
Security Proofs for Signature SchemesDavid Pointcheval Jacques SternDavid.Pointcheval@ens.fr Jacques.Stern@ens.fr�Ecole Normale Sup�erieureLaboratoire d'informatique45, rue d'Ulm75230 Paris Cedex 05Abstract. In this paper, we address the question of providing securityproofs for signature schemes in the so-called random oracle model [1].In particular, we establish the generality of this technique against adap-tively chosen message attacks. Our main application achieves such a se-curity proof for a slight variant of the El Gamal signature scheme [3]where committed values are hashed together with the message. This isa rather surprising result since the original El Gamal is, as RSA [11],subject to existential forgery.1 IntroductionSince the appearance of the public key cryptography, in the famous Di�e-Hellman paper [2], a signi�cant line of research has tried to provide \provable"security for cryptographic protocols. In the area of computational security, proofshave been given in the asymptotic framework of complexity theory. Still, theseare not absolute proofs since cryptography ultimately relies on the existence ofone-way functions and the P vs. NP question. Rather, they are computationalreductions to and from well established problems from number theory such asfactoring, the discrete logarithm problem or the root extraction problem, onwhich RSA relies [11].In the present paper we will exclusively focus on signatures. As shown inthe Di�e-Hellman paper [2], the trapdoor function paradigm allows to createsignatures in the public key setting. Nevertheless, both the RSA scheme and theEl Gamal scheme are not provably secure since they are subject to existentialforgery. In other words, it is easy to create a new valid message-signature pair.In many cases, this is not really dangerous because the message is not intelligibleor does not have the proper redundancy. Still an RSA signature does not proveby itself the identity of the sender.The �rst signature scheme proven secure against a very general attack, theso-called adaptively chosen-message attack which will be de�ned later in thispaper, has been proposed by Goldwasser-Micali-Rivest [6] in 1984. It uses thenotion of claw-free permutations. We refer to [6] for details.In 1986, a new paradigm for signature schemes was introduced. It is derivedfrom zero-knowledge identi�cation protocols involving a prover and a veri�er [5],



and uses hash functions in order to create a kind of virtual veri�er. In [4], Fiatand Shamir proposed a zero-knowledge identi�cation protocol based on the hard-ness of extracting square roots. They also described the corresponding signaturescheme and outlined its security. Similar results for other signature schemes likeSchnorr's [12] are considered as folklore results but have never appeared in theliterature.In this paper, we review the basic method for proving security of signatureschemes in the random oracle model [1] and surprisingly, we prove the securityof a very close variant of the El Gamal signature scheme.2 Framework2.1 Generic Signature SchemesIn a signature scheme, each user publishes a public key while keeping for himselfa secret key. A user's signature on a message m is a value which depends onm and on the user's public and secret keys in such a way that anyone cancheck validity just by using the public key. However, it is hard to forge a user'ssignature without knowing his secret key. In this section, we will give a moreprecise de�nition of a signature scheme and of the possible attacks against suchschemes. These de�nitions are based on [6].[htbp] Key generation Signature and veri�cationk is the security parameterGk ! KsKpand n = jKpj V�Ks !f Kp m (�1; h; �2)OK ?Sizes of objectsOutputs of f are of size k, and k is such that k(n)� log nFig. 1. Signature schemesDe�nition1. A signature scheme is de�ned by the following (see �gure 1):



