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Abstract

In this work we analyze the weaknesses of the CAPTCHA scheme used by Mi-
crosoft in their registration website. Furthermore, we propose some alternatives to
mitigate the weaknesses found. In the first part of this project we built a CAPTCHA
data set and used two different methods to automatically predict the CAPTCHA
content, achieving a 57% success rate by using state-of-the-art techniques in com-
puter vision. Finally, we propose some methods to overcome the vulnerabilities
found. After a review on existing methods, we propose two alternatives: visual
question-answer challenges and motion-based CAPTCHAs.

1 Introduction

Distinguishing humans from computers have been an important topic since the birth of
Internet. Many systems become vulnerable to a wide range of attacks when computers
are able to automatically act as humans. Thus, systems to verify whether the agent
submitting the petition is a human or a computer have been evolving during the last
decades. In this project, we will focus on one of the main well-known and widely used
proposal: CAPTCHA.

CAPTCHA stands for ”Completely Automated Public Turing test to tell Computers
and Humans Apart”. It was proposed by Louis Von Ahn et al. [1] in 2003, and since
then has been widely used in a wide range of places. Since then, multiple variations [2]
have been proposed but always keeping the same basic idea: to show to the user images
that humans are able to recognize while computers are not. The use of a wide variance
of shapes, transformations and deformations to write the letters make the CAPTCHA
recognition a complex problem for computers while humans are easily able to recognize
the characters.

However, during the last three years, the computer vision state-of-the-art has been
improving constantly due to the emergence of a new actor: the Convolutional Neural
Networks (CNNs), commonly named as deep learning. Deep learning techniques were
proposed some time ago, but the lack of large data sets to be trained on hurt their
performance. Recently, the computer vision community started to present larger data
sets [3–5], which allowed these techniques to be redefined and optimized. Thus, the state-
of-the-art in all the computer vision problems has been improving during the last few
years. In particular, text recognition systems based on deep learning achieve outstanding
performance, being almost perfect at recognizing a wide variations of characters.

Given this recent breakthrough, the ability of computers to recognize CAPTCHA
sequences has significantly increased, weakening the security of many services. In this
project, we study the security of the CAPTCHA system used by Microsoft on its account
creation website. We show that it is feasible with actual technology to automatically
overpass the human-verification system used by Microsoft.

Some proposals [6, 7] have been made to secure CAPTCHA schemes against text
recognition systems. The substitution of text with more complex visual inputs such as
images or motion-based text makes the recognition task harder for computer and still easy
for humans. To close the loop, we propose some possible improvements to the Microsoft
CAPTCHA to avoid the attacks presented in section 3 and section 4. In particular,
we use a recent problem introduced to the computer vision community, Visual Question-
Answering [8], to propose a stronger CAPTCHA scheme, hard to be solved automatically.
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Furthermore, we also propose a motion CAPTCHA scheme, where it is shown to be hard
for attackers to get a clear crop of the target characters.

To sum up, in this project we analyze the security of the CAPTCHA scheme used by
Microsoft, showing clear weaknesses that could be potentially exploited to create a large
amount of accounts automatically. In section 3 we use a simple method based on the
creation of templates. This method shows some weaknesses of the system, achieving an
accuracy of 5.56%. Furthermore, in section 4, we propose a deep learning-based method
which is able to achieve a success rate of 57.05%. Finally, in section 5 we propose some
improvements to the actual CAPTCHA system, in order to make it secure against the
attacks proposed in section 3 and 4.

2 Related work

Multiple proposals have been done since the birth of CAPTCHA to automatically pass
the challenge and, therefore, gain automatic access to multiple services such as account
creation. Even though the challenge is primarily visual, a wide range of attacks have
been proposed, using weaknesses from both the visual scheme or the protocol running
behind it.

In this section, we will detail the main related work on attacking CAPTCHAs. We will
divide the related work in two separated parts: the attacks using vision-based techniques
and the attacks using weaknesses on other parts of the pipeline such as the HTTP protocol
or the audio system provided for vision-impaired users.

2.1 Computer vision-based attacks

Many approaches have been proposed to attack CAPTCHA systems using visual recogni-
tion techniques [7, 9–14]. As it has been presented in the introduction, the state-of-the-art
methods are mainly based in deep learning techniques. However, some previous success-
ful attempts have been done to break CAPTCHA systems. In this section, we want to
review all these different techniques.

