
Privacy Preserving Collaborative Filtering

Emily Mu, Christopher Shao, Vivek Miglani

May 2017

1 Abstract

As machine learning and data mining techniques continue to grow in popularity,
it has become ever more important to develop methods that preserve user secu-
rity. One important problem in the field of machine learning is recommendation,
which seeks to predict user ratings for unrated items using previous rating infor-
mation. We focus specifically on the approach of similarity based collaborative
filtering (CF) for recommendation, which involves computing similarity coef-
ficients between items in order to extrapolate ratings for unrated items. We
analyze an existing protocol for accomplishing privacy preserving collaborative
filtering and identify potential vulnerabilities caused by a malicious server. We
propose a modified protocol for privacy preserving collaborative filtering which
eliminates the identified vulnerabilities. We implement the proposed system
and evaluate the tradeoffs between the two systems in terms of performance
and security.

2 Introduction

Privacy preserving machine learning algorithms have gained significant popular-
ity in recent years. Machine learning algorithms benefit significantly from larger
amounts of training data. Many parties may benefit from combining their data
to train an improved model, but all parties want to ensure that their data is
not revealed to the other parties. Privacy preserving ML algorithms focus on
determining trained model parameters and allow prediction without any party
revealing their raw data to the other parties.

A common problem within machine learning is the task of recommendation.
The problem is generally formulated as follows. Take some set of users labeled
u1, u2, u3, ...un and a set of items labeled i1, i2, ..., im. Known data includes
ratings for some item-user pairs and sometimes also includes features of each
item. Generally, we assume that the known data is a sparse n ∗ m matrix.

1



The goal is to predict ratings for the remaining user-item pairs, in order to
recommend new items to users which will likely be rated highly by the user.

Two common classes of recommendation problems are collaborative filtering
and content based filtering [1]. Collaborative filtering utilizes only the known
ratings for user-item pairs, while content-based filtering takes into account not
only the known ratings but also features representing each item.

A common example of the recommendation problem is that of movie recom-
mendations. Consider a service, such as Netflix, in which users rate movies
they have seen before. Using this data, the service desires to learn patterns
from the known data and recommend unrated movies to each user. A collab-
orative filtering approach to this problem would simply use known user-movie
ratings to make recommendations, while a content based filtering would utilize
information regarding each movie (such as genre, leading actor, etc.) in addition
to known user-movie ratings to make predictions.

Several methods have been utilized to approach recommendation problems in
practice. These methods assume that a single party holds all the known user-
item ratings and can use the data to learn the necessary information. We will
recap the common machine learning algorithms utilized for this problem before
exploring the privacy-preserving variant of this problem.

One common technique used to perform collaborative filtering is low rank matrix
factorization [2]. Low rank matrix factorization utilizes known ratings to learn
k-dimensional vectors to represent users and items. The predicted rating for
a specific user and item is simply the dot product of the corresponding user
vector and item vector. Let U represent the matrix with rows corresponding
to each user vector, and let V represent the matrix with rows corresponding to
each item vector. Based on this formulation, the product UV T is a complete
n∗m matrix containing predicted ratings for all user-item pairs. The vectors are
often learned by performing alternating minimization on the following objective
function:

J(U, V ) =
1

n

∑
d∈D

(Yd − UV T
d ) + λ(UUT + V V T )

where λ represents a regularization parameter and D represents all values in
original matrix Y that are previously known.

Another common set of techniques for collaborative filtering are similarity based
approaches [1]. These approaches use known user-item ratings to compute the
cosine similarity (or other similarity metric) between pairs of users or pairs of
items. These similarities are then utilized to extrapolate unknown ratings. We
can define this approach formally for item-based similarity as follows.

Let s(ij , ik) represent the similarity between two items. Then, we may predict
the recommendation for an item with the formula:

2



Pi,k = Rk +

∑m
j=1(ri,j −Rj) ∗ s(ij , ik)∑m

j=1 s(ij , ik)

where ri,j represents the rating vector of a given user ui and Rk represents the
average rating of item k.

In this work, we will explore a protocol for privacy preserving collaborative
filtering using the similarity based approach.

