
Appears in the proceedings of the First ACM Conference on Computer and Communications Se-

curity, ACM, November 1993.

Random Oracles are Practical:

A Paradigm for Designing E�cient Protocols

Mihir Bellare
�

Phillip Rogaway
y

October 20, 1995

Abstract

We argue that the random oracle model |where all parties have access to a public random

oracle| provides a bridge between cryptographic theory and cryptographic practice. In the

paradigm we suggest, a practical protocol P is produced by �rst devising and proving correct a

protocol PR for the random oracle model, and then replacing oracle accesses by the computation

of an \appropriately chosen" function h. This paradigm yields protocols much more e�cient

than standard ones while retaining many of the advantages of provable security. We illustrate

these gains for problems including encryption, signatures, and zero-knowledge proofs.

� Department of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500

Gilman Drive, La Jolla, CA 92093. E-mail: mihir@cs.ucsd.edu
y Department of Computer Science, University of California at Davis, Davis, CA 95616, USA. E-mail:

rogaway@cs.davis.edu

1

1 Introduction

Cryptographic theory has provided a potentially invaluable notion for cryptographic practice: the

idea of provable security. Unfortunately, theoretical work often seems to gain provable security only

at the cost of e�ciency. This is due in part to the following. Theorists view certain primitives (e.g.,

one-way functions) as \basic" and build more powerful primitives (e.g., pseudorandom functions)

out of them in ine�cient ways; but in practice, powerful primitives are readily available and the

so-called basic ones seem to be no easier to implement. In fact theorists deny themselves the

capabilities of practical primitives which satisfy not only the strongest kinds of assumptions they

like to make, but even have strengths which have not been de�ned or formalized.

In order to bring to practice some of the bene�ts of provable security, it makes sense to incorpo-

rate into our models objects which capture the properties that practical primitives really seem to

possess, and view these objects as basic even if the assumptions about them are, from a theoretical

point of view, very strong. This paper highlights the e�cacy and potential of one such approach.

The idea is a simple one: namely, provide all parties |good and bad alike| with access to a

(public) random oracle; prove correct a protocol in this model; then replace the random oracle by

an object like a hash function. We stress that the proof is in the random oracle model and the last

step is heuristic in nature. It is a thesis of this paper that signi�cant assurance bene�ts nonetheless

remain.

The idea of such a paradigm builds on work of Goldreich, Goldwasser and Micali [20, 21] and

Fiat-Shamir [14]. It is guided by many previous \unjusti�ed" uses of hash functions. Finally, it

incorporates viewpoints which, shared and verbally articulated by many members of our community,

should be regarded as folklore. In this light, we view our contribution as follows. First, we raise the

implicit philosophy behind the use of a random oracle to an explicitly articulated paradigm which

we maintain brings signi�cant bene�ts to practice. Second, we systematically apply the paradigm

to diverse cryptographic problems to obtain e�cient solutions. Third, we provide de�nitions and

proofs to show that some of the previously \unjusti�ed" uses of hash functions can �nd justi�cation

in the random oracle model. Finally, we suggest constructions of hash functions which we believe

are appropriate to instantiate the random oracle. We proceed by describing the paradigm in further

detail. For details on background and related work see Section 1.3.

1.1 The Random Oracle Paradigm

The aforementioned disparity between the theoreticians' and practioners' views on primitives is

illustrated by the following example. Theorists view a one-way function as a basic object and build

pseudo-random functions from them. But in practice, as indicated by Luby and Racko� [30, 31],

the DES provides a pseudorandom function of 64 bits to 64 bits. Ironically, if one needs a practical

protocol for a one-way function, likely one would construct it from DES|thereby reducing the

\simple" primitive to the \complex" one.

If one is trying to design e�cient protocols, it makes more sense to start o� making strong,

realistic assumptions about the primitives that will be used. Based on the paragraph above, a

pseudorandom function on 64-bit strings is an excellent starting point. As we describe below, it

seems reasonable to adopt even more generous assumptions.

Powerful Primitives. Let us look at a second e�ciently-computable primitive: the map h2
de�ned by the MD5 algorithm [37] restricted to inputs of length � 400, say.1 One has expectations

like these of this function: that it is hard to �nd an x such that h2(x) = x; that it is hard to

1See Section 6 for why we prefer not to use MD5 itself.

2

�nd an x such that h2(x) has Hamming weight exceeding 120; that fa(x) = h2(xa) is (in practice)

a pseudorandom function family; etc. What really is this object? To date, there has been no

satisfactory answer. That is, there is no formal de�nition which captures a large fraction of the

nice properties this function seems to possess|and it is not clear that one can be found.

The Paradigm. Our answer to \what might a function like h2 accomplish?" is to say that it can be

thought of as a random function in the sense that it can be used in the following design methodology

in the role of h. Suppose one has a protocol problem � (the problem being \independent" of the

primitive h.) In order to devise a good protocol P for �:

(1) Find a formal de�nition for � in the model of computation in which all parties (including the

adversary) share a random oracle R.

(2) Devise an e�cient protocol P for � in this random oracle model.

(3) Prove that P satis�es the de�nition for �.

(4) Replace oracle accesses to R by computation of h.

It is our thesis that this method, when properly carried out, leads to secure and e�cient protocols.

Indeed, protocols constructed under this paradigm have so far proven \secure" in practice. But we

stress that all claims of provable security are claims made within the random oracle model, and

instantiating the oracle with h is only a heuristic whose success we trust from experience.

Note that h cannot really be like a random function because it has a short description. In many

ways, h is very di�erent from a random oracle. This has not altered the success of the method.

We stress that the protocol problem � and protocol P must be \independent" of the hash

function we are to use. It is easy to construct unnatural problems or protocols whose description

and goals depend explicitly on h so that the protocol is secure in the random oracle model but fails

when the random oracle is instantiated with the hash function. The notion of \independence" will

not be formalized in this paper.

Instantiation. For the body of this paper, we assume a random oracle R from f0; 1g� to f0; 1g1.
We use such an oracle without further explanation to provide whatever randommaps are convenient

for describing a given protocol.

When instantiating a random oracle by a concrete function h, care must be taken �rst to ensure

that h is adequately conservative in its design so as not to succumb to cryptanalytic attack, and

second to ensure that h exposes no relevant \structure" attributable to its being de�ned from some

lower-level primitive. Examples of both types of pitfalls are given in Section 6. As explained in that

section, standard hash functions like MD5 and SHA don't by themselves make good replacements

for a random oracles; but one doesn't have to look much further. Candidate instantiations include

hash functions with their outputs truncated; hash functions with their input lengths restricted; and

hash functions used in some nonstandard way, such as h3(x) = MD5(xx). See Section 6.

1.2 Results

The results of this paper can can be divided into three kinds. First are new and e�cient solutions

for various cryptographic problems. Second are justi�cations of known heuristics. Third are some

\theoretical" results in the random oracle model which our investigations have lead us to prove.

In each case we provide protocols, theorems, and the new de�nitions appropriate to the random

oracle setting.

Efficient Encryption. Goals which are possible but impractical in the standard setting become

practical in the random oracle setting. We illustrate with one example: public key encryption. In

3

what follows G: f0; 1g�! f0; 1g1 is a random generator; k is the security parameter;H : f0; 1g�!
f0; 1gk is a random hash function; f is a trapdoor permutation with inverse f�1; G(r)� x denotes

the bitwise XOR of x with the �rst jxj bits of the output of G(r); and \k" denotes concatenation.