Shape has been deeply studied in the object recognition context. [9] uses some of these
ideas to attack Gimpy and EZ-Gimpy, two visual CAPTCHA schemes. In particular, they
use the shape features descriptors introduced in [15] to build a matching system between a
large database and every new query example. By comparing the shape features, they are
able to find the best matching example in the data set and, thus, predict the characters
in the CAPTCHA image. Using these approach they achieve a 92% success rate on EZ-
Gimpy Images, and an accuracy of 33% on Gimpy images. Our first approach is similar
to [9] in spirit; although they have a more complex representation of the CAPTCHA
image, our method also matches a given sample with examples in a database.

Much effort has been historically focused on the CAPTCHA segmentation problem.
Although the single CAPTCHA character classification accuracy is high for many recent
machine learning classification techniques, a previous character-by-character segmenta-
tion needs to be done in order for these techniques to be applicable to the CAPTCHA
problem. [10] presents a full segmentation scheme for an old Microsoft CAPTCHA, al-
ready deprecated. The scheme in [10] attempts to automatically segment character by
character and remove the noise present in the final segmentation. After the segmentation
step, a regular state-of-the-art classifier is used, achieving a success of 61% in Microsoft
CAPTCHA and 60% in Yahoo! CAPTCHA.

After the raise of the deep learning techniques applied to the computer vision prob-
lems, some of these proposals have been applied to CAPTCHA classification. Recent
work in digit recognition for street-view images [11] has been applied to the CAPTCHA
framework with great success. [11] models the probability of a sequence by factorizing it
and training a Convolutional Neural Network to estimate these probability factors. It is
important to note that by modeling the problem as sequence prediction and not charac-
ter prediction, they avoid the segmentation step. By using this technique, [11] achieves a
99.8% on reCAPTCHA [2]. Our CNN-based system shares some characteristic with this

2



method. It uses a Convolutional Neural Network for classification and, furthermore, it
somehow avoids complex segmentation procedures by using the power of the CNN.

Figure 1: Example of an Asirra CAPTCHA

Finally, some computer vision techniques have also been applied to image-based
CAPTCHAS. As it will be detailed in Section 5, multiple modalities of CAPTCHAS
have been proposed, substituting the text recognition task by object recognition or an-
other more complex task. However, state-of-the-art classification algorithms achieve high
accuracy in some of these tasks. [7] presents an attack to the Asirra CAPTCHA [16],
a CAPTCHA scheme based on the human ability on distinguishing cats from dogs. By
using classification methods techniques such as Support Vector Machines, [7] is able to
achieve a success rate of 10.3% in the Asirra CAPTCHA.

2.2 Alternative attacks

This section presents some of the numerous attacks on CAPTCHA done using techniques
such as external human translation or speech recognition. In contrast to the techniques
based upon computer vision principles, these target other components of the security
system and do not involve breaking the CAPTCHA directly.

The CAPTCHA Re-Riding Attack [17] uses vulnerabilities found in the HTTP pro-
tocol to bypass the security check. Attacks on the HTTP protocol can be classified as
client-side and server-side. When clients are trusted with CAPTCHA verification and
storage, they also gain the ability to access solutions and generate CAPTCHAs of their
own choice which leads to a chosen CAPTCHA text attack, an example of a client-side
attack. When static CAPTCHA identifiers are used by the server to map CAPTCHAs,
the CAPTCHAs can be downloaded, solved and a rainbow table can be created contain-
ing the static identifiers and corresponding solutions, this is a example of a server-side
attack.

Figure 2: Example of a secure CAPTCHA system implementation as described in [17]

Audio CAPTCHAs were introduced to cater to visually impaired people who weren’t
able to access standard CAPTCHAs based on visual-perception tasks, but their security
was never tested. A recent attempt [18] to break audio CAPTCHAs by a group of
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students from Carnegie Mellon University yielded a success rate of 71%. An audio
CAPTCHA consists of several speakers reading a character at random intervals. The
sequence must be correctly identified to pass the CAPTCHA. The student group used
several machine learning techniques such as mel-frequency cepstral coefficients (MFCC),
perceptual linear prediction (PLP), and relative spectral transform-PLP (RAS TA-PLP)
to extract features from the CAPTCHA audio. The audio files were converted to fixed
size labeled segments and then used for training. Some of the classifiers used include
AdaBoost, Support Vector Machines and k-nearest neighbor. An audio CAPTCHA
possessing multiple speakers and background noise was concluded to be strong but not
unbreakable.

An attack which makes use of a human translation service is Podec [19], which is
reportedly the first program able to bypass CAPTCHA targeted at Android devices.
It passes the CAPTCHAs encountered to an online human translation service in real
time. The program signs the user for paid premium services and bypasses the Advice on
Charge system, which requests the user for payment authorization. Not much is known
about the implementation since the developers used code obfuscation, encryption and
garbage classes. The whole application relies on the user downloading the application
and granting privileges to it.

