures and corresponding security models: distributed and centralized. They differ
in how they admit new devices into the network and how they protect messages on the network. [6]

A distributed security model provides a less-secured and simpler system. It has two devices types:
routers and end devices. Here, a router can form a distributed security network when it can’t find any
existing network. Each router can issue network keys. As more routers and devices join the network,
the previous routers on the network send the key. To participate in distributed security networks, all
router and end devices must be pre-configured with a link key that is used to encrypt the network key
when passing it from a router parent to a newly joined node. All the devices in the network encrypt
messages with the same network key.

A centralized security model provides higher security. It is also more complicated as it includes
a third device type, the Trust Center (TC), which is usually also the network coordinator. The
Trust Center forms a centralized network, configures and authenticates routers and devices to join

3

Figure 2: Centralized vs. Distributed Zigbee Network

a network. The TC establishes a unique TC Link Key for each device on the network as they join
and link keys for each pair of devices as requested. The TC also determines the network key. To
participate in a centralized security network model, all entities must be pre-configured with a link key
that is used to encrypt the network key when passing it from the TC to a newly joined entity. Both
systems are illustrated in Figure 2 [13].

4.2 Security Assumptions

Aside from the open trust model between layers, the security of Zigbee ultimately depends on the
following assumptions [4]:

1. The safekeeping of symmetric keys. Zigbee assumes that secret keys are not available outside of
the device in an unsecured way, meaning that all transmission of keys must be encrypted. An
exception to this is during pre-configuration of a new device, in which a single key might be sent
unprotected, creating a brief vulnerability. Here, if the keys are stolen because the adversary
has physical access to the devices, many information then become available. Zigbee’s security
policy does not protect against attack to hardware due to its low-cost nature.

2. The protection of mechanism employed. All Router and End Device nodes should support both
centralized security and distributed security by adapting to the security scheme employed by
the network that they join [14].

3. The proper implementation of cryptographic mechanism and associated security policies in-
volved. Here, Zigbee developers are assumed to follow the complete protocol in practice. Zigbee
also assumes the availability of almost perfect random number generators.

4.3 Security Keys

Zigbee network and devices use a network key and link keys to communicate. The recipient party
always knows which keys are used in protecting the messages.

A network key is a 128-bit key shared by all devices in the network, which is used for broadcasting
communications. There are two types of network keys: standard and high-security. The type usually
controls how a network key is distributed as the network key must itself be protected by encryption
when it is passed to the joining node [13]. For this encryption, a pre-configured link key is used; this
key is known by both the Trust Center and the joining device for centralized security; this key is
known by all nodes in distributed security.

4

A link key is a 128-bit key shared by two devices. There are two types of link keys: global and
unique. The type determines how the device handles various TC messages (APS commands). In a
centralized security network, there are three kinds of link keys: 1) global link key used by the TC and
all nodes in the network, 2) unique link key used for a one-to-one relation between TC and a node,
later replaced by the Trust Center link key, and 3) application link key, that is used between a pair of
devices. Here, link keys related with the TC are usually pre-configured using an out-of-band method,
for instance, QR code in the packaging, while link keys between entities are often generated by the
Trust Center and encrypted with the network key. In a distributed security network, link keys only
exist between a pair of devices.

4.3.1 Security Key Types

Centralized Security Model
In a centralized security network, the keys for the network layer are as follows:

• Network key, as detailed above.

• Pre-configured global link key, which is used to encrypt the network key when it is passed
from the TC to the devices. This link key is the same for all nodes in the network. [13] It may
be Zigbee-defined key or manufacturer-defined:

– The Zigbee-defined key, 5A 69 67 42 65 65 41 6C 6C 69 61 6E 63 65 30 39

(ZigbeeAlliance09), which allows nodes from different manufacturers to join the network.

– A manufacturer-defined key that only allows nodes from the specific manufacturer to join
the network.

• Pre-configured unique link key, which is also used to encrypt the network key when sent
from the TC to a node. This link key is exclusive for each (TC, node) pair so it is different
for every node. This link key is usually pre-configured or pre-programmed into the relevant
nodes either in the factory or during commissioning [13]. In the new version, Zigbee 3.0, the
pre-configured unique link key is usually in the form of an install code, a random 128-bit number
protected by a 16-bit CRC (cyclic redundancy check) pre-installed in the devices. [6]

In an older version of Zigbee protocol, the nodes usually use the Zigbee defined pre-configured global
link key but most devices compatible with Zigbee 3.0 use the pre-configured unique link key or
manufacturer defined pre-configured global link key.

