Security Proofs for Signature Schemes

David Pointcheval Jacques Stern
David.Pointcheval@ens.fr Jacques.Stern@ens.fr

Ecole Normale Supérieure
Laboratoire d’informatique
45, rue d’Ulm
75230 Paris Cedex 05

Abstract. In this paper, we address the question of providing security
proofs for signature schemes in the so-called random oracle model [1].
In particular, we establish the generality of this technique against adap-
tively chosen message attacks. Our main application achieves such a se-
curity proof for a slight variant of the El Gamal signature scheme [3]
where committed values are hashed together with the message. This is
a rather surprising result since the original El Gamal is, as RSA [11],
subject to existential forgery.

1 Introduction

Since the appearance of the public key cryptography, in the famous Diffie-
Hellman paper [2], a significant line of research has tried to provide “provable”
security for cryptographic protocols. In the area of computational security, proofs
have been given in the asymptotic framework of complexity theory. Still, these
are not absolute proofs since cryptography ultimately relies on the existence of
one-way functions and the P vs. NP question. Rather, they are computational
reductions to and from well established problems from number theory such as
factoring, the discrete logarithm problem or the root extraction problem, on
which RSA relies [11].

In the present paper we will exclusively focus on signatures. As shown in
the Diffie-Hellman paper [2], the trapdoor function paradigm allows to create
signatures in the public key setting. Nevertheless, both the RSA scheme and the
El Gamal scheme are not provably secure since they are subject to existential
forgery. In other words, it is easy to create a new valid message-signature pair.
In many cases, this is not really dangerous because the message is not intelligible
or does not have the proper redundancy. Still an RSA signature does not prove
by itself the identity of the sender.

The first signature scheme proven secure against a very general attack, the
so-called adaptively chosen-message attack which will be defined later in this
paper, has been proposed by Goldwasser-Micali-Rivest [6] in 1984. Tt uses the
notion of claw-free permutations. We refer to [6] for details.

In 1986, a new paradigm for signature schemes was introduced. It is derived
from zero-knowledge identification protocols involving a prover and a verifier [5],

and uses hash functions in order to create a kind of virtual verifier. In [4], Fiat
and Shamir proposed a zero-knowledge identification protocol based on the hard-
ness of extracting square roots. They also described the corresponding signature
scheme and outlined its security. Similar results for other signature schemes like
Schnorr’s [12] are considered as folklore results but have never appeared in the
literature.

In this paper, we review the basic method for proving security of signature
schemes in the random oracle model [1] and surprisingly, we prove the security
of a very close variant of the El Gamal signature scheme.

2 Framework

2.1 Generic Signature Schemes

In a signature scheme, each user publishes a public key while keeping for himself
a secret key. A user’s signature on a message m is a value which depends on
m and on the user’s public and secret keys in such a way that anyone can
check validity just by using the public key. However, it is hard to forge a user’s
signature without knowing his secret key. In this section, we will give a more
precise definition of a signature scheme and of the possible attacks against such
schemes. These definitions are based on [6].

[htbp]

Key generation Signature and verification
Ks w

k 1s the security parameter é b \

> K

k> Lk Ky

T
\ Y
s V/

and n = | K| v

Sizes of objects
Outputs of f are of size k, and k is such that k(n) > logn

Fig. 1. Signature schemes

Definition1. A signature scheme is defined by the following (see figure 1):

— the key generation algorithm G which, on input 1%, where k is the security
parameter, produces a pair (K,, K,) of matching public and secret keys. It
is clear that G must be a probabilistic algorithm.

— the signing algorithm X which, given a message m and a pair of matching
public and secret keys (K, K;), produces a signature. The signing algorithm
might be probabilistic, and in some schemes it might receive other inputs as
well.

— the verification algorithm V which, given a signature ¢, a message m and a
public key K, tests whether o is a valid signature of m with respect to K.
In general, the verification algorithm need not be probabilistic.

Signature schemes often use a hash function f. In this paper, we will only
consider signature schemes which, on the input message m, produce triplets
(01, h,03) independent of previous signature. In those triplets (o1, h, 02), h is
the hash value of (m, o1) and o5 just depends on o1, the message m, and h. This
covers the case of Fiat-Shamir [4], Schnorr [12] and many others. In some cases,
o1 or h can be omitted, but we will keep them for more generality.