3 Template-based CAPTCHA classification method

Although multiple and complex proposals have been done for image classifications, in
this section we attempt to solve the CAPTCHA classification problem with a simple
approach. We believe this first attempt is useful in order to understand the insights of
the problem and, thus, be able to correctly define a more complex strategy as the one
presented in section 4.

The template method used a brute-force comparison to classify each character in
series. “Brute-force” in this case describes the pixel-by-pixel comparison of the test
character to each character in the training set. The final character classification simply
defaults to the highest-match character.

This method has an individual character success rate of 60%, with an overall CAPTCHA
success rate of 5.56%. This is ample success for the CAPTCHA to be considered “bro-
ken”, given the weak limitation of the scheme against retries. Time analysis of this
method is not a consideration, as the comparisons are trivial. In fact, the program is
limited by the speed of the debugging “print” statements.

It should be added that this success was achieved with a database of only 144 distinct
character images across 23 different characters. While a larger database does not nec-
essarily translate to a large boost on performance (“5” vs. “6” vs. “S”), more samples
would certainly help to reduce noise.

Finally, it is important to note that the CAPTCHA scheme only uses 23 characters
from a potential pool of 62 (uppercase letters, lowercase letters and digits). This re-
duction on the number of categories reduces the dimensionality of the problem and its
complexity.

3.1 Framework

We used PIL (Python Image Library) + numpy to process and manipulate images on a
pixel level.

3.2 Data Preparation

The original CAPTCHA is unfit for processing as-is; the characters are rotated at random
angles across CAPTCHAs (consist angles within a CAPTCHA). This presents two prob-
lems for would-be immediate processing. First, any vertical crop of a character would
contain significant portions of another character, depending on the angle of rotation.
Second, the data set would have to be significantly bigger to account for the different
angles of rotation.
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Therefore, a certain amount of pre-processing is required. Below is the high-level
code that prepares a CAPTCHA.

Figure 3: High-level captcha prep script

• filter image red(): The original CAPTCHA is almost uniform in color. However,
there are slight discrepancies in RGB values, possibly due to JPEG compression.
This function assigns all the non-white pixels to be red. This simplifies further
processing, as we only need to deal with two pixel categories, red or white. Red
is used instead of black to distinguish the text pixels from the border pixels in
recreate rectangle().

• find original corners(): This function finds the max x, min x, max y, and min y
points of the CAPTCHA. These will be used during rotation.

• rotate image(): The CAPTCHA is either oriented with the left corner at max y,
or the right corner at max y. Simply querying whether the x component of max y
is greater than or less than the x center of the CAPTCHA is enough to determine
the orientation. The angle of rotation is determined by finding the ∆y and ∆x
between min/max x and min y, and applying atan().

*note: a side effect of rotation is a new image frame that looks like:

Figure 4: Post-Rotation Image

• reset minmax(): Exactly as the function’s name implies. This resets the min x/y
and max x/y values to placeholders (100000 and -1 respectively).

• find rotated sides(): Similar to find original corners(), this function does not
store points, just rather min and max values for x and y. These will be used in
recreate rectangle().

• recreate rectangle(): Unfortunately, simply cropping the image does not work.
In rare cases, usually involving the letter “d” or “p” or “y”, as these can have
irregular “stems” that cause a corner of the bounding box to be outside the image
itself.

The workaround is to simply create a new rgb data array[], populate it with all
valid pixels from the original CAPTCHA, populate the rest with white space, and
then convert it into an image format and save it.

5



• filter image black(): Assigns all the non-white pixels to be black. Black is used
for human visibility only.

Below is a comparison between an input CAPTCHA and the final prepared CAPTCHA:

Figure 5: Captcha before processing

Figure 6: Captcha after processing

3.3 Pixelation

The pixel-to-pixel comparison function requires both character images to be the same
width/height. Simple experiments determined a 16 pixel by 16 pixel image was sufficient
to retain important characteristics. It was important to descale the image, because for
each additional row/column k, it increased the time complexity by (2k + 1)n, where n is
the number of data set character images.

The actual pixelation was done by dividing the original character image into the 256
cells, and determining the average value of each cell (1=black, 0=white). If the average
value of each cell was greater than 0.5, then the script set the corresponding pixel in the
pixelated image to black, and vice versa.

Figure 7: Pixelated ”5” character

3.4 Data Set Generation

As mentioned in the overview, the methodology uses direct pixel-by-pixel comparisons
of the test character and all training set characters to classify. This thus assumes that
the data set characters are properly generated.
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Guidelines for the Data Set:

• All widths must be exact, with no white pixels near the left or right border. This
is due to the pixelation process, which would disproportionally represent one edge
pixel as 1/16 of the entire width.