Once network-level security is set up, application-level security can be set up for more secure
communication. The keys for the application layer are as follows:

• Pre-configured global link key, as explained above. This key is used for communication
between the TC and all other nodes.

• Pre-configured unique link key, as explained above. This key is used for communication
between the TC and one other node.

• Trust Center Link Key (TCLK), which is used between the TC and one other node. This
128-bit key is derived from the pre-configured unique link key using Matyas-Meyer-Oseas (MMO)
hash function or randomly generated by the TC. [6,13] This key is passed from the TC to the
relevant node with encryption using the network key and (if exists) the pre-configured unique
link key for the node. This Trust Center Link Key then is used to encrypt all subsequent
communication between the TC and the relevant node, replacing the pre-configured unique link
key. However, the node still keeps the pre-configured link key in case it needs to rejoin in the
future.

5

• Application Link Key, which is used between a pair of nodes (without the TC) to commu-
nicate. This key is requested to the TC by one of the two end devices, then generated by the
TC with association with the IEEE/MAC addresses of the two nodes. The TC encrypts this
key with the network key and, if exists, the pre-configured unique link key for each node to
transport this key to each node.

The keys used by a centralized security model of Zigbee protocol be summarized in Figure 3.

Figure 3: Zigbee Security Key Summary for Centralized Model

Distributed Security Model
The keys used for the network and application layer in the distributed security model are as follows:

• Network key, as described abocve.

• Distributed Security Global Link Key, which is used to encrypt the communication between
the Router parent and a joining node. This key is factory-programmed into all nodes [14].

• Pre-configured Link Key, which is also used to encrypt the communication between the
Router parent and a joining node. This key is also factory-programmed into all nodes using
commissioning tool. There are three types of this key:

6

– Development key, which is used during development before Zigbee certification.

– Master key, which is used after successful Zigbee certification.

– Certification key, which is used during Zigbee certification testing. [14]

At the end, the link key used should be the master key that shows a successful Zigbee certifica-
tion.

4.3.2 Security Key Modification

In a centralized security model, the TC periodically creates, distributes, and switches the network key
to limit the time that an attacker acquires a network key. The new network key is encrypted with
the TC-generated Trust Center Link Key. When the new key first reaches the nodes, the transported
key is automatically saved but not activated. A node can store more than one network key while
identifying the current one with a unique ’key sequence number’ assigned by the TC. [6, 14] Similarly,
application link key can also be replaced with the new link key generated by the TC.

There is also over-the-air (OTA) updates that allow a manufacturer to add new features, fix defects
in the product, and apply security patches as new threats are identified. OTA updates create potential
security vulnerability if the protocol does not provide enough protection or the device manufacturer
does not use all the available protection. Zigbee provides multi-layered security to update devices and
assure that updated code images are not malleable. It encrypts all image transfers OTA with a unique
key, signs the OTA image with another unique key, then encrypts the image during manufacturing
so that only the end product can decrypt it. The image might be stored in on-chip memory that is
configured with the debug read-back feature disabled – preventing reverse engineering with standard
debugging tools, which is a common vulnerability of other solutions. Once the encrypted image is
received, its secure bootloader decrypts the image, validates the signature, and updates the device.
The bootloader also checks the validity of each image each time the device boots to prevent it from
updating and return to using the previous known good image if the image is invalid (detecting image
corruption quickly). [6]

7

4.4 Security Architecture

As mentioned before, Zigbee builds NWK and APL layers on top of the IEEE 802.15.4 PHY and
MAC layers. The APL layer includes Application Support (APS) sublayer, the Zigbee Device Object
(ZDO), and applications. The ZDO is responsible for managing the security policies and the secu-
rity configuration of a device. The APS layer provides a foundation for servicing ZDO and Zigbee
applications.

Figure 4: Outline of the Zigbee Stack Architecture

The architecture includes security mechanisms at three layers of the protocol stack: the MAC,
NWK, and APS layers.