For a concrete implantation, f might be squaring [42, 3] or RSA [38]. We suggest two schemes to

encrypt e�ciently in the random oracle model:

(1) Set EG(x) = f(r) k G(r)� x for a random value r from the domain of f .

(2) Set EG;H(x) = f(r) k G(r)� x k H(rx) for a random value r from the domain of f .

Here x is the message to be encrypted, f is the recipient's public key, and f�1 is his secret key.

For background, de�nitions, precise statements of results, and e�ciency comparisons with known

schemes see Section 3, but, brie
y, what is argued there is the following: the �rst scheme achieves

polynomial/semantic security as de�ned by [24]; the second is secure against chosen-ciphertext

attack in the sense of [36] as well as non-malleable in the sense of [13]; and both are signi�cantly

more e�cient than previous provably-secure schemes [24, 4, 34, 36, 11, 13] for the same goals.

Justification Of Known Heuristics. A variety of well-known \tricks" �nd formal justi�cation

by moving to the random oracle setting. (This does not mean that existing protocols can usually be

justi�ed by adopting a random oracle model; to the contrary, it appears to be more the exception

than the rule.) We illustrate with the following pair of examples.

Popular signature schemes such as RSA are an instance of the following: for a trapdoor per-

mutation f and hash function H the signature of message x is f�1(H(x)). It is widely recognized

that \usual" properties of a hash function such as collision-freeness don't su�ce to make such a

method a secure signature scheme. However for H a random hash function we show the scheme is

secure against adaptive chosen message attack. See Section 4.

A heuristic to eliminate interaction in a zero-knowledge interactive proof, attributed to M. Blum,2

is to have the prover essentially ask of himself the queries that a veri�er would ask by computing

these queries as the hash of the messages already exchanged between the parties. We show that this

construction is provably secure in the random oracle model. Providing this proof has necessitated

giving formal de�nitions for zero-knowledge in the random oracle model. See Section 5.

Theoretical Results. Generalizing the result just described, we show that any language that

has an interactive proof can have its proof e�ciently transformed into a non-interactive zero-

knowledge one. The model of computation is that all parties |including cheating provers| are

a�orded only polynomially many queries to the random oracle. We also show that in the random

oracle model, constant round, information theoretically secure function evaluation is possible.3

De�nitions and proofs of these results are omitted for lack of space.

1.3 Background and Related Work

The basic idea of proving correct a protocol in a model where the parties have a random oracle and

then instantiating that oracle with an appropriate cryptographic primitive originates in [20, 21]. The

cryptographic primitive suggested and constructed for this purpose by [20] is the pseudo-random

function (PRF). For a PRF to retain its properties, however, the seed via which it is speci�ed (and

which enables its computation) must remain unknown to the adversary. Thus the applicability

of the paradigm is restricted to protocols in which the adversary is denied access to the random

2 Personal communication, via S. Micali and S. Rudich.
3 In this application it does not su�ce to replace the pseudorandom generator used in [1] by a random generator.

4

oracle.4 Thus in many applications (and the ones of this paper in particular) PRFs don't su�ce.

Note, however, that when the setting permits instantiation of the oracle via PRFs, the resulting

protocol can usually be proven correct in the standard model of computation under a standard

complexity-theoretic assumption, something instantiation via hash functions as we suggest does

not achieve.

The �rst work which explicitly adopts a public random oracle model |all parties, adversary

included, can access the oracle| is that of Fiat and Shamir [14]. The authors use this model to

turn an identi�cation scheme into a digital signature scheme (without \totally" sacri�cing rigor in

the course of this transformation).

M. Blum's aforementioned idea of making interactive proofs non-interactive can be thought of

as an extension of the Fiat-Shamir idea. An exciting recent result on computationally bounded

checking, due to Micali [32], exploits in part this same technique.

Impagliazzo and Rudich [27] model one-way functions as random oracles. They do this in order

to show that proving the existence of a secret key exchange protocol given a black box one-way

function is as hard as separating P from NP. They also use random oracles for positive results;

among these, they formalize and prove the existence of a private key cryptosystem in the random

oracle model.

Concurrent and independent of our work, Leighton and Micali [28] view hash functions as public

random oracles to justify the security of a new, e�cient signature scheme. They use the random

oracle model to de�ne and prove exact, non-asymptotic security. In another paper [29] the same

authors use hash functions viewed as random oracles to give new secret key exchange schemes.

Because of the breadth of topics in this paper, history speci�c to to a particular goal is sum-

marized in the section that describes that goal.

1.4 Future Directions

Brought out in only a limited way in the current work, and fully in [28], is the fact that the random

oracle model facilitates giving de�nitions and results precise in the sense of avoiding complexity

theory and asymptotics. It is feasible and desirable to make our results precise in this sense. A

typical theorem would express the advantage an adversary gains in terms of the number of oracle

queries which she makes.

We know no complexity-theoretic assumption which does a good job of capturing all the nice

properties of a public random oracle. Is there a way to extend the [20] notion of a pseudorandom

function family to an equally useful and compelling notion which involves no hidden randomness?

2 Preliminaries

Notation. f0; 1g� denotes the space of �nite binary strings and f0; 1g1 denotes the space of

in�nite ones. Strings are �nite unless we say otherwise. We denote by akb, or just ab, the string

which is the concatenation of strings a and b. The empty string is denoted �. A polynomial

time algorithm is one which runs in time polynomial in its �rst argument. \PPT" stands for

\probabilistic, polynomial time." A function �(k) is negligible if for every c there exists a kc such

that �(k) � k�c for every k � kc. A function is said to be non-negligible if it is not negligible.

We'll use the notation \k�!(1)" to mean the class negligible functions or a particular anonymous

function in this class.

4 That is, the adversary is denied direct access to the oracle. A particular problem might permit the adversary

indirect access to the oracle via her interaction with the good parties.

5

Notation for probabilistic algorithms, spaces and experiments follows [26]. If A is a probabilistic

algorithm then, for any inputs x; y; : : : the notation A(x; y; : : :) refers to the probability space which

to the string � assigns the probability that A, on input x; y; : : :, outputs �. If S is a probability

space we denote its support (the set of elements of positive probability) by [S]. If S is a probability

space then x S denotes the algorithm which assigns to x an element randomly selected according

to S. In the case that [S] consists of only one element e we might also write x e. For probability

spaces S; T; : : :, the notation Pr[x S; y T ; � � � : p(x; y; � � �)] denotes the probability that

the predicate p(x; y; � � �) is true after the (ordered) execution of the algorithms x S, y T , etc.

Let f be a function. We extend this notation of [26] to de�ne also probability spaces and algorithms

via experiments. For example f x S; y T ; � � � : f(x; y; � � �) g denotes the probability space

which to the string � assigns the probability Pr[x S; y T ; � � � : � = f(x; y; � � �)] . And

h a; b; : : : : x S; y T ; � � � : f(a; b; � � � ; x; y; � � �) i

denotes the algorithm which on inputs a; b; : : : runs the sequence of experiments x S, y T ,: : : ,

and outputs f(a; b; � � � ; x; y; � � �).

Oracles. For convenience, a random oracle R is a map from f0; 1g� to f0; 1g1 chosen by selecting

each bit of R(x) uniformly and independently, for every x. Of course no actual protocol uses an

in�nitely long output, this just saves us from having to say how long \su�ciently long" is. We

denote by 21 the set of all random oracles.

The letter \R" will denote the \generic" random oracle, while G: f0; 1g�! f0; 1g1 will denote

a random generator andH : f0; 1g�! f0; 1gk a random hash function. Whenever there are multiple

oracles mentioned, all of these are independently selected. Via all sorts of natural encodings, a single

random oracle R can be used to provide as many independent random oracles as one wants.