• The height can be arbitrarily determined. The cropping function sets the top and
bottom of the character image as the top black and bottom black pixel. Thus
any white space will be eliminated. However, if another character bleeds into the
target character, it is important to set the height at the top and bottom edges of
the target character only.

Unfortunately, the width specification prevented automatic data set generation. All
images must be captured by hand, classified in the name of the file, and then put into
a loading directory. We then wrote a simple script to iterate over all files in the loading
directory, generate the 16 pixel descaled image, and sort it into the correct directory.

Our method reached the success rate of 5.56% with a data set of only 120 characters.
This meant each character had only about five or six “perfect” images with which to
compare.

3.5 Brute Force Script

First, the data is processed as described above in data processing. The resulting image
is similar to the one shown in Figure 6.

3.5.1 Border Iteration

As the script will automatically crop the top and bottom excess from a test character
image, the hardest part of classification is choosing the correct left and right borders,
from which to generate a pixelated image.

The script gets the width of the CAPTCHA from the min x and max x values, and
divides by six to get the average character width. However, many characters such as “V”
or “y” are under the average character width, while characters such as “W”, “G”, and
“K” often exceed the average character width.

A pixel by pixel comparison of “W” might incorrectly classify it as “V” if the borders
are not selected correctly. Therefore, we iterate over nine possible widths, [avg width-4,
avg width+4].

3.5.2 Comparison

For each width i, we descale the corresponding character image to 16× 16 pixels.
We then compare the generated 16×16 pixels test image to each data set image. For

the comparison, we simply iterate over the 256 (x,y) pixel pairs, (testIm(x,y), dataSe-
tIm(x,y)). If either the test image or data set image has a black pixel at (x,y), we check
for a pixel color match. This eliminates false positive matches for blank space.

Figure 8: Visual Example of pixel-by-pixel CAPTCHA comparison.

In this image, the green box represents correct pairs, the red box represents incorrect
pairs, and the white box is not included in the heuristic.
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3.5.3 Classification

The classification is simply:
For each width i → chose the highest percentage match from all data set characters.
For each character → chose the highest percentage match from all widths.

3.5.4 Classification: Series vs. Parallel

The character width offset from the average character width compounds. In other words,
if the CAPTCHA begins with a skinny letter, such as “y”, then every letter after “y”
will be slightly offset left, until enough wide characters offset the error.

Therefore, instead of centering each character image at .5*avg char width, 1.5*avg
char width, etc. . . , we simply classify each character in series, using the previous best
match width as the left border.

3.6 Results

This method has an individual character success rate of 60%, with an overall CAPTCHA
success rate of 5.56%. This is ample success for the CAPTCHA to be considered “bro-
ken”. The density pixelation function actually solved the two main CAPTCHA distor-
tions: hollow letters and letter rips. The brute force method also worked on an incredibly
small data set, with an average of 5.21 data images per character. The primary weak-
ness of the brute force method is a high error rate on similar characters. Without more
advanced classification techniques, characters such as “S”, “5” and “6” will always have
high error rates.

4 CNN-based CAPTCHA classification method

Results presented in section 3 show clear weaknesses on the CAPTCHA system used
by Microsoft. First and foremost, the character shape variance is not enough to avoid
learning templates of the characters and predicting the CAPTCHA content by pixel-level
comparison. Furthermore, the dimensionality of the problem is strongly reduced by only
using a small subset of characters of the full alphabet. Finally, the constant color makes
easy the comparison among different examples.

However, further exploration can be done in order to improve classification accuracy.
The technique used in section 3 requires of a precise segmentation of characters for the
training. Furthermore, only pixel-level comparison is used, without taking into account
typical image transformation such as rotations or deformations. In this section we follow
a different approach to solve the same problem as section 3: we use a Convolutional
Neural Network (CNN) to classify character by character the CAPTCHA sequence. We
are able to achieve better results while using a simpler segmentation technique: the power
of the Convolutional Neural Network is able to overcome the problems derived from the
segmentation.

4.1 Convolutional Neural Networks applied to text recognition

Convolutional Neural Networks have driven research in computer vision for the last
three years. Since the publication of [3], in 2012, the state-of-the-art of the field has been
constantly changing due to the advances in the use of these techniques. However, during
the last decades, it had been already shown that Neural Networks were a good solution
for text classification challenges. [20] showed, already in 1990, that Neural Networks were
able to correctly classify text. Furthermore, with the rapid growth of the deep learning
world, text recognition systems have even improved performance, dropping error rates
for handwritten digit data sets for significant scales [11].