2.2 Attacks

We will only consider two different scenarios involving probabilistic polynomial
time Turing machines, the no-message attack and the adaptively chosen message
attack (see figure 2).

(htbp]

attack I attack II
no-message attack adaptively chosen message attack

Q m
&: Al _){0'1,]1,0'2
P

oW
K,

Fig. 2. Attacks

In the former, the attacker only knows the signer’s public key. In the latter, he
can dynamically ask the legitimate user to sign any message, using him as a kind

of oracle. For the resistance against adaptively chosen message attacks, which is a
stronger requirement, we will use the possible simulation of the legitimate signer,
which relies on the honest verifier zero-knowledge property of the identification
scheme.

2.3 The Random Oracle Model

As we already pointed out, signature schemes often use a hash function f
(e.g. MD5 [10] or SHS [8]). This use of hash functions may have been moti-
vated by the wish to sign long messages with a single signature. Accordingly, the
requirement of the function was collision freeness. It was later realized that hash
functions were an essential ingredient for the security of the signature schemes.
Still, in order to actually provide such a security proof, stronger assumptions
seem to be needed and several authors (e.g. [4] and [1]) have suggested to use
to hypothesis that f is actually a random function. We follow this suggestion
by using the corresponding model, called the “random oracle model”. In this
model, the hash function can be seen as an oracle which produces a random
value for each new query. Of course, if the same query 1s asked twice, identical
answers are obtained. Proofs in this model ensure security of the overall design
of a signature scheme provided the hash function has no weakness.

3 The Oracle Replay Attack

In this section, we will prove a key lemma, which we call the forking lemma and
which will be repeatedly used in the sequel. This lemma uses the “oracle replay
attack”: by a polynomial replay of the attack with the same random tape and
a different oracle, we obtain two signatures of a specific form which open a way
to solve the underlying hard problem.

Lemma 2 (the forking lemma). Let A be a Probabilistic Polynomial Time
Turing machine, given only the public data as input. If A can find, with non-
negligible probability, a valid signature (m,o1, h,03), then, with non-negligible
probability, a replay of this machine, with the same random tape and a different
oracle, outputs two valid signatures (m, o1, h,o2) and (m o1, h', o) such that

h#h .

Remark. Probabilities are taken over random tapes, random oracles, and in some
cases, over messages and keys.

Before we prove this result, we state a well-known probabilistic lemma:

Lemma 3. Let A C X xY, such that Pr[A(z,y)] > ¢, then there exists £2 C X
such that

i) Prlre 2] >¢/2

ii) whenever a € £2, Pr[A(a,y)] > ¢/2

With this lemma, we can split X in two subsets, a subset {2 consisting of
“good” z’s which provide a non-negligible probability of success over y, and its
complement. We now return to the forking lemma.

Proof. We assume that we have a no-message attacker .4, which is a probabilistic
polynomial time Turing machine with a random tape w. During the attack, this
machine asks a polynomial number of questions to the random oracle f. We
may assume that these questions are distinct, for instance, A can store questions
and answers in a table. Let Q;,..., Qg be the @ distinct questions, where @)
is a polynomial, and let pq,...,pg be the @ answers of f. It is clear that a
random choice of f exactly corresponds to a random choice of p1, ..., pg. For a
random choice of w, p1, ..., pg, with non-negligible probability, A outputs a valid
signature (m, o1, h, 03). It is easy to see that the probability for the precise query
(m, o1) not to be asked is negligible, because of the randomness of f(m, o1). So,
the probability that the query (m, o1) is one of the Q;’s, e.g. Qp, is non-negligible.
Since 3 is between 1 and @Q(n), there exist a 8 and a polynomial P such that
the probability of success, over w, p1, ..., pg, with Qg = (m, 01) is greater than
1/P(n) (see figure 3).