As usual the oracles provided to an algorithm are indicated by superscripts. Sometimes the

oracle is understood and omitted from the notation.

Trapdoor Permutations. Following [26], a trapdoor permutation generator is a PPT algorithm

G� which on input 1k outputs (the encoding of) a triple of algorithms (f; f�1; d). The �rst two are

deterministic and the last is probabilistic. We require that [d(1k)] be a subset of f0; 1gk and that

f; f�1 be permutations on [d(1k)] which are inverses of one another. We require that there exist

a polynomial p such that f , f�1 and d are computable in time p(k), and that for all nonuniform

polynomial time adversaries M ,

"(k) = Pr[(f; f�1; d) G�(1
k); x d(1k); y f(x) : M(f; d; y) = x]

is negligible. As mentioned before, squaring modulo an appropriate composite number [42, 3],

variations of it [26], or RSA [38] are good examples of trapdoor permutations. Call a trapdoor

permutation generator G� uniform if for all k and all (f; f�1; d) 2 [G(1k)] it is the case that d is

the uniform distribution on f0; 1gk.

3 Encryption

We have relied on de�nitional work in [24, 33, 19, 18, 34, 13]. For simplicity we consider adversaries

who are nonuniform (polynomial time) algorithms, possibly probabilistic; extensions to the uniform

case can be made following [18].

Encryption. We extend the notion of public key encryption [12] to the random oracle model.

The scheme is speci�ed by a PPT generator G which takes a security parameter 1k and outputs a

6

pair of probabilistic algorithms (E;D) which are called the encryption and decryption algorithms

respectively and which run in time bounded by G's time complexity. A user U runs G to get (E;D)

and makes the former public while keeping the latter secret. To encrypt message x anyone can

compute y ER(x) and send it to U ; to decrypt ciphertext y user U computes x DR(y). We

require DR(ER(x)) = x for all x and assume for simplicity thatDR(y) = 0 if y is not the encryption

under ER of any string x.

3.1 Polynomial Security

Background. The \basic" security goal of public key encryption �nds its formalization in Gold-

wasser and Micali's (equivalent) notions of polynomial and semantic security [24]. If Bf denotes a

hard core predicate for f (cf. [5, 43, 23]) then security in the sense of [24] can be achieved by setting

E(x) = f(r1) k : : : k f(rjxj) where each ri is randomly chosen from the domain of f with the

restriction that Bf (ri) = xi. This yields an encryption of length O(k � jxj), which requires O(jxj)

evaluations of f to encrypt and O(jxj) evaluations of f�1 to decrypt, which is not practical. A

more e�cient construction of Blum and Goldwasser [4] yields encryptions of size O(jxj+ k) requir-

ing O(jxj) modular squarings operations to encrypt and O(1) modular exponentiations plus O(jxj)
modular squaring to decrypt, which is still expensive. Practioners often embed the message x into

an otherwise random value rx and then set E(x) = f(rx). For example, this is exactly what [39]

speci�es. The embeddings used in practice usually do not guarantee that x is as hard to �nd as rx,

let alone that all properties of x are hidden.

Definition. We adapt the notion of polynomial security [24] to the random oracle model. (A

similarly-extended notion for semantic security remains equivalent.) A CP-adversary (chosen-

plaintext adversary) A is a pair of nonuniform polynomial time algorithms (F;A1), each with

access to an oracle. For an encryption scheme G to be secure in the random oracle model we

require that for any CP-adversary A = (F;A1),

Pr[R 21; (E;D) G(1k); (m0; m1) FR(E); b f0; 1g;

� ER(mb) : A
R

1 (E;m0; m1; �) = b] � 1

2
+ k�!(1):

Note that the oracle used to encrypt and decrypt is given to the adversary who tries to distinguish

the encryption of strings m0 and m1, so, for example, a hash H(x) with H derived from R could

most certainly not appear in the secure encryption of a string x.

Encryption By E(x) = f(r) k G(r)�x. To specify our encryption scheme, let G� be a trapdoor

permutation generator and let G: f0; 1g� ! f0; 1g1 be a random generator. On input 1k our

generator G runs G� to get (f; f
�1; d). It sets EG to the following algorithm:

EG h x : r d(1k) : f(r) k G(r)� x i

where G(r) � x denotes the XOR of the �rst jxj bits of G(r) with x. Of course the decryption

function is then DG(ys) = s� G(f�1(y)).

Theorem. In Appendix A we show that the above scheme is polynomially secure in the random

oracle model.

Efficiency. We achieve encryption size jxj + k. Besides hashing of negligible cost, encryption

needs one application of f and decryption needs one application of f�1. Setting f to squaring this

means one modular squaring to encrypt and one modular exponentiation to decrypt. This is much

more e�cient than the scheme of [4] discussed above.

7

3.2 Chosen Ciphertext Security

Background. Naor and Yung [34] provided a de�nition of chosen ciphertext security and the

�rst scheme to provably achieve it. Racko� and Simon [36] suggested a stronger notion and a

corresponding solution; another solution was given by De Santis and Persiano [11]. The last two

exploit proofs of knowledge, as suggested earlier by [17, 6]. All known schemes provably secure under

standard assumptions rely on non-interactive zero-knowledge proofs [7, 16] and are prohibitively

ine�cient. Damg�ard [10] suggests an e�cient scheme to achieve the de�nition of [34], but this

scheme is not proven to achieve the de�nition of [34] and it does not achieve the one of [36] which

we are interested in. A scheme of Zheng and Seberry [44] closely related to ours will be discussed

later.

Definition. We adapt the de�nition of [36] to the random oracle setting. An RS-adversary

(\Racko�{Simon adversary") A is a pair of nonuniform polynomial time algorithms A = (F;A1),

each with access to an oracle R and a black box implementation of DR. F 's job is to come up

with a pair of (equal length) messages m0 and m1 such that if A1 is given the encryption � of a

random one of these, A1 won't be able to guess well which one as long as A1 is not allowed to ask

� of the decryption oracle. Formally, A1 is forbidden from asking an oracle query equal to its �nal

argument. Encryption scheme G is secure against RS-attack if for each RS-adversary A = (F;A1),

Pr[R 21; (E;D) G(1k); (m0; m1) FR;D
R

(E); b f0; 1g;

� ER(mb) : A
R;D

R

1
(E;m0; m1; �) = b] � 1

2
+ k�!(1):

Encryption by E(x) = f(r) k G(r) � x k H(rx). It is easy to see that the scheme of the

previous section is not secure against RS-attack. We now specify an e�cient scheme which is. Let

G� be a trapdoor permutation generator. Let G: f0; 1g
�! f0; 1g1 be a random generator, and let

H : f0; 1g� ! f0; 1gk be a random hash function, independently derived from the random oracle.

The generator G of our scheme runs G� to get (f; f
�1; d). It sets EG;H to the following algorithm:

EG;H h x : r d(1k) : f(r) k x� G(r) k H(rx) i :

To decrypt a string y, parse it to a k w k b for jaj = jbj = k and de�ne DG;H(y) as w�G(f�1(a))
if H(f�1(a) k w �G(f�1(a))) = b, and 0 otherwise.

Theorem. In Appendix A we show that the above scheme is secure against chosen-ciphertext

attack.

Efficiency. We achieve encryption size Ojxj+ 2k. Besides hashing of negligible cost, encryption

needs one application of f and decryption needs one application of f�1. Setting f to squaring this

means one modular squaring to encrypt and one modular exponentiation to decrypt. This is more

e�cient than any of the schemes discussed above.