4.4.1 MAC Layer Security

The MAC layer security is based on the security of IEEE 802.15.4 (based on its specification) aug-
mented with CCM∗. CCM is an enhanced counter with CBC-MAC mode operation encryption scheme,
while CCM∗ is CCM with encryption-only and integrity-only capabilities. The MAC layer uses a single
key for all CCM∗ security levels (CCM∗ throughout the MAC, NWK, and APS layers). [5]

As part of the open trust model, the MAC layer is responsible for its own security processing, but
the upper layers determine which keys or security levels to use. The upper layer sets the MAC layer
default key to coincide with the active network key and the MAC layer link keys to coincide with
any link keys from the upper layer. [5] MAC layer link keys (which are set by the upper layer are
preferred. The following figure shows an outgoing MAC frame in Zigbee protocol with its security
processing.

4.4.2 NWK (Network) Layer Security

The NWK layer is responsible for the processing steps needed to transmit outgoing frames and securely
receive incoming frames securely. Similar to the MAC layer, upper layers set up the appropriate keys
and frame counter and establish which security level to use. [4]

The NWK layer sometimes broadcast route request messages and process received route reply
messages. In doing so, the NWK layer uses link keys if available; otherwise, it uses its active network

8

Figure 5: Zigbee frame with security at the MAC layer

key. Here, the frame format explicitly indicates the key used to protect the frame. The following
figure shows an example of an encrypted network layer.

Figure 6: Zigbee frame with security at the NWK layer

4.4.3 Application (APL) Layer Security

All the security related with the APL layers is handled by the APS (application support) sublayer.
The APS layer is responsible for the processing steps needed to securely transmit outgoing frames,
securely receive incoming frames, and securely establish and manage cryptographic keys. Upper layers
control the security level or the management of cryptographic keys by issuing primitives to the APS
layer. The following figure shows an example of encrypted APS layer.

In Zigbee 3.0, Zigbee protocol can also create an application-level secure link between a pair of
devices in the network by establishing a unique set of AES-128 encryption keys between a pair of
devices. This supports the virtual private links between a pair of devices which needs higher security.
An example is in a functional network of home area network that connects many devices (lights,
thermostats, occupancy sensors, door locks, window sensors, and garage door openers), an extra layer
of security qualification is established between door locks and garage door openers to limit the ability
of an attacker acquiring the network key to inject messages that would open the door lock; in this
case the attacker would also need the link key between door locks and garage door openers. [6]

4.5 Updates on Zigbee 3.0

There is a designed ”moment of insecurity” in the Zigbee HA 1.2 specification that uses a well-known
symmetric encryption key known as the Trust Center Link Key to distribute a unique network key
when a device first joins the network. This is a tradeoff that the Zigbee Alliance chose to make
between security and simplicity - with a mitigated impact given that an attacker would have to be
capturing Zigbee network traffic at the same time that a new device is being joined to the network.
[5]

9

Figure 7: Zigbee frame with security at the APS layer

This method has been removed from the upcoming Zigbee 3.0 specification and replaced with a
process that requires a per-device installation code that is used to generate a unique joining key, which
is then used to acquire the Zigbee network key. The install code may be printed on the device, be a
2D barcode that is scanned by a camera, or some other out-of-band method of passing the code from
the end-device to the Zigbee Coordinator device (in our case, the SmartThings Hub) such as NFC
or Bluetooth Smart. However, our devices did not support the out-of-band key establishment and
instead utilized the Trust Center Link Key described above.

5 Previous Work

There have been some projects done in the past few years on exploiting Zigbee vulnerabilities. Many
of the hacks are performed on specific Zigbee devices since different hardware and software setups can
limit the types of attacks hackers can perform. Here we give three examples of previous work with
Zigbee.

5.1 Killerbee

Killerbee is a Python-based framework used to exploit the security of the devices implemented with
Zigbee standard. Killerbee provides facilities for sniffing the keys, injecting network traffic, decoding
the packets captured, and packet manipulation. Killerbee was first developed so that other users can
extend the framework and build other tools and perform various kinds of attacks[8]. Killerbee is easily
extendable because it has minimal library dependencies. We have used the Killerbee framework when
our team attacked the Zigbee standard with the devices we purchased.