(htbp]

\
\FB_>o L Pr[success]
Ql QZ Qﬁ/ , 09 1
v .T. Py p/ >
\/‘/\. ° Q m, o1 - P(n)
/ Pg Q' ' B ot
6+1 Q

2k answers

Fig. 3. The forking lemma

With such a 3, using lemma 3, we get the existence of a non-negligible sub-
set £25 of “good” w’s. For such a “good” w, the probability of success, over
P1s---,pQ, with Qg = (m,01), is greater than 1/2P(n). With such 8 and
w, using lemma 3 again, we obtain the existence of a non-negligible subset
Rs . of “good” (p1,...,ps—1)’s. For such a “good” (p1,...,ps—-1), the proba-
bility of success of the attacker, over pg, ..., pg, with Qg = (m, 01), is greater
than 1/4P(n). Then, with such £, w and (p1,...,ps—1), if we randomly chose
ps, .-, pg and p’ﬁ, ce p’Q, with a non-negligible probability, we obtain two valid
signatures (m, o1, h,02) and (m, o1, ', 0h) such that A # h’; this uses the fact
that k(n) > logn.

Finally, with a random choice of 3,w, p1,..., ps-1,pp, .-, pg and pjs, ..., ply,
we obtain, with a non-negligible probability, two valid signatures (m, o1, h, 02)

and (m, o1, h', oh) such that h # h'.

4 The Fiat-Shamir Signature Scheme

We will now apply the lemma to the Fiat-Shamir signature scheme in order to
prove its security against no-message attacks. This result is outlined in [4] and
we include it for the reader’s convenience.

4.1 Description
Firstly, we describe the single key Fiat-Shamir signature scheme [4]:

— the key generation algorithm: for a security parameter k, it chooses two
large primes p and ¢ which are kept secret and computes their product N
and defines a random hash function f with a k-bit output. Then, it chooses
arandom s € Z/NZ and publishes its square v = s> mod N. N and f are
public and s is the secret key.

— the signature algorithm: in order to sign a message m, one generates k ran-
dom numbers, r; € Z/NZ for i = 1, ..., k, computes their respective squares
z; = r? mod N as well as the challenge h = (e1...ex) = f(m,z1,...,21).
iFrom these data, one sets y; = ;5% mod N and outputs oy = (21,...,zx)
and o3 = (y1,...,yx). The signature is (o1, h, 03).

— the verification algorithm is as follows: for a given message m and a given
signature o1 = (21,...,25), h = (e1...ex) and o3 = (y1,...,yx), it checks
whether h = f(m,01) and y; = ;5% mod N for all i.

4.2 Proof of Security

. From the forking lemma we easily get a proof in the random oracle model.

Theorem 4. Consider a no-message attack in the random oracle model. If an
existential forgery of the Fiat-Shamir signature scheme s possible with non-
negligible probability, then factorization of RSA moduli can be performed in poly-
nomial time.

Proof. Let N € IN be the integer to factor. Let us choose s €g Z/NZ, and let
v = s mod N. If an attacker A; can break the Fiat-Shamir signature scheme,
then by using the forking lemma, he can obtain two valid signatures (m, o1, h, 032)
and (m, o1, h', 04), such that A # h’. From this, we get ¢ such that h; £ Al say
h; = 0 and h} = 1. We get y? = z; mod N and ygz = z;v mod N. If we let
2z =yly; ! mod N, then 22 = v = s mod N.

Since the algorithm cannot distinguish s from other roots, we conclude that,
with a probability 1/2, ged(z — s, N) provides a factor of N.

Remark. Because of the easy simulation of the communication with an honest
verifier, even in the context of the parallel version of Fiat-Shamir, the proof of
security against adaptively chosen message attacks is straightforward.

5 The Modified El Gamal Signature Scheme

The original El Gamal signature scheme [3] was proposed in 1985 but its security
was never proved equivalent to the discrete logarithm problem nor to the Diffie-
Hellman problem. Using the forking lemma, we will prove the security of a slight
variant of this scheme.

5.1 Description of the Original Scheme
Let us begin with a description of the original scheme [3]:

— the key generation algorithm: it chooses a random large prime p of size n
and a generator g of (Z/pZ)*, both public. Then, for a random secret key
v € Z/(p—1)Z, it computes the public key y = ¢” mod p.

— the signature algorithm: in order to sign a signature of a message m, one
generates a pair (r, s) such that ¢™ = 3" r* mod p. To achieve this aim, one
has to choose a random K € (Z/(p — 1)Z)", compute the exponentiation
r = g% mod p and solve the linear equation m = zr + Ks mod (p — 1). The
algorithm finally outputs (r, s).

— the verification algorithm checks the equation ¢”* = y"r° mod p.

5.2 Security

As already seen in the original paper, one cannot show that the scheme is fully
secure because 1t is subject to existential forgery.