Although the details of the deep learning techniques fall outside the scope of this
project, we believe they are useful and deserved a quick review of some of its main
principles to better understand our work. In this section we will present the main layers
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used in the typical Convolutional Neural Networks, and how there are combined to build
classifications systems.

Convolutional Neural Networks are typically composition of multiple layers chained
one after the other. The main novelty from classical Neural Networks is the number
of layers used: unlike traditional shallow Neural Networks, actual Convolutional Neural
Network use a significant number of layers. Although many different layers are used, we
will focus on detailing the two main layers typically used.

• Convolutional layer: The convolutional layer convolves the input image with a
set of filters, which produces a multidimensional output. At the end of the layer, a
non-linearity is applied. Traditionally f(x) = (1+e−x)−1 was used, but [3] proposed
f(x) = max(0, x) which presents some advantages when training the model. It is
important to note that convolutional layers keep some spacial relation from input
to output.

• Fully connected layer: The fully connected layer linearly combines the previ-
ous layer and applies a non-linearity to its output. The non-linearity used is the
same as the convolutional layer. Fully connected layers are used for dimensionality
reduction, to map spacial information to categorical information.

Finally, we are going to detail the structure used by one of the historically used
networks for text recognition, LeNet [21]. LeNet was initially proposed by Yann LeCunn
on 1989 and has been evolving during the years until the currently used version, Lenet-5.

In figure 9 we present the structure of the LeNet-5 network. It consists of three
convolutional layers, followed by two fully connected layers at the end. This network has
high performance on the digit recognition task.

Figure 9: LeNet structure

For our project, we have used a similar structure to LeNet-5. We added one extra
layer to create a deeper structure, but the main layout of the network remains the same.

Finally, it is important to note that multiple proposals are already available to do
CAPTCHA detection using deep learning. [11] presents a digit classification system for
street-view images which can also be applied to CAPTCHA recognition and reports 99.8%
success on reCAPTCHA [2]. [11] proposes a more complex system, by using a graphical
model to model the probability distribution of the sequence and a convolutional neural
network to estimate this probability.

4.2 CAPTCHA data set

One of the key factors to explain the growth of deep learning is the availability for
large amounts of data. During the last five years, large data sets [4, 5, 22] have been
released providing to the deep learning systems with enough data to train. However, in
our context, there was no previous data available for this particular CAPTCHA scheme,
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therefore the first step was to build our own large data set. Unlike in section 3, to
successfully train a convolutional neural network we need a significant amount of data.

This is why we decided to build a separate data set of characters, using automatic
segmentation instead of the human annotation technique used in previous sections. Due
to the technical requirement coming from the deep network for a large amount of data,
we decided to avoid human segmentation, which would slow down the process and limit
our ability to collect data. Furthermore, we show that the inaccuracies produced by
the automatic segmentation are not problematic for the Convolutional Neural Network,
which is able to successfully deal with them. Finally, we present an evaluation strategy
which helps to overcome the potential problems of automatic segmentation.

In order to build the data set, similarly as in section 3, we mined CAPTCHAS from
the original Microsoft website. The full data set consist of 600 CAPTCHAs, meaning we
collected a total amount of 3600 characters.

Some pre-processing was done to the data before the segmentation. Similarly as in
subsection 3.4, we rotated the CAPTCHA and cropped it to avoid white space in the
sides. This step is crucial for the automatic segmentation: we assume that the characters
are approximately equally distributed along the image. Unlike in section 3, no color pre-
processing was done, we trained the Convolutional Neural Network to deal with the
variation in the data set.

Figure 10: Segmentation example

After the pre-processing was done, we automatically segmented the resulting image
and labelled the characters. The segmentation was done assuming equal distance among
the characters, so the image was divided in six equally distributed segments, with a slight
overlap between them. The main focus of this segmentation technique was to avoid losing
part of the target character when doing the segmentation. Nevertheless, by increasing
a little bit the wide of each segment we also increase the amount of overlap with other
characters. However, we will show that the CNN is able to overcome this challenge and
learn to distinguish between the characters and lateral noise.

An end-to-end example of the automatic segmentation process is shown in figure 10.
As can be seen, the resulting characters have some pixels corresponding to the adjacent
characters in the crop. As it has been said before, our network learned to deal with this
style of noisy data and focus on classification of the main character in the image while
avoiding the noise present at input.