Translated into the random oracle model and our notation, the scheme of Zheng and Seberry

[44] is E�(x) = f(r) k (G(r)� (xH(x))). This scheme is as e�cient as ours, and we believe it has

the same security properties. Thus, the random oracle model serves to justify the construction of

[44].

3.3 Non-Malleability

Background. The notion of non-malleability was introduced by Dolev, Dwork and Naor [13].

Informally, an encryption scheme is non-malleable if you cannot, by witnessing an encryption of a

8

string x, produce the encryption of a related string x0. For example, given the encryption of x you

shouldn't be able to produce the encryption of x. The notion extends polynomial security, and in

particular the latter is implied by the former. A construction of non-malleable schemes is given in

[13]. However, this construction is completely impractical, involving huge public keys, computation

of multiple signatures, and many non-interactive zero knowledge proofs.

Definition. We adapt to the random oracle setting the de�nition of [13]. An interesting relation

�R
E;�

: f0; 1g� � f0; 1g� ! f0; 1g must satisfy �R
E;�

(x; x) = �R
E;�

(x; 0i) = 0 for every x 2 f0; 1g�,
i 2 N, R 2 21, and E; � 2 f0; 1g�; furthermore, � must be computable by a polynomial time

Turing machine MR(x; y; E; �). An M-adversary (\malleability adversary") A is a pair (F;A) of

non-uniform probabilistic polynomial time algorithms, each with access to an oracle R. When F

runs it outputs the description of an algorithm � which also takes an oracle and which runs with

time complexity no greater than that of F . For an encryption scheme G to be non-malleable we

require that for every interesting relation � and every M-adversary (F;A) there exists a (nonuniform)

polynomial time A� such that j"(k)� "�(k)j is negligible, where

"(k) = Pr[R 21; (E;D) G(1k); � FR(E); x �R(1k);

� ER(x); �0 AR(E; �;�) : �R
E;�

(x;DR(�0)) = 1]

"�(k) = Pr[R 21; (E;D) G(1k); � FR(E); x �R(1k);

�0� AR

� (E; �) : �
R

E;�
(x;DR(�0�)) = 1]

See [13] for explanations on the intuition underlying this de�nition, including the restriction on the

relation �.

Encryption by E(x) = f(r) k G(r)� x k H(rx). The encryption scheme is the same as that of

the previous section.

Theorem. In Appendix A we show that the above scheme is non-malleable.

4 Signatures

Definition. We extend the de�nitions of [26] to the random oracle setting. A digital signa-

ture scheme is a triple (G; Sign;Verify) of polynomial time algorithms, called the generator, sign-

ing algorithm, and verifying algorithm, respectively. The �rst two are probabilistic and the last

two have access to the random oracle. On input 1k, the generator produces a pair (PK; SK)

of matching public and secret keys. To sign message m compute � SignR(SK; m); to verify

(m; �) compute VerifyR(PK; m; �) 2 f0; 1g. It must be the case that VerifyR(PK; m; �) = 1 for

all � 2 [SignR(SK; m)]. An S-adversary (\signing adversary") is a (nonuniform) polynomial-time

algorithm F with access to R and a signing oracle. The output of F is a pair (m; �) such that m

was not queried of the signing oracle. The signature scheme is secure if for every S-adversary F

the function "(k) de�ned by

Pr[R 21; (PK; SK) G(1k); (m; �) FR;SignR(SK;�)(PK) : VerifyR(PK; m; �) = 1]

is negligible. We say that F is successful if its output (m; �) satis�es VerifyR(PK; m; �) = 1.

Protocol. Fix a trapdoor permutation generator G�. For simplicity assume it is uniform; see

below for how to patch things for standard ones. LetH : f0; 1g�! f0; 1gk denote as usual a random
hash function. Let G on input 1k compute (f; f�1; d) G�(1

k), set PK = f and SK = f�1, and

9

output (PK; SK). The signature scheme is (G; SignH ;VerifyH) where SignH(f�1; m) = f�1(H(m))

and VerifyH(f;m; �) is 1 if and only if f(�) = H(m). In other words just the \classical" method of

signing with the aid of a hash function.

Uniformity: A Technicality. Standard trapdoor permutations (squaring based or RSA) are

not uniform and the scheme must be patched to handle them. There are many ways of patching.

RSA, and squaring as de�ned in [26], have dense domains in which membership can be e�ciently

tested. So to sign m we could modify the scheme to compute H(1 k m); H(2 k m); : : : until a

member y = H(i k m) of the domain is found and then return (i; f�1(y)). Veri�cation is de�ned

in the obvious way. Another alternative for these functions is apply the construction of [2, Section

4.2] to make them uniform. The squaring functions de�ned in [42, 3] don't have e�ciently testable

domains but various patches can nonetheless be made. In fact it isn't even necessary for the function

to be a permutation; Rabin's squaring function [35] can be patched to work too.

Security. The proof that the above scheme is secure against adaptive chosen message attack

appears in Appendix B.

5 Zero Knowledge

We provide de�nitions for zero-knowledge (ZK) proofs in the random oracle and then show how

ZK interactive proofs can be made non-interactive in this model. The transformation is e�cient,

so that we get non-interactive ZK proofs of complexity equal to interactive ZK ones.

5.1 De�nitions

De�nitions for zero-knowledge in the random oracle model involve a little more than simply \rela-

tivizing" the standard ones. What follows extends the formulation in the usual interactive setting

[25] as well as the formulation in the common random string model [6, 7].

Setting. For simplicity we discuss proofs for a language L 2 NP. Fix a NP relation � de�ning L;

a witness for the membership of x in L means a string w satisfying �(x; w) = 1. A witness selector

is a function W which on any input x 2 L returns a witness for the membership of x in L.

A veri�er is polynomial time function V which given common input x, conversation � 2 f0; 1g�

so far, and a (private) random tape r 2 f0; 1g1 returns V (x; �; r) which is either the next message

to the prover or a bit indicating his decision to either accept or reject. A prover is a PPT 5 function

P which given the common input x, conversation � so far, and auxiliary input a returns the next

message Pa(x; �) to the veri�er. (When x 2 L the auxiliary input is a witness to this fact, and

otherwise it is the empty string). In the random oracle model both prover and veri�er take also

this oracle.

For any oracle R denote by conv(V R; PR

a
; x; r) the space of all (transcripts of) conversations

between PR

a
and V R when the common input is x and V 's random tape is r 2 f0; 1g1. Denote by

ACCV (�; r) 2 f0; 1g the veri�er's decision on whether or not to accept. Let

ACC(Pa; V; x) = Pr[R 21; r f0; 1g1; � conv(V R; PR

a
; x; r) : ACCV (�; r) = 1]

5 In principle the results in the random oracle model require us to restrict only the number of oracle calls, not

the running time of the prover. But at time of instantiation with hash functions running time should be restricted

anyway so we make the assumption straight away. Thus we are in the \argument" model of [9].

10

denote the probability that V accepts in an interaction with Pa on common input x. In proofs and

protocols we'll often abuse notation and work only with whatever pre�xes of the in�nite string r

are relevant.

Proof Systems. We say that (P; V) is an interactive proof for L, in the random oracle model and

with error �(n), if �(n) � 1=2 and the following two conditions hold. The completeness condition

asks that if x 2 L then for all witnesses w to the membership of x in L it is the case that

ACC(V; Pw; x) = 1. The soundness condition asks that for all PPT bP and su�ciently long x it is

the case that ACC(bP�; V; x)� �(jxj).