2.1 Privacy Preserving Setup

We will now describe the setup for the privacy preserving collaborative filtering
problem. As in the original setup, we have n users, labeled as u1, u2, u3, ...un,
who each have rated some products and would like to receive recommendations
for unrated products. We also have a server, which is trusted with computing
and storing information necessary to make recommendations, specifically the
similarity between items. Note specifically that the users do not trust the server
with their personal ratings and are only acceptable with the server learning
anonymized patterns such as average rating and item similarity. Thus, users
will only send encrypted versions of their rating information but still expect to
receive accurate recommendations based on the rated items.

3 Protocol Description

3.1 Original Protocol

In order to accomplish the privacy-preserving collaborative filtering task, we
take an approach using homomorphic encryption, based on the work of Badsha
et al [1]. We will first describe the protocol defined by Badsha and then analyze
potential vulnerabilities and modifications.

The protocol utilizes the El Gamal encryption scheme, which is defined as fol-
lows:

3.1.1 El Gamal Encryption Scheme

Key Generation:

Let G be a cyclic group with order q and generator g. A user will choose a
random value x ∈ {1, ...q − 1}. The user will then compute h = gx and publish
{G, q, g, h} as their public key. x will be this user’s secret key.

Encryption:

3



Messages can be encrypted as follows. y ∈ {1, ...q − 1} is selected. The encryp-
tion can then be represented by

(C1, C2) = (gy,m ∗ hy)

Decryption:

The user can decrypt messages with their private key x.

C2

Cx
1

=
m ∗ hy

(gy)x
=
m ∗ (gx)y

(gy)x
= m

Homomorphic Properties:

Given the encryption of two messages E(M1) = (C11, C12) and E(M2) =
(C21, C22), a valid encryption for M1M2 can be computed by multiplying the
encryptions for each of the messages.

E(M1)E(M2) = (C11C21, C12C22) = (gy1gy2 ,M1M2 ∗ hy1hy2)

The main protocol involves two main parts, first computing the user averages
of item ratings and the similarity matrix between items using user ratings and
then providing recommendations using the calculated predicted ratings based
on provided encrypted ratings.

The first phase, calculating user averages and the similarity matrix, can be
computed as follows:

3.1.2 Computing Averages

1. Let all users ui = {u1, ...un} choose public and private El Gamal keys yi
and xi respectively. All users send their public keys yi to the server and
the server computes common public key Y =

∏n
i=1 yi which is broadcasted

to all of the users to encrypt their ratings.

2. Let ri,j and fi,j represent the ratings and flags for user ui for all items
ij ∈ {i1, ...im}. The ratings are defined as previously. The flags are binary
fi,j ∈ {0, 1} and is equal to 1 if a user has rated a product. Each user
encrypts their ratings and flags as follows:

Mi = {E(gri,j ), E(gfi,j )}j={1,m}

and sends these encryptions to the server.

4



3. The server then calculates the addition of all of the ratings and flags from
the user encryptions using El Gamal’s homomorphic encryption property.

(A1,j , B1,j) =

n∏
i=1

E(gri,j )

(A2,j , B2,j) =

n∏
i=1

E(gfi,j )

where (A1,j , B1,j) and (A2,j , B2,j) represent the encryptions of the sums
of the ratings and flags respectively for ij . The server then broadcasts
(A1,j , A2,j)j={1,m} to all of the users.

4. Each user ui then computes the following message with their own private
key

M2
i = (Axi

1,j , A
xi
2,j)j={1,m}

and sends this message back to the server.

5. The server can then decrypt the ciphertexts with these new messages as
follows

C1,j =
B1,j∏n

i=1(A1,j)xi

C2,j =
B2,j∏n

i=1(A2,j)xi

Finally, the sum of the ratings and flags for item ij (denoted by Srj and
Sfj ) are computed by the server as follows

Srj = logg(C1,j)

Sfj = logg(C2,j)

and the average rating of item ij (Rj) can be computed by

Rj =
Srj

Sfj

Note that the server calculations for Srj and Sfj do require calculating
the log. However since these values are bounded, this log problem can be
checked within the bounds in O(m) time and does not require fully solving
the discrete log problem.