{ the key generation algorithm G which, on input 1k, where k is the securityparameter, produces a pair (Kp;Ks) of matching public and secret keys. Itis clear that G must be a probabilistic algorithm.{ the signing algorithm � which, given a message m and a pair of matchingpublic and secret keys (Kp;Ks), produces a signature. The signing algorithmmight be probabilistic, and in some schemes it might receive other inputs aswell.{ the veri�cation algorithm V which, given a signature �, a message m and apublic key Kp, tests whether � is a valid signature of m with respect to Kp.In general, the veri�cation algorithm need not be probabilistic.Signature schemes often use a hash function f . In this paper, we will onlyconsider signature schemes which, on the input message m, produce triplets(�1; h; �2) independent of previous signature. In those triplets (�1; h; �2), h isthe hash value of (m;�1) and �2 just depends on �1, the message m, and h. Thiscovers the case of Fiat-Shamir [4], Schnorr [12] and many others. In some cases,�1 or h can be omitted, but we will keep them for more generality.2.2 AttacksWe will only consider two di�erent scenarios involving probabilistic polynomialtime Turing machines, the no-message attack and the adaptively chosen messageattack (see �gure 2).[htbp] attack I attack IIno-message attack adaptively chosen message attackA1Kp ! �m�1; h; �2f Q� A2Kp ! �m�1; h; �2f Q� �Ks ! KpQ0 �0 mi (�1; h; �2)iFig. 2. AttacksIn the former, the attacker only knows the signer's public key. In the latter, hecan dynamically ask the legitimate user to sign any message, using him as a kind



of oracle. For the resistance against adaptively chosen message attacks, which is astronger requirement, we will use the possible simulation of the legitimate signer,which relies on the honest veri�er zero-knowledge property of the identi�cationscheme.2.3 The Random Oracle ModelAs we already pointed out, signature schemes often use a hash function f(e.g. MD5 [10] or SHS [8]). This use of hash functions may have been moti-vated by the wish to sign long messages with a single signature. Accordingly, therequirement of the function was collision freeness. It was later realized that hashfunctions were an essential ingredient for the security of the signature schemes.Still, in order to actually provide such a security proof, stronger assumptionsseem to be needed and several authors (e.g. [4] and [1]) have suggested to useto hypothesis that f is actually a random function. We follow this suggestionby using the corresponding model, called the \random oracle model". In thismodel, the hash function can be seen as an oracle which produces a randomvalue for each new query. Of course, if the same query is asked twice, identicalanswers are obtained. Proofs in this model ensure security of the overall designof a signature scheme provided the hash function has no weakness.3 The Oracle Replay AttackIn this section, we will prove a key lemma, which we call the forking lemma andwhich will be repeatedly used in the sequel. This lemma uses the \oracle replayattack": by a polynomial replay of the attack with the same random tape anda di�erent oracle, we obtain two signatures of a speci�c form which open a wayto solve the underlying hard problem.Lemma2 (the forking lemma). Let A be a Probabilistic Polynomial TimeTuring machine, given only the public data as input. If A can �nd, with non-negligible probability, a valid signature (m;�1; h; �2), then, with non-negligibleprobability, a replay of this machine, with the same random tape and a di�erentoracle, outputs two valid signatures (m;�1; h; �2) and (m;�1; h0; �02) such thath 6= h0 .Remark. Probabilities are taken over random tapes, random oracles, and in somecases, over messages and keys.Before we prove this result, we state a well-known probabilistic lemma:Lemma3. Let A � X � Y , such that Pr[A(x; y)] � �, then there exists 
 � Xsuch thati) Pr[x 2 
] � �=2ii) whenever a 2 
, Pr[A(a; y)] � �=2



With this lemma, we can split X in two subsets, a subset 