Views. To de�ne zero-knowledge the view of the veri�er is �rst updated to include the random

oracle; we de�ne

rview(V; Pa; x) = f R 21; r f0; 1g1; � conv(V R; PR

a
; x; r) : (�; r;R) g :

Simulators. Since the random oracle is part of the view, it must also be part of the output

of the simulator; i.e. the simulator is allowed to construct a \simulation" of the oracle. This is

analogous to non-interactive zero-knowledge [6, 7] where the simulator is allowed to construct and

output a \simulation" of the common random string. However, the random oracle is an in�nite

object, and so we can't ask the simulator to output it. Instead we allow the simulator to prescribe

a small (polynomial sized) piece of the oracle, and have the rest \magically" �lled at random.

Formally, a simulator is a PPT algorithm which on any input x outputs a triple (�; r0; T) where

T = (x1; y1); : : : ; (xt; yt) is a sequence of pairs of strings with the property that x1; : : : ; xt are

distinct. The random oracle completion operation ROC takes as input T and returns an oracle R

which is random subject to the constraint that R(xi) is pre�xed by yi for all i = 1; : : : ; t.6 It is

convenient to similarly de�ne the random string completion operation RSC which takes a string

r0 2 f0; 1g� and appends an in�nite sequence of random bits. We de�ne the completion of S(x) to

be the probability space

Sc(x) = f (�; r0; T) S(x); R ROC(T); r RSC(r0) : (�; r;R) g :

Distinguishers. A distinguisher is a polynomial sized oracle circuit family D = fDxgx2L. Write

DR

x
(�; r) for the output of circuit Dx when given oracle R and inputs �; r.7 Let diffD(S

c(x);

rview(V; Pa; x)) equal

jPr[(�; r;R) Sc(x) : DR

x
(�; r) = 1]� Pr[(�; r;R) rview(V; Pa; x) : D

R

x
(�; r) = 1] :

Zero-Knowledge. We say that a simulator S is a P -simulator for a veri�er bV over L if for every

distinguisher D, every witness selector W , every constant d and all su�ciently long x 2 L it is the

case that

diffD(S
c(x); rview(V; PW (x); x)) < jxj

�d :

We say that P de�nes a (computational) ZK protocol over L in the random oracle model if for

every veri�er bV there exists a P -simulator for bV over L. Statistical ZK can be de�ned analogously.

(P; V) is a ZK proof for L, in the random oracle model and with error �, if it is a proof system for

L with error � and P de�nes a ZK protocol over L.

6 It is understood that the operation refers to the oracle in use rather than the \generic" underlying one, so that

if we are using a random hash function H then what is returned is an H satisfying this constraint, etc.
7 Here r will be an in�nite string, and giving �; r as input to Dx means the latter will look at only a �nite pre�x.

11

Multi-theorem Proofs. In applications it is important that we be able to prove polynomially

many, adaptively chosen theorems in zero-knowledge, as for zero-knowledge in the common random

string model. For simplicity we have stuck above to the one theorem case; in the �nal paper we

will present the general de�nitions.

Proofs Of Knowledge. In the �nal paper we will also de�ne proofs of knowledge in the

random oracle model and show how to construct e�cient, non-interactive zero-knowledge proofs of

knowledge.

5.2 Protocol

The Problem. Let (P 0; V 0) be a ZK proof for L 2 NP, in the standard (i.e. random oracle devoid)

model, achieving error probability 1=2. Let k(n) = !(logn) be given. We want a non-interactive

ZK proof (P; V) in the random oracle model which achieves error �(n) = 2�k(n) while increasing

computing time and communicated bits by a factor of at most O(k(n)).

Simplifying Assumptions. Like most such ZK proofs assume (P 0; V 0) is three moves: P 0
w
! V 0 :

� followed by V 0 ! P 0
w
: b followed by P 0

w
! V 0 : �. Here b is a random bit (the �rst one on the

random tape of V 0 which we now think of as just this bit) and w is the auxiliary input to P 0. The

message � consists of a set of envelopes and has size n�(1). Some subset of these envelopes is opened

according to challenge b, and for any string � there is exactly one value b 2 f0; 1g for which there

exists a � such that ACCV 0(�b�; b) = 1. The zero-knowledge is captured by an algorithm S0 which

given x; b outputs �b� such that ACCV 0(�b�; b) = 1 and for any witness selector W the following

ensembles are computationally indistinguishable: f b f0; 1g; �b� S0(x; b) : (�b�; b) gx2L and

f � P 0
W (x)

(x;�); b f0; 1g; � P 0
W (x)

(x; �b) : (�b�; b) gx2L.

The Transformation. Let H : f0; 1g� ! f0; 1g2k be a random hash function. The new prover

PH

w
computes �1 P 0

w
(x;�); : : : ; �2k P 0

w
(x;�); sets b0

i
to the i-th bit of H(�1 : : :�2k); com-

putes �1 P 0
w
(x; �1b

0
1); : : : ; �2k P 0

w
(x; �2kb

0
2k
); and sends (�1; : : : ; �2k; �1; : : : ; �2k) to V H .

V H sets bi to the i-th bit of H(�1 : : :�2k) and accepts i� ACCV 0(�ibi�i; bi) = 1 for all i. The fact

that the new protocol is non-interactive and as e�cient as claimed is clear.

(P; V) is a ZK Proof System with Error 2�k(n). Completeness is clear. We can show that

if bPH makes T (n) oracle queries then ACC(bP�; V; x) � T (n) � 2�2k(n) which is at most 2�k(n) for

su�ciently long n. For ZK the lack of interaction implies we only need to simulate the view of

the honest veri�er V , and the corresponding simulator S is as follows. Given x 2 L algorithm

S chooses b1 f0; 1g; : : : ; b2k f0; 1g. Now for each i = 1; : : : ; 2k it lets �ibi�i S0(x; bi).

It sets T = (�1 : : :�2k; b1 : : : b2k) and outputs (c;�; T). The random oracle completion operation

applied to T results in a map H : f0; 1g� ! f0; 1g2k which is random subject to the constraint

that H(�1 : : :�2k) = b1 : : : bk. Now based on our assumption about S0 we can work through the

de�nitions and check that S is a P -simulator for V over L. We omit the details.

Comment. Consider the protocol resulting from instantiating the random oracle in the above with

a hash function. It is in the standard (random oracle devoid) model, but note we are not claiming

it is ZK in the usual sense. Indeed the result of Goldreich and Krawczyk [22] indicates that it is

unlikely to be ZK in the usual sense: they show that assuming NP is not in BPP, at least four

moves are necessary to give a (black box simulatable, computational) ZK, negligible error proof for

an NP-complete language in the standard model.

12

6 Instantiation

Expanding on the discussion in Section 1.1, here we provide further guidance in instantiating ran-

dom oracles with primitives like hash functions.

First and foremost, it is not necessary (or desirable) to pay attention to the particulars of the

target protocol whose random oracles are being instantiated. All that matters it is how many oracles

are used and what are their input/output length requirements. Our thesis is that an appropriate

instantiation for a random oracle ought to work for any protocol which did not intentionally frustrate

our method by anticipating the exact mechanism which would instantiate its oracles.

A signi�cant amount of care must be taken in choosing a concrete function h to instantiate an

oracle. Let us begin with some examples of some things that don't work.