Finally, we find interesting to present some statistics of our data set. Even though the
potential number of categories for the CAPTCHA is 62 (26 uppercase letter, 26 lowercase
letter and 10 digits), the real number of categories is only 23. Furthermore, among
these 23 categories, not all of them appear with the same regularity. The difference in
frequency is significant for some of the characters, which also provides extra information
to the system when predicting a new character.
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4.3 Method

In this section we present the main method used to classify the data set. We divided
the data set in a training set (90% of the data) and a testing set (10% of the data).
Furthermore, in order to generate more training data, we did not train our network
using the full image but we generated large crops from the image. The random crops
were large enough to keep a significant part of the character, but by generating multiple
training examples per each image we also trained the network to get some invariance to
scale and translation. Finally, the random crops were resized to the input size of the
network: 40× 40 pixels.

Figure 11: CNN structure

The structure of our network is presented in figure 11. It consists of three convolu-
tional layers followed by three fully connected layers. The training was done using Caffe
[23], a popular framework used to apply deep learning techniques to computer vision
problems. We trained using GPU technology which significantly reduced the training
time. The prediction was done by selecting the maximum value of the output vector.
The output layer corresponds to the probability of the input image to be all the different
characters.

Furthermore, for testing purposes, we used a cropping strategy similar as the one used
for training. For each testing instance, we generated multiple crops of the input image,
from which we picked the maximum of the output vector. Additionally, we considered
the full input image resized to the crop size as an additional crop. Finally, we selected
the maximum value among all the crops, and we set this as our prediction.

This process can be visualized in figure 12. It is easy to see that the first crop contains
a significant amount of noisy pixels from the side character. However, for the second and
the third crops, the amount of noisy pixels is reduced significantly. It is likely that our
network assigns more probability to the last crops, given that the character appears to
have less noise around it. With the final max operation, we selected the most clear
prediction and use it as out final prediction for the input image. It is important to note
that timing is not a problem in this scenario: given the small size of the images (40× 40
pixels) and the size of the network, the evaluations through the network did not create
any timing issues.
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Figure 12: Prediction cropping strategy

To sum up, we used a variation of LeNet-5 trained on our CAPTCHA data set in order
to automatically classify CAPTCHA sequences. To speed-up the annotation process, we
used an automatic segmentation strategy where the input CAPTCHA was automatically
segmented, which has a drawback of generating noisy data. However, we were able to
remove the noise by using a cropping strategy in both the training phase and the testing
phase.

4.4 Results

In section 3, we showed the ability of the template-matching method to classify correctly
5.56% of the given CAPTCHAs. By using a Convolutional Neural Network trained on
our automatically-segmented CAPTCHA data set, we are able to increase our accuracy
significantly. In table 1, we present the results for our new method.

Character accuracy CAPTCHA success Estimated tries to succeed
91.07% 57.05% 1.75

Table 1: Results of our Convolutional Neural Network

The CNN-based method raises the performance by an order of magnitude compared
to the previous template-matching method. Thus, the number of necessary tries to get
a complete correct CAPTCHA is reduced one order of magnitude: with only two tries
the user is estimated to predict one valid CAPTCHA. Thus, we show a clear weakness
in the Microsoft CAPTCHA, which can be completely bridged by using our method.

Even though most of the examples are correctly classified, some categories have sig-
nificant confusion among them. Some interesting examples are confusions between ’5’
and ’S’ or between ’8’ and ’6’.

5 Improving Microsoft CAPTCHA

Thus far, we have shown two ways to attack the CAPTCHA system used by Microsoft.
One utilized template-matching and pixel comparisons to solve the CAPTCHA, while
the other used a Convolutional Neural Network to learn the shape of the characters and
predict the solution based off of its knowledge.

Many people have investigated ways to improve CAPTCHAs [6, 7] to prevent sys-
tems such as those presented from solving them. There are many ways to increase the
efficiency of CAPTCHAs. In this section we consider three of them: different colors,
image recognition, and motion.
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5.1 Color-based security

Different colors, such as figure 13, eliminates one of the main assumptions that we were
able to make for the Microsoft CAPTCHA system by making the adversary analyze which
pixel is actually important. It is commonly used by many websites today, with each
website tending to create their own with their own type of complications and difficulties.

Figure 13: Different-colored CAPTCHAs

This is inherently more difficult than the Microsoft system. By combining many
different backgrounds and fonts, the adversary has a much harder task of finding the
letters, improving the difficulty for an algorithm, while maintaining the ease of use for
the user.

5.2 Image recognition security

Images have been also used as a substitute for text in some new proposals. [7] propose a
CAPTCHA scheme based on distinguishing cats and dogs in images. Even though image
recognition is harder than text recognition, [16] showed how the problem was solvable
by applying automatic classifiers. In the same spirit, [24] asked users to associate images
with a list of words. Furthermore, [6] presented a CAPTCHA scheme based on detecting
upright images. Finally, [25] used shape discovery to challenge the users.