 consisting of\good" x's which provide a non-negligible probability of success over y, and itscomplement. We now return to the forking lemma.Proof. We assume that we have a no-message attacker A, which is a probabilisticpolynomial time Turing machine with a random tape !. During the attack, thismachine asks a polynomial number of questions to the random oracle f . Wemay assume that these questions are distinct, for instance, A can store questionsand answers in a table. Let Q1; : : : ;QQ be the Q distinct questions, where Qis a polynomial, and let �1; : : : ; �Q be the Q answers of f . It is clear that arandom choice of f exactly corresponds to a random choice of �1; : : : ; �Q. For arandom choice of !; �1; : : : ; �Q, with non-negligible probability,A outputs a validsignature (m;�1; h; �2). It is easy to see that the probability for the precise query(m;�1) not to be asked is negligible, because of the randomness of f(m;�1). So,the probability that the query (m;�1) is one of theQi's, e.g.Q� , is non-negligible.Since � is between 1 and Q(n), there exist a � and a polynomial P such thatthe probability of success, over !; �1; : : : ; �Q, with Q� = (m;�1) is greater than1=P (n) (see �gure 3).[htbp]! �Q1 �1 �Q2 �Q�2k answers�� �Q�+1 �QQ �Q �m;�1h; �2 ��0� �Q0�+1 �Q0Q �0Q �m;�1h0; �02�9>>>>>=>>>>>; Pr[success]� 1P (n)Fig. 3. The forking lemmaWith such a �, using lemma 3, we get the existence of a non-negligible sub-set 
� of \good" !'s. For such a \good" !, the probability of success, over�1; : : : ; �Q, with Q� = (m;�1), is greater than 1=2P (n). With such � and!, using lemma 3 again, we obtain the existence of a non-negligible subsetR�;! of \good" (�1; : : : ; ���1)'s. For such a \good" (�1; : : : ; ���1), the proba-bility of success of the attacker, over ��; : : : ; �Q, with Q� = (m;�1), is greaterthan 1=4P (n). Then, with such �, ! and (�1; : : : ; ���1), if we randomly chose�� ; : : : ; �Q and �0� ; : : : ; �0Q, with a non-negligible probability, we obtain two validsignatures (m;�1; h; �2) and (m;�1; h0; �02) such that h 6= h0; this uses the factthat k(n)� logn.Finally, with a random choice of �; !; �1; : : : ; ���1; ��; : : : ; �Q and �0� ; : : : ; �0Q,we obtain, with a non-negligible probability, two valid signatures (m;�1; h; �2)and (m;�1; h0; �02) such that h 6= h0.



4 The Fiat-Shamir Signature SchemeWe will now apply the lemma to the Fiat-Shamir signature scheme in order toprove its security against no-message attacks. This result is outlined in [4] andwe include it for the reader's convenience.4.1 DescriptionFirstly, we describe the single key Fiat-Shamir signature scheme [4]:{ the key generation algorithm: for a security parameter k, it chooses twolarge primes p and q which are kept secret and computes their product Nand de�nes a random hash function f with a k-bit output. Then, it choosesa random s 2 ZZ=NZZ and publishes its square v = s2 mod N . N and f arepublic and s is the secret key.{ the signature algorithm: in order to sign a message m, one generates k ran-dom numbers, ri 2 ZZ=NZZ for i = 1; : : : ; k, computes their respective squaresxi = r2i mod N as well as the challenge h = (e1 : : : ek) = f(m;x1; : : : ; xk).>From these data, one sets yi = risei mod N and outputs �1 = (x1; : : : ; xk)and �2 = (y1; : : : ; yk). The signature is (�1; h; �2).{ the veri�cation algorithm is as follows: for a given message m and a givensignature �1 = (x1; : : : ; xk), h = (e1 : : : ek) and �2 = (y1; : : : ; yk), it checkswhether h = f(m;�1) and yi = risei mod N for all i.4.2 Proof of Security>From the forking lemma we easily get a proof in the random oracle model.Theorem4. Consider a no-message attack in the random oracle model. If anexistential forgery of the Fiat-Shamir signature scheme is possible with non-negligible probability, then factorization of RSA moduli can be performed in poly-nomial time.Proof. Let N 2 IN be the integer to factor. Let us choose s 2R ZZ=NZZ, and letv = s2 mod N . If an attacker A1 can break the Fiat-Shamir signature scheme,then by using the forking lemma, he can obtain two valid signatures (m;�1; h; �2)and (m;�1; h0; �02), such that h 6= h0. From this, we get i such that hi 6= h0i, sayhi = 0 and h0i = 1. We get y2i = xi mod N and y0i2 = xiv mod N . If we letz = y0iy�1i mod N , then z2 = v = s2 mod N .Since the algorithm cannot distinguish s from other roots, we conclude that,with a probability 1=2, gcd(z � s;N ) provides a factor of N .Remark. Because of the easy simulation of the communication with an honestveri�er, even in the context of the parallel version of Fiat-Shamir, the proof ofsecurity against adaptively chosen message attacks is straightforward.