6. The server then stores these Rj values in its database and is assumed to
not reveal Rj or Srj and Sfj .

5



3.1.3 Computing Similarity

1. Let all users ui = {u1, ...un} compute gri,j∗ri,k and gr
2
i,j for all ij , ik ∈

{i1, ...im}. Each user will then send the ciphertexts

Mi = {E(gri,j∗ri,k), E(gr
2
i,j )}j,k∈{1,...m};k≥j

to the server.

2. The server then calculates the homomorphic product of all of the users’
ciphertexts using El Gamal’s homomorphic encryption property.

(Aj,k, Bj,k) =
n∏

i=1

E(gri,j∗ri,k)

(Aj , Bj) =

n∏
i=1

E(gr
2
i,j )

The server then broadcasts (Aj , Aj,k)j,k∈{1,...m};k≥j to all users.

3. Each user ui then computes the following message with their own private
key

M2
i = (Axi

j,k, A
xi
j )j,k∈{1,...m};k≥j

and sends this message back to the server.

4. The server then can decrpyt the ciphertexts with these new messages as
follows

Cj,k =
Bj,k∏n

i=1(Aj,k)xi

Cj =
Bj∏n

i=1(Aj)xi

Finally, the pairwise products and squares of ratings for item ij (denoted
by Sj,k and Sj) are computed by the server as follows

Sj,k = loggCj,k

Sj = loggCj

The server can then compute the similarity between any two items ij and
ik

6



s(ij , ik) =
Sj,k√
Sj

√
Sk

Note that the server calculations for Sj,k and Sj do require calculating
the log. However since these values are bounded, this log problem can
be checked within the bounds in O(m2) time and does not require fully
solving the discrete log problem.

5. The server then stores these s(ij , ik) values in its database and is assumed
to not reveal s(ij , ik) or Sj,k and Sj .

The second phase, calculating predicted ratings using the similarity matrix,
average ratings, and encrypted ratings is accomplished by the following steps.

3.1.4 Collaborative Filtering Based Recommendations

1. For all items ij = i1, ...im, target user ui sends the encrpyted ciphertexts

Mi = {E(gri,j )}j=1,...m

to the server.

2. The server generates the ciphertexts of the numerator. Rk∗
∑m

j=1 s(ik, ij)+∑m
j=1(ri,j −Rj) ∗ s(ik, ij). It encrypts

E(gRk∗
∏m

j=1 s(ik,ij))

E(gRj )

The ciphertexts of the numerator is generated by

(A4,k, B4,k) = E(gRk∗
∏m

j=1 s(ik,ij)) ∗ (
m∏
j=1

E(gri,j )

E(gRj )

s(ik,ij)

)

k = {1, ...m}

3. The server generates the ciphertexts of the denominator by encrypting

(A5,k, B5,k) = E(g
∑m

j=1 s(ik,ij))

4. The server sends the following messages to user ui

{A4,k, B4,k, A5,k, B5,k}k={1,...m}

7



5. The user ui decrypts the ciphertexts by using their own private key xi

C6,k =
B4,k

(A4,k)xi

C7,k =
B5,k

(A5,k)xi

The user can then compute

nk = loggC6,k

dk = loggC7,k

and calculate the rating prediction as follows

Pi,k =
nk
dk

Note that the user calculations for nk and dk do require calculating the log.
However since these values are bounded, this log problem can be checked
within the bounds in O(m) time and does not require fully solving the
discrete log problem.

3.2 Potential Vulnerabilities

One key vulnerability in the protocol described above is potential malicious be-
havior by the semi-trusted server. The semi-trusted server may have incentive to
deviate from the protocol in order to obtain a user’s personal recommendations,
which are expected to remain secure in this procedure. The original proposal
assumes that the server will not collude to try to obtain a user’s ratings. But
in reality, the central server, often a business, may have financial incentive to
obtain a individual’s ratings and may deviate from the protocol to accomplish
this.