Some of the notable tools included in Killerbee framework include: 1) zbassocflood, used to crash
the device from too many connected stations; 2) zbdsniff, used to capture Zigbee traffic and return
the key if found; 3) zbstumbler, an active network discovery tool that sends beacon request frames
out and returns the user information on discovered devices[9].

5.2 IoT Worm Hack on Philips Hue Light Bulbs

In November 2016, a paper was published to explain the attack targeted on Philips Hue Light Bulbs
that implemented with Zigbee standard. The researchers used a drone to target Philips Hue Light
Bulbs, and infected the light bulbs with a worm/virus that gives the attackers the ability to turn them
on and off. Interestingly, the attackers controlled the lights to flash a Morse code ”SOS” message[10].

This attack exploited the hard-coded symmetric keys on the light bulbs to control them through
the Zigbee network. The worm was able to attack a light bulb from up to 400 meters away and
then spread to nearby bulbs because Zigbee uses hard-coded skeleton keys. In more details, the
worm tricked Philips into release an automatic firmware update for the bulbs and bypassed the built-
in security safeguards against unauthorized remote access. Then, the attackers were able to easily

10

decrypt the AES-CCM key that is used in all Hue light bulbs. The worm can then spread to close-by
bulbs using the Zigbee wireless network[11].

After publishing the paper about the attack, Zigbee quickly issued a response. They claimed that
the vulnerability was not part of Zigbee standard, but rather an internal implementation error made
by Philips. From this attack, we can see that even though Zigbee Alliance tries its best to ensure the
security of its standard, they do not have complete control over how other companies implement the
protocol and some erroneous implementation could lead to security weaknesses.

5.3 Internet of Things Map

The Internet of Things Map is projected that maps out the locations and manufacturers of Zigbee
devices in Austin, TX. The researchers have developed an autonomous device that is equipped with
multiple Zigbee radios to communicate with nearby devices, and a GPS used to locate the Zigbee
devices. This device can capture and save the locations of all Zigbee devices within 30 to 100 meters
radius[12].

This project has demonstrated how easy it is for the location and basic information on IoT devices
to be leaked because of its wireless nature, even without performing an attack. Once an adversary
locates a device, they can begin their attacks. The map also shows there is an increasing number of
users of Zigbee devices in residential areas and commercial areas, which is one of the most important
reasons why security in Zigbee is important.

6 Security Analysis

For our Zigbee IoT setup, we purchased several smart devices to implement a Zigbee Coordinator,
Router, and End Device. We also use a set of tools including both hardware and software to be able
to eavesdrop on Zigbee’s 802.15.4 network. These tools not only give us passive listening functionality,
but also give us the ability to perform packet flooding, replay, and spoofing attacks.

6.1 Hardware Tools

We purchased three devices to setup our IoT network. Samsung SmartThings Hub v2 is the centralized
control hub from which users can connect and control their smart devices over the Internet. Our
Centralite Smart Outlet represented our Zigbee router; since it is perpetually connected to power, it
has the ability to route all traffic between the Coordinator and End Devices. Lastly, our Iris Contact
Sensor is a magnetic sensor placed on a doorway that sends out a beacon whenever the door is open
or closed. Since it is battery powered, it represents a Zigbee End Device that, if not being triggered,
goes to sleep to reserve power.

We also acquired a Atmel Raven RZUSB Stick that allows users to capture 802.15.4 network data. The
default firmware with which it’s shipped provided only passive functionality (listening in on Zigbee
channels). Since we wanted to also be able to perform attacks on the network and inject our own
traffic, we installed custom Killerbee firmware onto the RZUSB. To flash this custom firmware, we
also had to purchase:

11

• Atmel AVR Dragon On-Chip Programmer (ATAVRDRAGON)

• Atmel 100-mm to 50-mm JTAG Standoff Adapter (ATAVR-SOAKIT)

• 50mm male-to-male header (Digi-Key part S9015E-05)

• 10-pin (2x5) 100-mm female-to-female ribbon cable (Digi-Key part H3AAH-1018G-ND)

6.2 Software Tools

Once we had the Killerbee firmware installed, we had access to open-source tools written in Python
used to communicate to the RZUSB functionality. Among other, we used these tools which were run
from the command line:

• zbdump - A tcpdump-like took to capture IEEE 802.15.4 frames to a libpcap or Daintree SNA
packet capture file. Does not display real-time stats like tcpdump when not writing to a file.