5 The Modi�ed El Gamal Signature SchemeThe original El Gamal signature scheme [3] was proposed in 1985 but its securitywas never proved equivalent to the discrete logarithm problem nor to the Di�e-Hellman problem. Using the forking lemma, we will prove the security of a slightvariant of this scheme.5.1 Description of the Original SchemeLet us begin with a description of the original scheme [3]:{ the key generation algorithm: it chooses a random large prime p of size nand a generator g of (ZZ=pZZ)?, both public. Then, for a random secret keyx 2 ZZ=(p� 1)ZZ, it computes the public key y = gx mod p.{ the signature algorithm: in order to sign a signature of a message m, onegenerates a pair (r; s) such that gm = yrrs mod p. To achieve this aim, onehas to choose a random K 2 (ZZ=(p� 1)ZZ)?, compute the exponentiationr = gK mod p and solve the linear equation m = xr +Ks mod (p� 1). Thealgorithm �nally outputs (r; s).{ the veri�cation algorithm checks the equation gm = yrrs mod p.5.2 SecurityAs already seen in the original paper, one cannot show that the scheme is fullysecure because it is subject to existential forgery.Theorem5. The original El Gamal signature scheme is existentially forgeable.Proof. This is a well-known result, but we describe two level of forgeries:1. the one parameter forgery: let e 2R ZZ=(p� 1)ZZ, if we let r = gey mod pand s = �r mod p � 1, it is easy to see that (r; s) is a valid signature for themessage m = es mod p� 1.2. the two parameter forgery: let e 2R ZZ=(p� 1)ZZ and v 2R (ZZ=(p� 1)ZZ)?,if we let r = geyv mod p and s = �rv�1 mod p� 1, then (r; s) is a validsignature for the message m = es mod p� 1.We now modify this scheme by using a hash function.5.3 Description of the modi�ed El Gamal schemeIn this variant, we replace m by the hash value of the entire part of the compu-tation bound not to change, namely f(m; r).{ the key generation algorithm: unchanged.{ the signature algorithm: in order to sign a message m, one generates apair (r; s) such that gf(m;r) = yrrs mod p. In order to achieve this aim, onegenerates K and r the same way as before and solves the linear equationf(m; r) = xr +Ks mod (p� 1). The algorithm outputs (r; f(m; r); s).{ the veri�cation algorithm checks the signature equation with the obviouschanges due to the hash function.



5.4 Proofs of securityIn this section, we will see that the modi�cation allows to prove the security ofthe scheme even against an adaptively chosen message attack, at least for a largevariety of moduli. We let jpj denote the length of an integer p.De�nition6. Let � be a �xed real. An �-hard prime number p is such that thefactorization of p� 1 yields p� 1 = QR with Q prime and R � jpj�.Remark. Those prime moduli are precisely those used for cryptographic appli-cations of the discrete logarithm problem.Security against a no-message attack. Firstly, we study the resistance ofthe modi�ed El Gamal Signature scheme against no-message attacks.Theorem7. Consider a no-message attack in the random oracle model againstschemes using �-hard prime moduli. Probabilities are taken over random tapes,random oracles and public keys. If an existential forgery of this scheme has non-negligible probability of success, then the discrete logarithm problem with �-hardprime moduli can be solved in polynomial time.Proof. Using the forking lemma, we get two valid signatures (m; r; h; s) and(m; r; h0; s0) such that gh = rsyr mod p and gh0 = rs0yr mod p. Hence, we getghs0�h0s = yr(s0�s) mod p and gh0�h = rs�s0 mod p. Since g is a generator of(ZZ=pZZ)?, there exist t and x such that gt = r mod p and gx = y mod p. There-fore, hs0 � h0s = xr(s0 � s) mod p� 1 (1)h0 � h = t(s� s0) mod p � 1 (2)Since h and h0 come from \oracle replay", we may further assume h�h0 is primeto Q, so that gcd(s � s0; Q) = 1. Nevertheless, we cannot make any furtherassumption for r, and accordingly, two cases appear:case 1: r is prime to Q. In this case, equation (1) provides the Q modular partof x, x = (hs0 � h0s)(r(s � s0))�1 mod Q. With an exhaustive search