Consider �rst the map MD5. This function does not make a suitable replacement for a random

oracle since [41] has observed that for any x there is a y such that for any z, MD5(xyz) can be

easily computed given only jxj, MD5(x), and z. Structure like this shows up in applications; in

particular, [41] points out that this means MD5(ax) cannot be used as a message authentication

code of string x under key a.

Trying to overcome di�culties by avoiding a \structured" operation like MD5, one might prefer

a \lower level" primitive such as its compression function, �: f0; 1g640! f0; 1g128. This too does
not make a suitable replacement for a random oracle, as [8] has demonstrated that collisions can

be e�ciently found in this map.

Although standard hash functions are too structured to make good random oracles (as illus-

trated above), one doesn't have to look much further; natural candidates include constructs like

the following, or combinations of them:

(1) A hash function with its output truncated or folded in some manner; e.g., h1(x) = the �rst 64

bits of MD5(x).

(2) A hash functions with its input lengths suitably restricted; e.g., h2(x) = MD5(x), where

jxj � 400.

(3) A hash function used in some nonstandard way; e.g., h3(x) = MD5(xx).

(4) The \�rst block compression function" of a cryptographic hash function, e.g., h4: f0; 1g
512!

f0; 1g128 being the compression of the 512 bit x, when MD5(x) is computed.

As an example, suppose one settles on the (purely heuristic) choice of a map h0: f0; 1g256! f0; 1g64

de�ned by h0(x) = the �rst 64 bits of h4((xx) � C), for a randomly chosen 512-bit constant

C.8 To extend the domain and range as needed in a given application, one might �rst de�ne

h00(x) = h0(xh0i)kh0(xh1i)kh0(xh2i)k � � � where jxj = 224 and hii is the encoding of i into 64 bits.

Next, one extends h00 by encoding each input x by x0 consisting of x, the bit \1", and enough

0's to make jx0j a multiple of 128 bits. Now let x0 = x01 : : :x
0
n
, where jx0

i
j = 128 and de�ne

h(x) = h00(x0
0
h0i)� h00(x0

1
h1i) � � � � � h00(x0

n
hni) yielding a map which, for all practical purposes,

takes h: f0; 1g� ! f0; 1g1. Of course there are lots of other equally simple ways to instantiate a

random oracle; this was only an example.

8 Choosing C at instantiation-time ensures that the algorithmic goal is \independent" of its choice of oracle; it

\separates" the instantiation of the random oracles used by di�erent applications; and it provides a simple means of

creating multiple \independent" random oracles.

13

7 Conclusion

The protocols used in practice have almost always been designed by an iterated process of positing

a concrete protocol, searching for a successful attack, �nding one, and attempting to close it. This

method has not worked well. By an insistence on de�ning our goals and provably achieving them,

modern cryptography o�ers more to practice than any speci�c set of results; it is a methodology

beyond the process of iterated design to solve poorly speci�ed tasks. Although when using our

paradigm one \only" ends up with a result that says \this protocol is secure to the extent that h

instantiates a random oracle," still, one has achieved very much more than declaring a protocol

sound because no one has as yet come up with a successful attack.

Acknowledgments

Early discussions with Bob Blakley on the license server problem [40] helped crystalize our idea. We

got useful suggestions and references from Oded Goldreich, Birgit P�tzmann, and Steven Rudich.

Finally, thanks to the members of the ACM program committee for all of their comments.

Work done while the �rst author was at the IBM T.J. Watson Research Center, New York, and

second author was at IBM Austin.

References

[1] D. Beaver, S. Micali and P. Rogaway, \The round complexity of secure protocols,"

Proceedings of the 22nd Annual Symposium on Theory of Computing, ACM, 1990.

[2] M. Bellare and S. Micali, \How to sign given any trapdoor permutation," JACM Vol.

39, No. 1, 214-233, January 1992.

[3] L. Blum, M. Blum and M. Shub, \A simple unpredictable pseudo-random number gener-

ator," SIAM Journal on Computing Vol. 15, No. 2, 364-383, May 1986.

[4] M. Blum and S. Goldwasser, \An e�cient probabilistic public-key encryption scheme

which hides all partial information," Advances in Cryptology { Crypto 84 Proceedings, Lecture

Notes in Computer Science Vol. 196, R. Blakely ed., Springer-Verlag, 1984.

[5] M. Blum and S. Micali, \How to generate cryptographically strong sequences of pseudo-

random bits," SIAM Journal on Computing , Vol. 13, No. 4, 850-864, November 1984.

[6] M. Blum, P. Feldman and S. Micali, \Non-interactive zero knowledge and its applica-

tions," Proceedings of the 20th Annual Symposium on Theory of Computing, ACM, 1988.

[7] M. Blum, A. De Santis, S. Micali and G. Persiano, \Non-interactive zero-knowledge

proof systems," SIAM Journal on Computing, 20(4), 1084-1118 (December 1991).

[8] B. den Boer and A. Bosselaers, \Collisions for the compression function of MD5," Ad-

vances in Cryptology { Eurocrypt 93 Proceedings, Lecture Notes in Computer Science Vol. 765,

T. Helleseth ed., Springer-Verlag, 1993.

[9] G. Brassard, D. Chaum and C. Cr�epeau, \Minimum disclosure proofs of knowledge,"

JCSS Vol. 37, No. 2, 156{189, October 1988.

14

[10] I. Damg�ard, \Towards practical public key cryptosystems secure against chosen ciphertext

attacks," Advances in Cryptology { Crypto 91 Proceedings, Lecture Notes in Computer Sci-

ence Vol. 576, J. Feigenbaum ed., Springer-Verlag, 1991.

[11] A. De Santis and G. Persiano, \Zero-knowledge proofs of knowledge without interaction"

Proceedings of the 33rd Symposium on Foundations of Computer Science, IEEE, 1992.

[12] W. Diffie and M. E. Hellman, \New directions in cryptography," IEEE Trans. Info.

Theory IT-22, 644-654 (November 1976).

[13] D. Dolev, C. Dwork and M. Naor, \Non-malleable cryptography," Proceedings of the

23rd Annual Symposium on Theory of Computing, ACM, 1991.

[14] A. Fiat and A. Shamir, \How to prove yourself: practical solutions to identi�cation and

signature problems," Advances in Cryptology { Crypto 86 Proceedings, Lecture Notes in

Computer Science Vol. 263, A. Odlyzko ed., Springer-Verlag, 1986.

[15] U. Feige, A. Fiat and A. Shamir, \Zero knowledge proofs of identity," Journal of Cryp-

tology, Vol. 1, pp. 77{94 (1987).

[16] U. Feige, D. Lapidot, and A. Shamir, \Multiple non-interactive zero-knowledge proofs

based on a single random string," Proceedings of the 31st Symposium on Foundations of

Computer Science, IEEE, 1990.

[17] Z. Galil, S. Haber and M. Yung, \Symmetric public key cryptosystems," manuscript,

July 1989.

[18] O. Goldreich, \A uniform complexity treatment of encryption and zero-knowledge," Journal

of Cryptology, Vol. 6, pp. 21-53 (1993).

[19] O. Goldreich, \Foundations of cryptography," Class notes, Spring 1989, Technion Univer-

sity.

[20] O. Goldreich, S. Goldwasser and S. Micali, \How to construct random functions,"

Journal of the ACM, Vol. 33, No. 4, 210{217, (1986).

[21] O. Goldreich, S. Goldwasser and S. Micali, \On the cryptographic applications of ran-

dom functions," Advances in Cryptology { Crypto 84 Proceedings, Lecture Notes in Computer

Science Vol. 196, R. Blakely ed., Springer-Verlag, 1984.