• zbstumbler - Active Zigbee and IEEE 802.15.4 network discovery tool. Zbstumbler sends beacon
request frames out while channel hopping, recording and displaying summarized information
about discovered devices. Can also log results to a CSV file.

Once we had packet capture files (either libpcap or Daintree SNA files), we used a popular packet
manipulation service called Wireshark to visualize the packets. Wireshark allowed us to understand
the underlying structure and components of packet data which, in the raw, looks simply like a hex
dump, but in Wireshark, exhibited useful information.

6.3 Procedures

Our first step, once we had successfully flashed the RZUSB with custom firmware and installed
killerbee with all of its dependencies, was to recreate a device pairing.

On the SmartThings iOS application, we removed the Iris Contact Sensor and the Centralite
Smart Outlet from the Hub’s network. Next, we accessed the SmartThings developer web portal
(graph.api.smartthings.com) where we could find technical specifications for the Hub as well as con-
nected devices, personal area network IDs (PANID) for each device, and a live log of events on the
network. From here, we found several key bits of information:

Notice that the Zigbee channel being utilized is 19, that the Hub’s PANID is 0xD75F, that Over-
the-Air (OTA) key transport is enabled, and that unsecure rejoin, meaning that battery-powered
devices may leave and rejoin the network without a new key rotation, is enabled. These default
settings give us many potential avenues of attack.

12

6.3.1 Key Sniffing

Our primary attack focused us around capturing a key transport from our Zigbee network which could
potentially be used to decrypt messages and send commands to devices. Firstly, we connected our
RZUSB with our custom killerbee firmware to a Ubuntu Virtual Machine. We then called zbdump
on channel 19 and output the packet capture data to a libpcap file. With the RZUSB sniffing for
packets, we opened the SmartThings iOS application to place the Hub into pairing mode.

We then found both the Iris Contact Sensor and the Centralite Smart Outlet and saved them to
the Hub’s network. After the association was complete, we stopped sniffing and ported the packet
capture data to WireShark. The results are displayed in the figure below:

Several items are of interest here. For the first 9 packets, we observe simple broadcast messages by
the Hub looking for devices to add. Packet 10 displays an Association Request by a device with only
a MAC Address. After Acknowledgments and a successful Association Response in which the device
is assigned a new PANID, we arrive at Packet 18 which is described as an APS: Command from the
Hub coordinator to the newly added device.

Digging further into the Command packet shows us that it is encrypted with a Key-Transport Key.
According to the Zigbee Specification, a Key-Transport Key is a ”key used to protect key transport
messages.” [4] In other words, this message represented a transport of the shared Network Key to the
newly added device, encrypted with a Key-Transport Key. After further research, we discovered that
this Key-Transport Key is also known as the Trust Center Default Link Key. This Default TC Link
Key is publicly known to be the hex encoding of the string ZigbeeAlliance09. [16]

With the encrypted hex key:

0xcc 0x60 0x47 0x4c 0x93 0x42 0xe2 0xf7 0x7f 0x78 0x1b 0xfb 0x26 0xe1 0xbb 0x0f

0xa1 0x15 0x79 0x13 0x64 0x92 0xde 0x6b 0xda 0x7c 0x0d 0xe2 0xd5 0xc5 0xc0 0x57

0x78 0xc4 0xa5

And the hex encoding of the Default TC Link Key:

0x5a 0x69 0x67 0x42 0x65 0x65 0x41 0x6c 0x6c 0x69 0x61 0x6e 0x63 0x65 0x30 0x39

We could decrypt the Network Key by passing it to an Advanced Encryption Standard (AES)
decrypter with the Link Key to get a plaintext Zigbee Network Key:

13

ef bf bd ef bf bd ef bf bd 7d 11 29 23 ef bf bd 3b 44 ef bf bd 0c ef bf bd 45 ef bf

bd 79 ef bf bd 70 30 ef bf bd 1b ef bf bd 3f 44 ef bf bd ef bf bd 5e 49 ef bf bd ef

bf bd ef bf bd e5 bc a3 ef bf bd 1c ef bf bd ef bf bd ef bf bd ef bf bd ef bf bd 75