The semi-trusted server can accomplish a simple attack by deviating from the
protocol in step 3 when computing the average. The server is required to broad-
cast the product of all the individual encryptions to the users and each user
decrypts this product with their private key. If, instead of sending the product
of the individual encryptions, the server sends the user the first part of his or
her own encrypted ratings and flags (gy), the value returned by the user would
be hy, where y is the randomly chosen value used to encrypt the ratings. The
server can then easily decrypt the user’s rating by dividing the encrypted ratings
by hy.

One modification to the protocol which can mitigate this issue is requiring the
server to maintain a public ledger containing the encryption of each user’s rat-
ings and flags. Maintaining this public ledger would allow any user to verify

8



that the value being sent for decryption correctly corresponds to the product of
the individual encryptions.

Unfortunately, this simple modification is not sufficient to inhibit a malicious
server from deceiving a user to decrypt their own rating. The server can ac-
complish this by adding another ”fake” user, and choosing the user’s encrypted
ratings appropriately to deceive a specific user into providing their ratings.

More formally, the attack could be accomplished as follows. The server, in step
2 of the average computation, receives the encryptions of gri from each user.
These encryptions are in the form:

(Ci,j,1, Ci,j,2) = E(gri,j )

where Ci,j,2 = (Ci,j,1)xigri,j . The server computes the product:

A1,j =

n∏
i=1

Ci,j,1

Suppose the server either impersonates or controls the identity of user n. Instead
of following the standard encryption scheme, the server could choose the value
of Ci,j,1 to be equal to the multiplicative inverse (mod q) of the product of Ci,j,1

of user 2 through n - 1.

Cn,j,1 = (

n−1∏
i=2

Ci,j,1)−1 mod q

Note that this multiplicative inverse can be computed efficiently using the ex-
tended Euclid’s algorithm, since q is known. The value of A1,j would then
be:

A1,j =

n∏
i=1

Ci,j,1 = C1,j,1Cn,j,1

n−1∏
i=2

Ci,j,1

A1,j = C1,j,1(

n−1∏
i=2

Ci,j,1)−1
n−1∏
i=2

Ci,j,1

A1,j = C1,j,1

The product is simply equal to C1,j,1 mod q. When user 1 decrypts this product,
the server will receive the value of (C1,j,1)xi and can easily compute

Ci,j,2

(C1,j,1)x1
=

(Ci,j,1)x1gr1,j

(C1,j,1)x1
= gr1,j

This clearly provides the server plaintext access to user 1’s rating r1,j .

Thus, even if the user verifies that the product is computed correctly, the server
can still obtain the user’s rating by simply choosing the encryption for one
specific user.

9



3.3 Updated Protocol

To prevent the potential vulnerabilities identified in section 3.2, we propose the
following variant of the original protocol. This modified protocol no longer as-
sumes that the server does not deviate from the protocol to obtain an individual
user’s rating and thus protects users from the potential attacks by a malicious
server described above.

The modified protocol utilizes a hash function H, which is assumed to be one-
way and collision-resistant.

The process of computing averages now proceeds as follows. Note that steps 1
and 2 remain unchanged from the original protocol.

1. Let all users ui = {u1, ...un} choose public and private El Gamal keys yi
and xi respectively. All users send their public keys yi to the server and
the server computes common public key Y =

∏n
i=1 yi which is broadcasted

to all of the users to encrypt their ratings.

2. Let ri,j and fi,j represent the ratings and flags for user ui for all items
ij ∈ {i1, ...im}. The ratings are defined as previously. The flags are binary
fi,j ∈ {0, 1} and is equal to 1 if a user has rated a product. Each user
encrypts their ratings and flags as follows:

Mi = {E(gri,j ), E(gfi,j )}j={1,m}

3. Each user i then computes H(Mi) and sends this value to the server.
Sending this hash in advance serves as a form of a commitment, ensuring
that no user changes their encryption upon seeing the encrypted ratings
of other users.

4. The server posts the values of H(Mi) for all users on a public ledger,
accessible to all users.

5. Once H(Mi) for all users has been posted to the public ledger, each user
sends Mi to the server. Again, the server posts all values of Mi to the
public ledger accessible to all other users.