overthe R modular part of x, we can �nd an x which satis�es y = gx mod p.case 2 otherwise, r = bQ with b small. In this case, equation (2) provides the Qmodular part of t, t = (h� h0)(s � s0)�1 mod Q. With an exhaustive searchover the R modular part of t, we can �nd a t which satis�es bQ = gt mod p.We note that t is prime to Q.At this point, we have a probabilistic polynomial time Turing machine Mwhich, on input (g; y), outputs, with non-negligible probability, x 2 ZZ=(p� 1)ZZsuch that y = gx mod p (case 1) or b 2 ZZ=RZZ and t 2 ZZ=(p� 1)ZZ such thatbQ = gt mod p (case 2). Probabilities are taken over g, y, and the random tapesof M. Using lemma 3, let G be a non-negligible set of g's such that wheneverg 2 G, the set of y's which provides the above witnesses is non-negligible. To



make things precise, we consider both probabilities to be greater than ", where" is the inverse of some polynomial. Let Ggood be the set of g 2 G which leadto the �rst case with probability greater than "=2. Let Gbad be the set of g 2 Gwhich lead to the second case with probability greater than "=2. We know thatG is the union Ggood [Gbad.If Ggood has probability greater than "=2, then we have a probabilistic poly-nomial time Turing machine which can compute, for a non-negligible part of(g; y), the discrete logarithm of y relatively to g.Otherwise, bad g's are in proportion greater than "=2. Since the set of pos-sible b's is polynomial, we get a �xed b and a non-negligible subset Gbad(b)of bad g's such that, with non-negligible probability, M(g; y) outputs inte-gers b and t such that bQ = gt mod p. Let g 2 Gbad(b) and y be any num-ber. Running M(g; z), for random z, we get, with non-negligible probability,some t such that gt = bQ mod p. Running M(yg`; z0), for random ` and z0,we get, with non-negligible probability, yg` 2 Gbad(b) and some t0 such that(yg`)t0 = bQ = gt mod p. Hence, xt0 = t� `t0 mod (p� 1). Since t0 is prime toQ, we get x mod Q. After polynomially many trials over the R modular part ofx, we �nd the logarithm of y. Then we have another probabilistic polynomialtime Turing machineM0 which can compute for a non-negligible part of (g; y),the discrete logarithm of y relatively to g.Now, let �x g and y. Running the machine on (gu; ygv) with random u andv, we obtain, with non-negligible probability, an x such that ygv = gux mod p,hence we get y = gux�v mod p. This �nally contradicts the intractability as-sumption.Security against an adaptively chosen message attack. We now prove amore surprising theorem about the security against adaptively chosen messageattacks. In the adaptively chosen message scenario, the attacker uses the signeras a kind of oracle. If it is possible to simulate the signer � by a simulator Swho does not know the secret key (see �gure 4), then we can make the attackerand the simulator collude in order to break the signature scheme, and, the sameway as before, we can solve the discrete logarithm.Lemma8. For �-hard prime numbers, the signer can be simulated with an in-distinguishable distribution.Proof. A key ingredient of the proof is as follows: values returned by the randomoracle can be freely computed and have no correlation with messages whosesignature is requested.In this proof, we identify the output set H of random oracles with the setf0; : : : ; 2k � 1g and we assume that 2k � Q.Using the two parameter forgery for the Q modular part, and an exhaustivesearch for the other part, we can obtain an indistinguishable simulation: we�rst randomly choose u 2 ZZ=QZZ, t 2 (ZZ=QZZ)? and ` 2 (ZZ=RZZ)?. Then, welet e = uR mod (p� 1), v = tR mod (p� 1) and r = (geyv)gQ` mod p. We startthe simulation again in the (unlikely) situation where r is not a generator of