5f 65 0a

This Network Key can now be used to decrypt any traffic on the network including necrypted
sensor readings from the Iris Contact Sensor, commands to turn the Centralite Smart Outlet On/Off
by the Hub, or if we had other popular IoT devices, we could even perform more sinister attacks like
unlocking doors or changing thermostat temperatures. From an administrator perspective, access to
the Network Key gives an adversary total control of the network. Arbitrary devices can be joined or
removed from the network including potentially malicious ones. Arbitrary commands can be given to
individual smart devices and the network can be disbanded at will.

The fact that we were able to discover this Key should be very worrisome for IoT network owners.
Of course, this concern is downplayed by the Zigbee Alliance because of the short window of oppor-
tunity that adversaries have to sniff a Key Transport. Our next attacks show that this window can
actually be arbitrarily opened by adversaries.

6.3.2 Association Flooding

Now that we can successfully sniff keys from a Zigbee network, our next direction of attack was to be
able to induce an encrypted Network Key transport without requiring the owner to be adding a new
device. Our first idea was to send a barrage of Association Requests to devices on the network in an
attempt to cause the device to crash from too many connected stations. We used the following code
utilizing tools from the KillerBee Python API to accomplish this: [16]

Association Request Frame in list form, split where we need to modify

assocreqp = ["\x23\xc8",

"", # Seq num

"", # Dest PANID

"\x00\x00", # Destination (coordinator)

"\xff\xff", # Source PAN (broadcast)

"", # Address field

"\x01\x8e\x67" # Command Frame payload/assoc req

]

assocreqinj = ’’.join(assocreqp)

try:

Send the associate request frame

kb.inject(assocreqinj)

time.sleep(0.05) # Delay between assoc and data requests

Send the data request frame

kb.inject(datareqinj)

except Exception, e:

print "ERROR: Unable to inject packet"

print e

sys.exit(-1)

After this, we would also listen for an acknowledgment and response from the target device. Using
the SmartThings developer web portal, we could determine the PANIDs for each of the devices on our
network. We then flooded each of these device PANIDs in turn with hundreds of Association Requests
(one every 10 milliseconds). While we performed our Association Flooding attack, we tried to access

14

functionality from the SmartThings iOS application by turning on and off the Centralite Outlet and
trying to access readings from the Iris Contact Sensor.

We found that despite the high volume of Association Requests that we were transmitting to each
device, functionality was not impaired and we were able to access and utilize the network as intended.
There are several possible explanations for why this attack did not work. If we had had access to
another RZUSB stick, we could have sniffed network traffic as we were flooding a Zigbee device to
determine whether the device was actually responding to our requests. If we had the hardware to
debug this attack, we could use it to crash the Zigbee Hub and induce the network owner to setup
the network anew by re-pairing all devices, giving an adversary the opportunity to begin sniffing for
a Network Key Transport.

6.3.3 Replay Attack

We also attempted a replay attack on the Zigbee Network by injecting previously encrypted and
transmitted messages on the network. Theoretically, replaying traffic from a packet capture file back
over the network could induce devices to perform commands in our file. To implement this attack,
we used the following code implementing KillerBee’s API functionality:

while args.count != packetcount:

try:

packet = cap.pnext()[1]

We don’t want to replay ACK packets from the capture, typically.

if not packet_ack(packet):

packetcount += 1

kb.inject(packet[0:-2])

time.sleep(args.sleep)

except TypeError: # raised when pnext returns Null (end of capture)

break

We found that replaying traffic from files containing commands to turn on/off the Outlet did not
induce the Centralite Outlet to respond. We determined that the reason that a replay attack was
ineffective was due to the implementation of a counter as part of the encryption and authentication
system. In each of the packets, WireShark displayed a counter field that incremented with each
packet. One counter was maintained for each device on the network being communicated with. We
could theoretically have edited these packets to update the counter data to be above the current
system counter. We leave this avenue for future work.