Although the schemes presented before increase the security of the system signifi-
cantly, recent computer vision techniques make it hard to rely on well-known computer
vision problems such as image classification or shape discovery. In this section, we propose
a new CAPTCHA scheme based on a new problem in the computer vision community:
the visual question-answering [8].

Figure 14: Visual question-answering example. Figure from [8]
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The problem set up is presented in figure 14. Given an image, a simple question
about the image is also presented. In the computer vision community, the challenge is
to train computers to automatically answer the question.

Our proposal is to show to the user three different images with one question associ-
ated. The human would need to answer the three questions correctly to pass the test.
Furthermore, the question will also be encoded in a CAPTCHA-like style such as re-
CAPTCHA to create more difficulties for the automated systems to correctly parse the
question and generate a valid answer.

[26] presents the most accurate model for visual question-answering, but the problem
set up is really restricted: all the answers in the data set have only one word and the
questions are computed-generated. Thus, this model would fail applied to a more general
framework with multiple-word answers and human-generated questions.

Furthermore, [8] presents a method more related to our actual task. It is important
to note that in this scenario the question is always correctly parsed, while in our scenario
using CAPTCHA style to present the question, a significant amount of questions would
be incorrectly parsed by computers.

The models presented in [8] are evaluated in multiple situations, being the open-
answer question the comparable situation to our scenario. In all the other experiments
presented in [8], the system has some additional information about the answer, such as if
it is binary or multiple choice. The models score with high accuracy to some of the open
question types (such as the ones starting with ”what sport” or ”is there”). However, for
some other question types the model performance is marginally low, scoring about 3%
in some of them.

Our proposal is to build a data set of these low-scoring images and questions, and
evaluate humans by asking these questions about the image. If the VQA model has
a mean accuracy around 10% in the subset of questions we choose as our data set,
the success for the three answers would be 0.1%. Furthermore, if the question text
is presented in a CAPTCHA-like style, the parsing error will also impact the model
performance, securing the full system even more.

Finally, an interesting issue is how to generate the data to build the CAPTCHA
scheme. [8, 26] present a question-answer data set, but using questions from a publicly
available visual question-answer data set will completely break the system: attackers
can just learn all the combinations of image-question-answer. Furthermore, we believe
more complex questions are needed to improve the security of the system and reduce the
automated answering success even more.

Our proposal is to use a mixture of sources of information. The main two sources of
information are:

• Image datasets: The computer vision community has published many image data
sets with a large amount of labeled images [3–5]. Given that image categories (such
as ”food”,”cat” or ”sport”) are provided, we can generate generic questions for all
the images in a specific category (such as ”Name one food present in the image”
for all the food images).

• Image search engines: By querying image search engines with specific keywords
such as ”pizza” or ”soccer”, we can generate a large data set of weakly labeled
images. Using the same strategy as with the categorized images, we can generate
generic questions per category. The label can be verified in crowdsourcing platforms
such as Amazon Mechanical Turk.

Once the images and some generic questions are generated, we want to generate more
questions and to answer the already-generated questions. Our proposal is to use a crowd
sourcing service such as Amazon Mechanical Turk to both answer the questions and
generate new ones.

Finally, to scale up the scheme, an alternative proposal to get the valid answer for a
question is to challenge each human with four images/questions. In three of them, the
human is evaluated, but the answer for the fourth question is unknown by the system.
Furthermore, humans should not know which is the unlabeled question. Using this

14



scheme, we could automatically get the answer of more questions which could be used
to evaluate other humans. This strategy is similar as the one used by [2].

To sum up, we propose a CAPTCHA based on a recent problem in the computer vision
community: the visual question-answering. Three images and three questions related to
the images are presented to the subject who needs to answer the questions correctly to
pass the test. The questions are basic given the image, therefore it should not be hard
for humans to easily pass the test. To add more complexity to the system, we propose to
present the question in a CAPTCHA-like style, which will difficult the automatic parsing
and, thus, increase the security of the full system. Finally, it is important to note that
the number of tries per user should be limited to make the system fully secure.

5.3 Motion-based CAPTCHA

Another proposal to improve the security of CAPTCHAs is to use motion in the form of
GIFs. GIFs are Graphic Interchange Format, a file format that displays a sequence of
images quickly, appearing to form a video. This allows for an additional layer of security
because a script will either download the file or take a screen shot; a screen shot will only
get a single image of the GIF, while the whole file will require more analysis.