[htbp] attacker II + signer (�) attacker II + simulator (S)A2Kp ! �m�1; h; �2f Q� �Ks ! KpQ0 �0 mi (�1; h; �2)i A2Kp ! �m�1; h; �2f Q� S! Kpmi (�1; h; �2)iand we suppose f(mi; (�1)i) = hi 8iFig. 4. Adaptively chosen message scenario(ZZ=pZZ)?. This corresponds to separately dealing with the forgery in the twosubgroups respectively generated by gR and gQ. Mimicking the two parameterforgery in the subgroup generated by gR, we need to set s = �rv�1 mod Q andh = �erv�1 mod Q. For the Rmodular part, we randomly choose h mod R untilh 2 H, and we exhaustively search for an s which satis�es gh = yrrs mod p:taking logarithms, this reads as h = rx+Q`s mod R, so that the number oftrials is only polynomial. We can easily check that the triplet (r; h; s) is a validsignature of a message m as soon as h = f(m; r).Let (r; h; s) 2 (ZZ=pZZ)? �H � ZZ=(p� 1)ZZ such that gh = rsyr mod p and ris a generator of (ZZ=pZZ)?. Trying to output this signature through our simulationyields the system of equations�hv + re = 0 mod Qxv + e = logg r mod QIf h 6= xr mod Q, then there is exactly one solution and therefore one wayfor S to generate such a signature. If h = xr mod Q, then S can generate sucha signature only if r = h = s = 0 mod Q, and Q� 1 di�erent ways.Both types of exceptions contribute to the overall distance by some termbounded by 2R(Q�1)'(R) which is less than 4�n�+1 � 2�n, a negligible value, wheren = jpjTheorem9. Consider an adaptively chosen message attack in the random or-acle model against schemes using �-hard prime moduli. Probabilities are takenover random tapes, random oracles and public keys. If an existential forgery ofthis scheme has non-negligible probability of success, then the discrete logarithmproblem with �-hard prime moduli can be solved in polynomial time.



Proof. For each simulated signature of mi, (ri; hi; si), S is assumed to haveasked f(mi; ri) and obtained hi, a new random value. We observe that collisionsof queries happen with negligible probability, therefore, the attacker cannot dis-tinguish the simulator from the legitimate signer. And then, like in theorem 7,a collusion of the attacker and the simulator enables to compute discrete loga-rithms.6 Further ResultsIn this section, we mention several additional results: the �rst is the extension oftheorem 4 to the adaptively chosen message attack. Furthermore, because of thepossible simulation of the Schnorr scheme, we can prove the following theoremin the random oracle model:Theorem10. If an existential forgery of the Schnorr signature scheme, underan adaptively chosen message attack, has non-negligible probability of success,then the discrete logarithm in subgroups can be solved in polynomial time.The same results are true for every signature scheme which comes fromthe transformation of a honest veri�er zero-knowledge identi�cation protocol(Guillou-Quisquater [7], the Permuted Kernel Problem [13], the Syndrome De-coding problem [15], the Constrained Linear Equations [14], the Permuted Per-ceptrons Problem [9], etc.). For each of them, existential forgery under an adap-tively chosen-message attack in the random oracle model is equivalent to theproblem on which the identi�cation scheme relies .References1. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designinge�cient protocols. In Proceedings of the 1st ACM Conference on Computer andCommunications Security (1993) pp. 62{73.2. Di�e, W., Hellman, M.: New directions in cryptography. In IEEE Transactionson Information Theory (november 1976) vol. IT{22, no. 6 pp. 644{654.3. ElGamal, T.: A public key cryptosystem and a signature scheme based on discretelogarithms. In IEEE Transactions on Information Theory (july 1985) vol. IT{31,no. 4 pp. 469{472.4. Fiat, A., Shamir, A.: How to prove yourself: practical solutions of identi�cationand signature problems. In Advances in Cryptology { Proceedings of CRYPTO '86(1986) vol. Lecture Notes in Computer Science 263 Springer-Verlag pp. 186{194.5. Goldwasser, S., Micali, S., Racko�, C.: Knowledge complexity of interactive proofsystems. In Proceedings of the 17th ACM Symposium on the Theory of ComputingSTOC (1985) pp. 291{304.6. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure againstadaptative chosen-message attacks. SIAM journal of computing 17 (1988) pp. 281{308.
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