6. The server then calculates the addition of all of the ratings and flags from
the user encryptions using El Gamal’s homomorphic encryption property.

(A1,j , B1,j) =

n∏
i=1

E(gri,j )

(A2,j , B2,j) =

n∏
i=1

E(gfi,j )

10



where (A1,j , B1,j) and (A2,j , B2,j) represent the encryptions of the sums
of the ratings and flags respectively for ij . The server then broadcasts
(A1,j , A2,j)j={1,m} to all of the users.

7. Each user ui then computes the following message with their own private
key

M2
i = (Axi

1,j , A
xi
2,j)j={1,m}

Before sending this information back to the server, the user must verify the
following properties to ensure that the server has not acted maliciously:

(a) For each user a, computing the hash of Ma must equal to H(Ma)
which was set prior to the user revealing Mi.

(b) The products (A1,j , A2,j)j={1,m} must be equal to
∏n

i=1E(gri,j ) and∏n
i=1E(gfi,j ). A user can verify this since each Ma is available in

the public ledger.

Once these properties are verified, the user sends the value of M2
i to the

server.

8. Steps 5 and 6 of the original protocol remain unchanged, allowing the
server to obtain the average rating for each item.

The procedure for computing similarity is also modified analogously. Users will
first send the hash of their encryptions to the server, to be included in the public
ledger. Once all hashes are publicly available, each user sends their encryption
to the server, which is also added to the public ledger. Before decrypting the
product, each user verifies that the product has been computed accurately and
that each user’s pre-transmitted hash value matches the hash of the encryption.

4 Results

To evaluate the feasibility and performance impact of the modified protocol, we
implemented both the original and modified protocol using Python. 1

Using our implementation, we obtained the following results comparing the
performance of the original and modified protocols.

Testing was performed by randomly generating rating and flag information for
the given number of users and items. To avoid the variable overhead of iden-
tifying a prime, all tests were performed using generator g = 2 and prime q =
1000003 for the El Gamal encryption scheme.

The total computation time (for all users), as a function of total number of
users, is shown in Figure 1.

1Our source code is publicly available at https://github.mit.edu/vivekm/857Project

11



Figure 1: Computation Time vs Number of Users, Fixed Number of Items = 7

The total computation time (for all users), as a function of number of items, is
shown in Figure 2.

Figure 2: Computation Time vs Number of Items, Fixed Number of Users = 25

12



5 Evaluation

We evaluate the proposed, modified protocol in terms of the two main goals,
security and performance.

5.1 Security

It is evident that the potential vulnerabilities described in section 3.2 are no
longer possible based on the proposed modification.

The first attack, in which the server simply returns the user’s encryption (or
the encryption multiplied by E(1)) for decryption is not possible, since each
user’s encryption is available in the public ledger, and the user verifies that the
product matches the value being decrypted.

The second attack, in which the server modifies or control one user’s encryption
is also no longer possible. This is because the hashes of each encryption are
committed to in advance, prior to revealing the encryptions. By the one-wayness
of the hash function, the server cannot determine any user’s encryption and
thus cannot use them in order to choose an encryption which is equal to the
multiplicative inverse of a product of encryptions. Additionally, by the collision-
resistance of the hash function, the server cannot change the controlled user’s
encryption after viewing the other user’s encryptions, since this would require
finding multiple encryptions with the same hash.

It is also necessary to ensure that the proposed modifications do not in any way
compromise the security of the original protocol. The modified protocol publi-
cizes the encrypted message of each user as well as the hash of the encryption
of each user. Since the El Gamal encryption scheme is shown to be semanti-
cally secure, a polynomial-time bounded adversary cannot gain any information
regarding user ratings from the encryptions or hashes in the public ledger.

5.2 Performance

The additional steps performed by the user in the modified proposal clearly add
a significant computational cost. Each message Mi, is of length O(m), where m
is the number of items, since the message includes the encryption of the rating
and flag for each item. Thus, verifying H(Mi) for each user i takes O(mn) time,
where n is the number of users.