6.3.4 Device Spoofing

For various technical reasons, neither the Association Flooding nor the Replay Attack seemed to work
for us. As a result of brainstorming and debugging our approach, however, we devised a new attack to
induce a Network Key Transport. Our concept was to impersonate a Zigbee device with a known MAC
address and broadcast requests to join the network. We found that as soon as a network owner needs
to pair a new device to his network, our device will automatically be acknowledged and associated as
well.

To perform this attack, we essentially constructed our own data packet based on a valid Association
Request from a previous packet capture session expanded below:

15

Notice that the packet is entirely unencrypted, as expected, and that we simply had to edit the
Extended Source field and corresponding hex values to be the MAC address of our malicious RZUSB
device. In particular, we simply replayed the hex packet with an edited MAC address:

23 c8 40 14 64 00 00 ff ff 9c 70 5b 05 00 6f 0d 00 01 8e fd 25

Once we had constructed our fake packet, we simply replayed the packet over the network and
listened for a Association Response from the SmartThings Hub. One problem we encountered here was
the exceptionally low latency of the Zigbee network. The Response and Network Key Transport were
emitted less than 0.00004 seconds after the initial Association Request. This didn’t give us adequate
time to switch the RZUSB from replaying a packet to sniffing for the Network Key. We would need an
additional RZUSB to sniff the network while the other RZUSB could emit the Association Request.
Even despite not having the additional hardware, we found that we could successfully induce a Key-
Transport to untrusted hardware masquerading as a Zigbee device.

7 Recommendations

7.1 Out-of-band key loading method

Using factory generated and pre-loaded key implies great security risk by potentially allowing attack-
ers to reverse-engineer. Using an out-of-band method of landing the cryptographic keys onto the
ZigBee devices would significantly mitigate the risk of breach during key distribution, updating, and
revoking. The method involves using a mechanism other than through normal wireless communication
channels. A serial port on the device through which a key could be loaded through cable attachment
to the key generation device, or transmission through intermediary device, would both be example
implementations. However, this would incur additional complications on the device manufacturers’
part.

7.2 Secure network admission

Since the ZigBee Trust Center is responsible for authenticating admission requests from nodes and
ultimately deciding whether the nodes can join, one option would be to securely pre-loads common
network security key in all ZigBee devices prior to deployment, thus allowing only secure joins by
authorized ZigBee nodes. Per this implementation, a ZigBee node without a network key would not
be able to even associate to the ZigBee Coordinator with an unsecured request.

16

7.3 Dynamic device ID rotation

Exposing PIDs of devices within a ZigBee network results in a potential security exposure, since devices
are susceptible to tracking and spoofing based on their IDs. We could introduce a scheme consisting
of ephemeral identifiers would would allow only authorized parties to properly identify devices. This
approach would mitigate basic tracking threats while also preserving utility. The protocol consists of
a few components:

1. each device possesses a symmetric key as its identifier;

2. the identifying information in device communications consists of a deterministic pseudorandom
function (PRF) of the current time (allowing for some imprecision) keyed with the beacon
symmetric key;

3. when the “resolver” observes a communication, it can compute its own version of the ephemeral
ID to be compared with the received ID.

A sample code snippet, modified from Google’s Eddystone implementation [17], could be as follows:

def e i d f r o m i k (ik , s c a l e r , c l i e n t t i m e s e c o n d s) :
”””Return the EID genera ted by the g iven parameters . ”””
tkdata = (

”\x00” ∗ 11 +
”\xFF” +
”\x00” ∗ 2 +
chr ((c l i e n t t i m e s e c o n d s / (2 ∗∗ 24)) % 256) +
chr ((c l i e n t t i m e s e c o n d s / (2 ∗∗ 16)) % 256))

tk = AES. new(ik , AES.MODE ECB) . encrypt (tkdata)
c l i e n t t i m e s e c o n d s = (c l i e n t t i m e s e c o n d s // 2 ∗∗ s c a l e r) ∗ (2 ∗∗ s c a l e r)
e iddata = (

”\x00” ∗ 11 +
chr (s c a l e r) +
chr ((c l i e n t t i m e s e c o n d s / (2 ∗∗ 24)) % 256) +
chr ((c l i e n t t i m e s e c o n d s / (2 ∗∗ 16)) % 256) +
chr ((c l i e n t t i m e s e c o n d s / (2 ∗∗ 8)) % 256) +
chr ((c l i e n t t i m e s e c o n d s / (2 ∗∗ 0)) % 256))

e id = AES. new(tk , AES.MODE ECB) . encrypt (e iddata) [: 8]
return e id

Specifically, the symmetric key itself would also be ephemeral — we could use Elliptic Curve Diffie
Hellman (ECDH) between the device and resolver to negotiate the key (hardcoding during production,
on the other hand, would be problematic, since key logs may exist, or the attacker may sniff out the
key en route at a given point).