Theorem 5. The original El Gamal signature scheme is existentially forgeable.
Proof. This is a well-known result, but we describe two level of forgeries:

1. the one parameter forgery: let e €g Z/(p— 1)Z, if we let r = g*y mod p
and s = —r mod p — 1, it is easy to see that (v, s) is a valid signature for the
message m = es mod p — 1.

2. the two parameter forgery: let ¢ €g Z/(p — 1)Z and v €r (Z/(p — 1)Z)",
if we let r = g%y’ mod p and s = —rv~! mod p— 1, then (r,s) is a valid
signature for the message m = es mod p — 1.

We now modify this scheme by using a hash function.

5.3 Description of the modified El Gamal scheme

In this variant, we replace m by the hash value of the entire part of the compu-
tation bound not to change, namely f(m,r).

— the key generation algorithm: unchanged.

— the signature algorithm: in order to sign a message m, one generates a
pair (r, s) such that g7mm) = 475 mod p. In order to achieve this aim, one
generates K and r the same way as before and solves the linear equation
f(m,r) = xr+ Ks mod (p — 1). The algorithm outputs (r, f(m,), s).

— the verification algorithm checks the signature equation with the obvious
changes due to the hash function.

5.4 Proofs of security

In this section, we will see that the modification allows to prove the security of
the scheme even against an adaptively chosen message attack, at least for a large
variety of moduli. We let |p| denote the length of an integer p.

Definition6. Let « be a fixed real. An a-hard prime number p is such that the
factorization of p — 1 yields p — 1 = QR with @ prime and R < |p|®.

Remark. Those prime moduli are precisely those used for cryptographic appli-
cations of the discrete logarithm problem.

Security against a no-message attack. Firstly, we study the resistance of
the modified El Gamal Signature scheme against no-message attacks.

Theorem 7. Consider a no-message attack in the random oracle model against
schemes using a-hard prime moduli. Probabilities are taken over random tapes,
random oracles and public keys. If an existential forgery of this scheme has non-
negligible probability of success, then the discrete logarithm problem with c-hard
prime moduli can be solved in polynomial teme.

Proof. Using the forking lemma, we get two valid signatures (m,r, h,s) and
(m,r, k' s'") such that ¢" = r*y” mod p and ¢" = r*y" mod p. Hence, we get
g s = =) mod p and ¢" P = »*=* mod p. Since ¢ is a generator of
(Z/pZ)*, there exist t and x such that g' = » mod p and ¢° = y mod p. There-

fore,

hs' —h's=zr(s’ —s) mod p—1 (1)
h' —h=1t(s—s)modp—1 (2)

Since h and ' come from “oracle replay”, we may further assume h — i’ is prime
to @, so that ged(s — s/, Q) = 1. Nevertheless, we cannot make any further
assumption for r; and accordingly, two cases appear:

case 1: ris prime to Q). In this case, equation (1) provides the @ modular part
of &, x = (hs' — h's)(r(s — s'))~! mod Q. With an exhaustive search over
the R modular part of &, we can find an & which satisfies y = ¢” mod p.

case 2 otherwise, r = bQ) with b small. In this case, equation (2) provides the Q
modular part of ¢, ¢t = (h — h/)(s — s')~! mod Q. With an exhaustive search
over the R modular part of ¢, we can find a ¢ which satisfies 6Q = ¢' mod p.
We note that ¢ is prime to @.

At this point, we have a probabilistic polynomial time Turing machine M
which, on input (g, y), outputs, with non-negligible probability, z € Z/(p — 1)Z
such that y = ¢ mod p (case 1) or b € Z/RZ and t € Z/(p— 1)Z such that
b@Q = ¢* mod p (case 2). Probabilities are taken over g, y, and the random tapes
of M. Using lemma 3, let G be a non-negligible set of ¢’s such that whenever
g € G, the set of y’s which provides the above witnesses is non-negligible. To

make things precise, we consider both probabilities to be greater than ¢, where
¢ is the inverse of some polynomial. Let Ggo0q be the set of ¢ € G which lead
to the first case with probability greater than £/2. Let Gpaq be the set of g € G
which lead to the second case with probability greater than £/2. We know that
G is the union Gys0q U Ghaq-

If Gyo0q has probability greater than /2, then we have a probabilistic poly-
nomial time Turing machine which can compute, for a non-negligible part of
(¢,v), the discrete logarithm of y relatively to g.