[22] O. Goldreich and H. Krawczyk, \On the composition of zero knowledge proof systems,"

ICALP 90 Proceedings, Lecture Notes in Computer Science Vol. 443 , M. Paterson ed.,

Springer-Verlag, 1990.

[23] O. Goldreich and L. Levin, \A hard predicate for all one-way functions," Proceedings of

the 21st Annual Symposium on Theory of Computing, ACM, 1989.

[24] S. Goldwasser and S. Micali, \Probabilistic encryption," J. of Computer and System

Sciences 28, 270{299, April 1984.

[25] S. Goldwasser, S. Micali and C. Rackoff, \The knowledge complexity of interactive

proof systems," SIAM J. of Comp., Vol. 18, No. 1, pp. 186{208, February 1989.

15

[26] S. Goldwasser, S. Micali and R. Rivest, \A digital signature scheme secure against

adaptive chosen-message attacks," SIAM Journal of Computing, 17(2):281{308, April 1988.

[27] R. Impagliazzo and S. Rudich, \Limits on the provable consequences of one-way per-

mutations," Proceedings of the 21st Annual Symposium on Theory of Computing, ACM,

1989.

[28] T. Leighton and S. Micali, \Provably fast and secure digital signature algorithms based

on secure hash functions," Manuscript, March 1993.

[29] T. Leighton and S. Micali, \New approaches to secret key exchange," Advances in Cryp-

tology { Crypto 93 Proceedings, Lecture Notes in Computer Science Vol. 773, D. Stinson ed.,

Springer-Verlag, 1993.

[30] M. Luby and C. Rackoff, \How to construct pseudorandom permutations from pseudo-

random functions," SIAM J. Computation, Vol. 17, No. 2, April 1988.

[31] M. Luby and C. Rackoff, \A study of password security," manuscript.

[32] S. Micali, \CS proofs," Manuscript.

[33] S. Micali, C. Rackoff and B. Sloan, \The notion of security for probabilistic cryptosys-

tems," SIAM J. of Computing, April 1988.

[34] M. Naor and M. Yung, \Public-key cryptosystems provably secure against chosen cipher-

text attacks," Proceedings of the 22nd Annual Symposium on Theory of Computing, ACM,

1990.

[35] M. Rabin, \Digitalized signatures and public-key functions as intractable as factorization,"

MIT Laboratory for Computer Science TR-212, January 1979.

[36] C. Rackoff and D. Simon, \Non-interactive zero-knowledge proof of knowledge and cho-

sen ciphertext attack," Advances in Cryptology { Crypto 91 Proceedings, Lecture Notes in

Computer Science Vol. 576, J. Feigenbaum ed., Springer-Verlag, 1991.

[37] R. Rivest, \The MD5 message-digest algorithm," IETF NetworkWorking Group, RFC 1321,

April 1992.

[38] R. Rivest, A. Shamir, and L. Adleman, \A method for obtaining digital signatures and

public key cryptosystems," CACM 21 (1978).

[39] RSA Data Security, Inc., \PKCS #1: RSA Encryption Standard," June 1991.

[40] P. Rogaway and B. Blakley, \An asymmetric authentication protocol," IBM Technical

Disclosure Bulletin (1993).

[41] G. Tsudik, \Message authentication with one-way hash functions," IEEE INFOCOM '92.

[42] H. Williams, \A modi�cation of the RSA public key encryption procedure," IEEE Transac-

tions on Information Theory , Vol. IT-26, No. 6, November 1980.

[43] A. Yao , \Theory and applications of trapdoor functions," Proceedings of the 23rd Sympo-

sium on Foundations of Computer Science, IEEE, 1982.

16

[44] Y. Zheng and J. Seberry, \Practical approaches to attaining security against adaptively

chosen ciphertext attacks," Advances in Cryptology { Crypto 92 Proceedings, Lecture Notes

in Computer Science Vol. 740, E. Brickell ed., Springer-Verlag, 1992.

17

A Proofs for Encryption

We present proofs of security for some of the encryption schemes. We will assume (wlog) that for

any algorithm and any oracle for that algorithm, all queries made of the oracle are distinct.

The E(x) = f(r) k G(r)�x Scheme Is Polynomially Secure. The proof is by contradiction.
Let A = (F;A1) be an adversary that defeats the protocol; in�nitely often, it gains advantage �(k)

for some inverse polynomial �. We construct an algorithm M(f; d; y) that, when (f; f�1; d)
G(1k); r d(1k); y f(r), manages signi�cantly often to compute f�1(y). Algorithm M de�nes

E based on f as speci�ed by our scheme. It simulates the oracle G in the natural way (by itself

ipping coins to answer queries) and samples (m0; m1) FG(E). If ever G is asked an r such that

f(r) = y, then M outputs r and halts. Otherwise, the F (E) terminates and M chooses � y k s

for s f0; 1gjm0j. Then M simulates AG

1
(E;m0; m1; �), watching the oracle queries that A1 makes

to see if there is any oracle query r for which f(r) = y. If there is, M outputs r. Let Ak be the

event that A1 asks the query r = f�1(y). A1 has no advantage in distinguishing m0 and m1 in the

case that A1 does not ask for the image of G at r. So

1=2 + �(k) = Pr [A succeeds j Ak] � Pr [Ak] + Pr
h
A succeeds j Ak

i
� Pr

h
Ak

i

is at most Pr [Ak]+1=2. Thus Pr [Ak] � �(k) must be nonnegligible, and M succeeds nonnegligibly

often in inverting f .

The E(x) = f(r) k G(r) � x k H(rx) Scheme Is Secure Against Chosen Ciphertext

attack. Let A = (F;A1) be an RS-adversary that succeeds with probability 1=2 + �(k) for

some nonnegligible function �(k). We construct an algorithm M(f; d; y) that computes f�1(y)

non-negligibly often, where (f; f�1; d) G�(1
k); r d(1k); y d(r). Algorithm M begins by

running F (E) where E is de�ned from f as speci�ed by our scheme. F takes three oracles, namely,

G, H and DG;H , whose queries are answered by F as follows. If a query r to G satis�es f(r) = y

then M outputs r and halts; else it returns a random string of the appropriate length. If a query

rx to H satis�es f(r) = y then M outputs r and halts; else it returns a random string of the

appropriate length. To answer query a k w k b to DG;H algorithm M sees if it has already asked

some query r of G and ru of H , where a = f(r) and w = G(r) � u, and if so returns u; else it

returns invalid. If M completes the running of F (E) then it obtains an output (m0; m1). Now M

runs A1(E;m0; m1; �) where � = y k w k b for w f0; 1gjm0j and b f0; 1gk. Once again, M
must simulate the behavior of queries to G, H , and DG;H . This is done exactly as before, when F

was being run by M .

To see that this construction works, �rst consider the \real" environment of A running with its

oracles. Let Ak denote the event that a k w k b F (E), for some a, w, and b, and A made some

oracle call of G(r) or H(ru), where f(r) = a. Let Lk denote the event that A1 asks D
G;H some

query a k w k b where b = H(f�1(a) k w � G(f�1(a))), but A1 never asked its H-oracle for the

image of f�1(a) k w �G(f�1(a)). Let n(k) denote the total number of oracle queries made. It is
easy to verify that Pr [Lk] � n(k)2�k. It is also easy to see that

Pr
h
A succeeds jLk ^ Ak

i
= 1=2:

Thus 1=2 + �(k) = Pr [A succeeds] is bounded above by

Pr [A succeeds j Lk]Pr [Lk] + Pr
h
A succeeds j Lk ^ Ak

i
Pr
h
Lk ^ Ak

i
+

Pr
h
A succeeds j Lk ^ Ak

i
Pr
h
Lk ^ Ak

i

18

which is at most n(k)2�k + Pr [Ak] + 1=2. And so

Pr [Ak] � �(k)� n(k)2�k:

Now, returning to the simulation of A by M , note that M fails to behave like A with probability

bounded by Pr [Lk], and so

Pr [M inverts f at y] � �(k)� n(k)2�k+1

which is still nonnegligible. This completes the proof.