This approach does away completely with existing PANIDs, instead replacing them by a non-
traceable ephemeral identifier (EID). These EID values are fully predictable due to the use of PRFs,
so a cloud backend could be linked to the local coordinator to pre-generate a lookup table from EID
to true IDs. This safeguard against replay attacks would be more robust than simply using counters,
which could potentially be faked. This is completely feasible with in-RAM computation in modern
hardwares, such as by using Redis or Memcached. Even according the Gartner estimation (with over
tens of billions of devices by 2020), the dataset can be sharded across multiple servers, with the EIDs
broken up and each server handling component bits.

17

8 Conclusion

The ZigBee standard itself implements quite strong security features. The AES algorithm for data
encryption and data authentication provides ZigBee encryption with sufficient robustness, but the
security depends on the secrecy of the encryption keys, which may be breached during the keys’
initialization or distribution. While a few features exist to counter various attacks, we were still able
to sniff out the network key in our test setup, and with future work could theoretically perform other
active attacks.

Ultimately, key secrecy should not be the sole foundation of the ZigBee product’s security archi-
tecture. Therefore we proposed a few recommendations in order to divert the security risk from key
secrecy alone or to mitigate the chances of key leaking, such as out-of-band key communication, and
ephemeral device identifiers.

9 Acknowledgement

Our team would like to first thank the references included below that have helped us understand
Zigbee standard, inspired us on how to approach our attacks, and finally helped us write this paper.
We would also like to thank the 6.857 instructors and TAs, who taught us and helped us learn different
cryptography concepts that we have used in this paper.

References

[1] Aaron Alva, DMCA security research exemption for consumer devices, October 28, 2016. https://www.ftc.gov/news-
events/blogs/techftc/2016/10/dmca-security-research-exemption-consumer-devices.

[2] Wireless Mesh Networking ZigBee vs. DigiMesh. https://www.digi.com.

[3] About ZigBee Protocol. https://sites.google.com/site/xbeetutorial/xbee-introduction/zigbee.

[4] Inc. Zigbee Alliance, Zigbee Specification 053474r20 (September 7, 2012).

[5] , Zigbee Specification 053474r06 (December 4, 2004).

[6] zigbee 3.0 Task Force, zigbee: Securing the Wireless IoT (2017).

[7] Luke Tutty, Guide to Zigbee 3.0, March 21, 2017. https://mmbnetworks.atlassian.net/wiki/display/ITZ/Guide+to+Zigbee+3.0.

[8] Ricky A. Melgares, ZigBee Analysis and Security (May 31, 2011).

[9] Bjorn Stelte and Gabi Dreo Rodosek, Thwarting Attacks on ZigBee – Removal of the KillerBee Stinger.

[10] Jeff John Roberts, Light Bulbs Flash “SOS” in Scary Internet of Things Attack, November 03, 2016.
http://fortune.com/2016/11/03/light-bulb-hacking/.

[11] Darren Pauli, IoT worm can hack Philips Hue lightbulbs, spread across cities, November 10, 2016.
https://www.theregister.co.uk/2016/11/10/iot worm can hack philips hue lightbulbs spread across cities/.

[12] Internet of Things Map. https://p16.praetorian.com/iotmap.

[13] Inc. Zigbee Alliance, Zigbee 3.0 Stack User Guide JN-UG-3113 (October 5, 2016).

[14] , Zigbee 3.0 Devices User Guide JN-UG-3114 (December 1, 2016).

[15] Tobias Zillner, ZigBee Exploited: the good, the bad, and the ugly (August 16 2015).

[16] Joshua Wright, KillerBee API Documentation, 2009.

[17] Michael Ashbridge, Eddystone-EID, 2016.

https://github.com/google/eddystone/blob/master/eddystone-eid/tools/eidtools.py

18