Otherwise, bad ¢’s are in proportion greater than /2. Since the set of pos-
sible b’s is polynomial, we get a fixed b and a non-negligible subset Gjqq(b)
of bad g¢’s such that, with non-negligible probability, M(g,y) outputs inte-
gers b and ¢ such that bQ = ¢* mod p. Let g € Gyaq(b) and y be any num-
ber. Running M(g, z), for random z, we get, with non-negligible probability,
some ¢ such that g' = bQ mod p. Running M(yg*, '), for random ¢ and 2/,
we get, with non-negligible probability, yg¢ € Gpeq(b) and some #' such that
(ygz)tl = b@Q = ¢' mod p. Hence, xt' =t — £t mod (p— 1). Since ¢’ is prime to
@, we get © mod Q. After polynomially many trials over the R modular part of
z, we find the logarithm of y. Then we have another probabilistic polynomial
time Turing machine M’ which can compute for a non-negligible part of (g, y),
the discrete logarithm of y relatively to g¢.

Now, let fix ¢ and y. Running the machine on (¢*, yg") with random u« and
v, we obtain, with non-negligible probability, an # such that yg” = ¢"” mod p,
hence we get y = ¢"*~ mod p. This finally contradicts the intractability as-
sumption.

Security against an adaptively chosen message attack. We now prove a
more surprising theorem about the security against adaptively chosen message
attacks. In the adaptively chosen message scenario, the attacker uses the signer
as a kind of oracle. If it is possible to simulate the signer X by a simulator §
who does not know the secret key (see figure 4), then we can make the attacker
and the simulator collude in order to break the signature scheme, and, the same
way as before, we can solve the discrete logarithm.

Lemma 8. For a-hard prime numbers, the signer can be simulated with an in-
distinguishable distribution.

Proof. A key ingredient of the proof is as follows: values returned by the random
oracle can be freely computed and have no correlation with messages whose
signature is requested.

In this proof, we identify the output set H of random oracles with the set
{0,...,2¥ — 1} and we assume that 2% > Q.

Using the two parameter forgery for the) modular part, and an exhaustive
search for the other part, we can obtain an indistinguishable simulation: we
first randomly choose v € Z/QZ, t € (Z/QZ)" and ¢ € (Z/RZ)". Then, we
let e = uR mod (p— 1), v = tR mod (p — 1) and r = (¢°y?)g?* mod p. We start
the simulation again in the (unlikely) situation where r is not a generator of

(htbp]

attacker IT + signer (X) attacker IT + simulator (S)

and we suppose f(m;,(01)i) = h; Vi

Fig. 4. Adaptively chosen message scenario

(Z/pZ)*. This corresponds to separately dealing with the forgery in the two
subgroups respectively generated by g% and ¢g@. Mimicking the two parameter
forgery in the subgroup generated by ¢, we need to set s = —rv™! mod Q and
h = —erv™! mod Q. For the R modular part, we randomly choose 2 mod R until
h € H, and we exhaustively search for an s which satisfies ¢" = y"r* mod p:
taking logarithms, this reads as h = r& + @fs mod R, so that the number of
trials is only polynomial. We can easily check that the triplet (r, h,s) is a valid
signature of a message m as soon as h = f(m,r).

Let (r,h,s) € (Z/pZ)" x H x Z/(p — 1)Z such that ¢" = r*y” mod p and r
is a generator of (Z /pZ)”. Trying to output this signature through our simulation
vields the system of equations

hv4+re= 0 mod@Q
rv+e =log,r mod @

If A # zr mod @, then there is exactly one solution and therefore one way
for § to generate such a signature. If A = 27 mod @, then & can generate such
a signature only if r = A = s = 0 mod @, and @ — 1 different ways.

Both types of exceptions contribute to the overall distance by some term
bounded by ﬁ which is less than 4an®t! x 27" a negligible value, where

n = |p|

Theorem 9. Consider an adaptively chosen message attack in the random or-
acle model against schemes using «a-hard prime moduli. Probabilities are taken
over random tapes, random oracles and public keys. If an existential forgery of
this scheme has non-negligible probability of success, then the discrete logarithm
problem with a-hard prime modult can be solved in polynomial time.