(a) Temporal mean.
(b) Single screenshot.

Figure 15: Static information for the simple motion-CAPTCHA proposal.

The proposed GIF-based CAPTCHA is deployed in this website, due to the impossi-
bility to deploy it in the text report. Figure 15b is one frame of the GIF, while figure 15a
is what they make when combined. It is obvious that each line offers a negligible amount
of information as to the actual letter that is there. However, figure 15a illustrates one
of the main problems with the GIF creation: temporal mean. Since the adversary will
have access to the file itself, they could create a system that will get the temporal mean
of the GIF. So this basic example shows the possibilities, but not the ideal solution.

To improve it, we need to create GIFs whose temporal mean has virtually no in-
formation. We found that by displaying moving letters, the temporal mean become
uninformative because it adds up the signal for all the moving letters. Furthermore,
using the same strategy as in figure 15b, we can also have uninformative single frames by
splitting each letter in multiples frames. The resulting GIF is deployed in this website.
In figure 16a we show the global temporal mean and in figure 16b we show a single frame
of the CAPTCHA scheme. It is clear that neither of those provide enough information
to attack the system.

(a) Temporal mean. (b) Single screenshot.

Figure 16: Static information for the motion-based CAPTCHA proposal.

Finally, multiple attacks to motion CAPTCHA have been proposed [27]. A possi-
ble attack to our CAPTCHA proposal is the sliding window temporal mean. This is,
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finding information about the characters by doing a shorter temporal mean over sub-
sequences of the GIF. To secure our scheme against this attack, we present three main
countermeasures:

1. In our scheme, each character is divided in nchar parts. By overlapping all the parts
together, we end up with the target character. To generate a clear character, the
attacker needs to do a mean of length nchar frames starting in T0 where T0 is the
moment when the character starts to be generated. Our first countermeasure is to
randomize the value of nchar and T0 character by character. The attacker needs
to try all the possible lengths of temporal means and iterate over all the possible
starting points T0, since this two values are not deterministic. The range of possible
nchar is rather reduced, but T0 can have a greater variation. Thus, since the total
amount of necessary tries is the multiplication of these two number, we can deeply
increase the number of temporal means needed and, thus, secure our system.

2. Once the attacker computed all the partial temporal means, he/she needs to au-
tomatically detect which partial temporal mean corresponds to a valid character
and which are invalid partial temporal means. Our second countermeasure is to
generate subsequences where the invalid temporal means can be detected as valid
characters. For instance, in figure 17 we present a temporal mean generated by
averaging some frames of the character ”6”. However, an attacker will detect a
character 0 or O in the sequence, which will invalidate his attack.

Figure 17: Temporal mean for part of the character ”6”.

By decomposing the characters in frames with this property, we increase the num-
ber of wrongly detected characters by the attacker and, thus, reduce its success
probability.

3. Finally, in our toy examples, the characters are clean and do not have any noise,
for simplicity reasons. By adding noise and complexity to the character shape such
as done in classical CAPTCHA schemes, we can increase the detection difficulty.

The implementation of these three countermeasures will significantly reduce the prob-
ability of success. By limiting the number of tries (enough to deal with user errors), the
system can be considered secure against this attack.

6 Conclusions

To sum up, this project has a two-fold purpose: to show the weaknesses of the actual
Microsoft CAPTCHA system and to propose two methods to improve its security.

First, we proposed two methods to automatically classify Microsoft CAPTCHA sam-
ples. Each began with three assumptions based on the Microsoft CAPTCHA: the
CAPTCHA only had a single color, only used 23 different characters, and a single font.
The first method is based in a fine-grain segmentation combined with template match-
ing. This method has a success of 5.56%, enough to compromise the security of the
Microsoft system. Furthermore, we proposed a more complex method based on Convo-
lutional Neural Network, which, using state-of-the-art recognition techniques, is able to
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achieve a success rate of 57.05%, more concretely demonstrating the lack of security of
the CAPTCHA scheme.

Secondly, we proposed two alternative CAPTCHA schemes: the visual question-
answering challenges and motion-based CAPTCHAs. Our first proposal is based in
visual question-answering, a fairly new research topic in the computer vision community.
In this scheme, the user is presented some images with questions related to the images.
The questions are easy enough for the human but hard for a computer to be answered.
Actual models do not have enough accuracy on the answer prediction to make the system
insecure. Our second proposal is based on motion CAPTCHAs. By adding motion to
the characters in the CAPTCHA, we increase the complexity for attackers to capture
informative frames. We discussed potential attacks such as partial temporal means and
propose countermeasures to avoid them.
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