The E(x) = f(r) k G(r) � x k H(rx) Scheme Is Non-Malleable. Intuitively, the presence

of a valid tag H(r0x0) in an encrypted string �0 which is not a copy of an encryption provided to

the adversary A acts as a \proof of knowledge" that A \knows" (can recover) x0. Now suppose A,

seeing � = a k w k b encrypting x = G(f�1(a))� w, manages to come up with the encryption

of a string x0 correlated to x. When r is not asked of G, adversary A cannot so correlate x to

the (known value) x0 because of her having no idea of the value of G(r). Thus A must ask G the

image of r reasonably often. Whenever she does this, she has e�ectively inverted the trapdoor

permutation. The argument above can be formalized; we now sketch how to do so.

Given an M-adversary A = (F;A) and an interesting relation �, computed by polynomial time

machine M , de�ne the polynomial time algorithm A�(E; �) as follows:

A�(E; �) computes x� �(1k); r� d(1k); �� f(r�) k G(r�) � x� k H(r�x�);

�0� A(f; �; ��). If �0� = ��, then A� outputs the encryption of 0. Otherwise, A�

outputs �0�.

We will prove that j"(k) � "�(k)j is negligible, where these quantities are as in the de�nition of

non-malleability. Some case analysis is required to show this claim. It is based on considering two

related experiments, the �rst to de�ne "(k) and the second to de�ne "�(k). We begin by describing

Experiment 1. Here G 21; H 21; (f; f�1; d) G�(1
k); E hx : r d(1k) : f(r) k G(r)�

x : H(rx) i; � FG;H(E); x �G;H(1k); r d(1k); a f(r); w G(r) � x; b H(rx);

� a k w k b; and �0 A(E; �;�). Write �0 = a0w0b0, r0 = f�1(a0), and x0 = w0 � G(r0), We

are interested in the value of MG;H(x; x0; E; �) whose expectation, which we denote E1[�(x; x
0)], is

precisely "(k). In performing Experiment 1 we distinguish the following cases:

Case 1: �0 = �. In this case, �(x; x0) = 0 by our de�nition of an interesting relation.

Case 2: Assume Case 1 does not hold and A made no H-oracle query of r0x0:

Case 2a. b0 = H(r0x0). This event happens with probability 2�k.

Case 2b. b0 6= H(r0x0). In this case the encryption is garbled, the decryption is 0, and �(x; x0) = 0

by our de�nition of an interesting relation.

Case 3: Suppose neither Case 1 nor Case 2 holds.

Case 3a. For any string r0x0 queried ofH withH(r0x0) = b0, either f(r0) 6= a, or else G(r0)�x0 6= w0.

Then �(x; x0) = 0.

Case 3b. Here �0 is a valid encryption and A can extract r0 and x0. distinguish. Let �1 denote

the probability of this case. We distinguish:

Case 3b(i). When A has not made a G-oracle call of r and

19

Case 3b(i)0 MG;H asks a query r. Let �(k) be a negligible function bounding the probability of this

case. Let �2 be the probability of this case.

Case 3b(i)00 MG;H asks no query r.

Case 3b(ii). When A makes a G-oracle call of r. Let �(k) be a negligible function bounding the

probability of this case.

We can upper-bound E1[�(x; x
0)] by

E1[�(x; x
0)] � Pr[Case 2a] � 2�k + Pr[Case 3b] �E[�(x; x0)jCase 3b(i)]+

Pr[Case 3b(ii)] � 2�k + �1(�(k) + �2) + �(k):

We now describe Experiment 2. This is de�ned by G 21; H 21; (f; f�1; d) G�(1
k);

E h x : r d(1k) : f(r) k G(r)� x k H(rx) i; � FG;H (E); x �G;H(1k); x� �G;H(1k);

r� d(1k); a� f(r�); w G(r�) � x�; b� H(r�x�); �� a� k w� k b�; �
0
� A(E; �; ��).

Write �0� = a0�w
0
�b

0
�, r

0
� = f�1(a0), and x0� = w0

��G(r
0
�) if �� = �0�, 0 otherwise. We are interested in

the value of MG;H(x; x0�; E; �) whose expectation, which we denote E2[�(x; x
0
�)], is precisely "�(k).

In analyzing Experiment 2 we perform the same case analysis as above. An important obser-

vation is that in the Experiments 1 and 2, the distribution on third arguments to A is identical.

Because of this, Pr1[Case 3b] = Pr2[Case 3b]. Also, it is easy to see that E1[�(x; x
0)jCase 3b(i)00] =

E2[�(x; x
0)jCase 3b(i)00] One can then lower-bound E2[�(x; x

0
�)jCase 3b(i)

00] by

E2[�(x; x
0
�)] � Pr[Case 3b(i)00] �E2[�(x; x

0
�)jCase 3b(i)'] � (�1 � 2�(k))�2:

Therefore jE[�(x; x0)]�E[�(x; x0�)]j � 4�(k) + 2�k , and we are done.

B Proof of Security for the Signature Scheme

Suppose F is an S-adversary successful with a probability �(k) that is not negligible. We construct

algorithm M(f; d; y) so that

"(k)
def
= Pr[(f; f�1; d) G�(1

k); x d(1k); y f(x) : M(f; d; y) = x]

is not negligible, contradicting the fact that G� is a trapdoor permutation generator. M(f; d; y)

works as follows. It lets PK = f . It
ips coins for F and starts running F (PK). We assume that

F makes exactly n(k) queries to H , all distinct, and that if F makes a signing query m then it has

already queried H(m); this is easily seen to be wlog. M chooses t 2 f1; : : : ; n(k)g at random. It
then replies to queries as follows:

(1) Let mi denote the i-th H query that F makes. If i = t then M answers by returning y. Else

it chooses ri f0; 1g
k and returns yi = f(ri).

(2) Suppose F makes signing query m. If m = mt then M halts, admitting failure. Otherwise M

answers with ri where i 6= t satis�es m = mi.

Let (m; �) be F 's output. If m 6= mt then M halts admitting failure. Else if f(�) = m then M

outputs � and halts; else again it admits failure. For the analysis, consider the experiment in which

t is chosen at random and then F is run with its oracles in the usual manner; that is:

R 21; t f1; : : : ; n(k)g; (PK; SK) G(1k); (m; �) FR;SignR(SK;�)(PK) :

Let Sk denote the event that F is succesful in this experiment. Note that if F is succesful and

its output (m; �) satis�es m = mt then mt was by de�nition not queried of the signing oracle. It

follows that "(k) = Pr[Sk ^ (m = mt)] where the probability here is over the experiment just

de�ned. The latter probability is estimated as follows. If m 62 fm1; : : : ; mn(k)g then F succeeds

20

with probability at most 2�k. So

�(k)� 2�k =

n(k)X

i=1

Pr[Sk ^ (m = mi)] :

Since t is chosen at random we have Pr[Sk ^ (m = mt)] � (�(k) � 2�k)=n(k). Thus "(k) �

(�(k)� 2�k)=n(k) which is still not negligible, as desired.

21