Proof. For each simulated signature of m;, (r;, ks, s;), S is assumed to have
asked f(m;,r;) and obtained h;, a new random value. We observe that collisions
of queries happen with negligible probability, therefore, the attacker cannot dis-
tinguish the simulator from the legitimate signer. And then, like in theorem 7,
a collusion of the attacker and the simulator enables to compute discrete loga-
rithms.

6 Further Results

In this section, we mention several additional results: the first is the extension of
theorem 4 to the adaptively chosen message attack. Furthermore, because of the
possible simulation of the Schnorr scheme, we can prove the following theorem
in the random oracle model:

Theorem 10. If an existential forgery of the Schnorr signature scheme, under
an adaptively chosen message attack, has non-negligible probability of success,
then the discrete logarithm in subgroups can be solved in polynomial time.

The same results are true for every signature scheme which comes from
the transformation of a honest verifier zero-knowledge identification protocol
(Guillou-Quisquater [7], the Permuted Kernel Problem [13], the Syndrome De-
coding problem [15], the Constrained Linear Equations [14], the Permuted Per-
ceptrons Problem [9], etc.). For each of them, existential forgery under an adap-
tively chosen-message attack in the random oracle model is equivalent to the
problem on which the identification scheme relies .

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In Proceedings of the 1st ACM Conference on Computer and
Communications Security (1993) pp. 62-73.

2. Diffie, W., Hellman, M.: New directions in cryptography. In IEEE Transactions
on Information Theory (november 1976) vol. IT-22, no. 6 pp. 644-654.

3. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In IEEE Transactions on Information Theory (july 1985) vol. IT-31,
no. 4 pp. 469-472.

4. Fiat, A., Shamir, A.: How to prove yourself: practical solutions of identification
and signature problems. In Advances in Cryptology — Proceedings of CRYPTO ’86
(1986) vol. Lecture Notes in Computer Science 263 Springer-Verlag pp. 186-194.

5. Goldwasser, S., Micali, S., Rackoff, C.: Knowledge complexity of interactive proof
systems. In Proceedings of the 17th ACM Symposium on the Theory of Computing
STOC (1985) pp. 291-304.

6. Goldwasser, S., Micali, S.; Rivest, R.: A digital signature scheme secure against
adaptative chosen-message attacks. STAM journal of computing 17 (1988) pp. 281—
308.

10.

11.

12.

13.

14.

15.

Guillou, L., Quisquater, J.: A practical zero-knowledge protocol fitted to security
microprocessor minimizing both transmission and memory. In Advances in Cryp-
tology — Proceedings of EUROCRYPT ’88 (1989) vol. Lecture Notes in Computer
Science 330 Springer-Verlag pp. 123-128.

NIST: Secure Hash Standard (SHS). Federal Information Processing Standards
PUBIlication 180-1 April 1995.

. Pointcheval, D.: A new identification scheme based on the perceptrons problem. In

Advances in Cryptology — Proceedings of EUROCRYPT ’95 (1995) L. Guillou and
J.-J. Quisquater, Eds. vol. Lecture Notes in Computer Science 921 Springer-Verlag.
Rivest, R.: The MD5 message-digest algorithm. RFC 1321 april 1992.

Rivest, R.; Shamir, A.; Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. Communications of the ACM 21 (1978) pp. 120-126.
Schnorr, C.: Efficient identification and signatures for smart cards. In Advances in
Cryptology — Proceedings of CRYPTO ’89 (1990) vol. Lecture Notes in Computer
Science 435 Springer-Verlag pp. 235-251.

Shamir, A.: An efficient identification scheme based on permuted kernels. In
Advances in Cryptology — Proceedings of CRYPTO ’89 (1990) vol. Lecture Notes
in Computer Science 435 Springer-Verlag pp. 606-609.

Stern, J.: Designing identification schemes with keys of short size. In Advances in
Cryptology — proceedings of CRYPTO 94 (1994) vol. Lecture Notes in Computer
Science 839 Springer-Verlag pp. 164-173.

Stern, J.: A new identification scheme based on syndrome decoding. In Advancesin
Cryptology — proceedings of CRYPTO 93 (1994) vol. Lecture Notes in Computer
Science 773 Springer-Verlag pp. 13-21.

This article was processed using the INTpX macro package with LLNCS style