Additionally, each user must multiply the individual encryptions to verify the
value provided by the server. Multiplying the n user encryptions takes O(n)
time and this process must be done for each of the m items, taking a total of
O(mn) time.

Note that in the original protocol, the computational cost for users is simply

13



O(m), since the user needs to only encrypt each of their ratings (for each item).
The computational cost for a single user did not depend on the total number of
users in the original protocol.

In the modified protocol, the number of users is also a factor of a single user’s
computational cost. in a scenario with a large number of users, it is evident that
the computational cost of the modified proposal would be significantly higher
than that of the original proposal. This conclusion is reinforced by the empirical
results of the implementation, as shown in section 4. In particular, the propor-
tion of the total computation time taken up by users’ verification (the difference
in times between the original protocol and modified protocol) increases as the
number of users increases. For example, in Figure 1, the proportion at 200 users
is about 0.3, while the proportion at 400 users is about 0.5. This suggests that
as the number of users grows even larger, the total computation time will be
dominated by just verification of other users’ hashes. As seen in Figure 2, the
computation time of the modified protocol still increases when the number of
users is fixed and the number of items increases. The difference is not as signif-
icant as in the previous case, since adding another item only requires each user
to verify one more encryption hash, rather than verify another set of encryption
hashes for a new user.

Thus, there exists a clear tradeoff in terms of security and performance, the
achievement of greater security comes at the price of increased computational
overhead for users, especially as the number of users increases.

6 Future Work

This section will discuss potential improvements to our existing algorithm and
implementation and further directions of work.

6.1 Performance Improvements

As discussed in the previous section, there exists a tradeoff between improved
security and improved performance. Although our modified protocol has signif-
icantly higher computational cost than the original protocol, several modifica-
tions can be made to improve its performance.

Since our implementation was completed in Python, several methods can be
used to optimize performance. One simple method to improve performance
may be to implement the algorithm a lower-level language. Another method
may be to take advantage of potential steps that can be processed in parallel,
for example, user encryption steps.

14



6.2 Protocol Improvements

Collaborative filtering inherently only takes into account item-based similarity
to provide recommendations. One area of future work may be to provide a
protocol to take advantage of user-based similarity to provide more accurate
and detailed recommendations to users. However, since user-based similarity
methods require more information about users, modifications to this protocol
may be necessary to better protect user information.

7 Conclusion

Recommendation is an important and prevalent problem in the growing field
of machine learning. Providing accurate and helpful recommendations to users
affects the success of online commerce tools. In this paper, we seek to pro-
vide a privacy-preserving approach to the collaborative filtering recommenda-
tion method. We improve upon the algorithm proposed by Basha et al. [1]
by placing less trust upon the server. Our evaluation demonstrates that our
security improvements come at the cost of performance. Consequently, future
directions of work may involve reworking the protocol to take advantage of
user information or increasing performance to enhance usability of the current
protocol.

References

[1] Badsha, Shahriar, Xun Yi, and Ibrahim Khalil. ”A Practical Privacy-
Preserving Recommender System.” Data Science and Engineering 1.3 (2016):
161-77. Web.

[2] Nikolaenko, Valeria, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D.
Boneh. ”Privacy-preserving matrix factorization”. In ACM CCS 2013, pages
81–8121–812.

[3] Zhang, Sheng, James Ford, and Fillia Makedon. ”Deriving Private Infor-
mation from Randomly Perturbed Ratings.” Proceedings of the 2006 SIAM
International Conference on Data Mining (2006): 59-69. Web.

[4] Polat, H., and Wenliang Du. ”Privacy-preserving Collaborative Filtering Us-
ing Randomized Perturbation Techniques.” Third IEEE International Con-
ference on Data Mining (n.d.): n. pag. Web.

15


	Abstract
	Introduction
	Privacy Preserving Setup

	Protocol Description
	Original Protocol
	El Gamal Encryption Scheme
	Computing Averages
	Computing Similarity
	Collaborative Filtering Based Recommendations

	Potential Vulnerabilities
	Updated Protocol

	Results
	Evaluation
	Security
	Performance

	Future Work
	Performance Improvements
	Protocol Improvements

	Conclusion

