
6.857 Recitation 08: Public-Key Cryptography

Conner Fromknecht

April 5, 2016

Today

• Sage Demo

• El Gamal Recap

• IND–CCA2

• Cramer-Shoup Cryptosystem

• Elliptic Curve Pedersen Commitments

Sage Demo

If you don’t have Sage installed, you can make an account at https://cloud.sagemath.com to get
free access to a Sage terminal. The following example shows how to setup an Elliptic Curve and
demonstrates simple operations on the curve’s points.

sage: Field = Zmod(p)

sage: Curve = EllipticCurve(Field, [a, b])

sage: G = Curve.point((x, y))

G = (x : y : z) written in projective form

Interpret as (x/z, y/z) for z = {0,1}

So z = 0 is point at infinity

sage: P = 2*G

sage: B = G + 15*P

B = 31*G

1 El Gamal Recap [1, p. 365]

• Defined over a cyclic group G with order q and generator g.

• Gen(1λ): Construct group (G, q, g) = G(1λ). Choose x
R←− Zq and compute h = gx. Public

key pk = (G, q, g, h) and private key sk = (G, q, g, x).

• Enc(pk,m ∈ G): Choose r
R←− Zq and output ciphertext c = (gr,m · hr).

• Dec(sk, c): Let c = (c1, c2). Compute c2/c
x
1 = m.

1

https://cloud.sagemath.com

RSA Recap [1, p. 355]

• Defined for N = pq where p and q are large primes.

• Gen(1λ):

– Run GenRSA(1λ) to obtain N, e, and d

– Public key pk = (N, e)

– Secret key sk = (N, d)

• Enc(pk,m ∈ Z∗N): Compute c = me mod N

• Dec(pk, c ∈ Z∗N): Compute m = md mod N

where we define GenRSA(1λ):

• (N, p, q)←− GenModulus(1λ)

• Let φ(N) = (p− 1)(q − 1)

• Choose e such that gcd(e, φ(N)) = 1

• Compute d = e−1 mod φ(N)

• Return N, e, d

IND–CCA2

Indistinguishability under Adaptive Chosen Ciphertext Attacks is defined as a two phase game
between an examiner E and an adversary A.

• Strongest notion of security for public key encryption.

• Mathematically captures the idea that the adversary can’t do better than guessing, even after
extensive access to the challenge ciphertext and oracle.

Phase 1: Find

• E generates (pk, sk) using Gen(1λ)

• E send pk to adversary A

• A computes for polynomial time in λ, with access to decryption oracle Dec(sk, ·)

• A outputs m0 and m1 and any state information s. (|m0| = |m1| and m0 6= m1)

Phase 2: Guess

• E picks b
R←− {0, 1} and computes c′ = Enc(pk,mb)

• E sends (c′, s) to adversary

• A computes for polynomial time in λ, again with access to Dec(sk, ·) for any input except c′.

• A outputs b̂, his guess for b.

A wins if b̂ = b. Encryption scheme is IND–CCA2 secure if Pr[b̂ = b] ≤ 1
2 + negl(λ).

2

Cramer-Shoup Cryptosystem

Problem: El Gamal encryption exhibits multiplicative homomorphism, so an attacker can create
valid encryptions of other messages. Given two ciphertexts

c1 = Enc(pk,m1) = (gr,m1 · yr)
c2 = Enc(pk,m2) = (gs,m2 · ys)

we can compute

c1 · c2 = (gr+s, (m1 ·m2) · yr+s)
= Enc(pk,m1 ·m2)

Solution: Cramer-Shoup cryptosystem—solves malleability in El Gamal. Creates IND–CCA2 en-
cryption scheme, defined over group cyclic group G with prime order q.

Gen(1λ)

• Choose g1, g2
R←− G

• Choose secret key sk = (x1, x2, y1, y2, z)
R←− Zq

• Hash function H : G3 → Zq, maps three elements in G to Zq.

• c = gx11 g
x2
2 , d = gy11 g

y2
2 , h = gz1

• Public key pk = (g1, g2, c, d, h,H)

Enc(pk,m ∈ G)

• Choose r
R←− Zq

• u1 = gr1, u2 = gr2, e = m · hr

• α = H(u1, u2, e)

• v = crdrα

• Ciphertext c = (u1, u2, e, v)

Dec(sk, c)

• α = H(u1, u2, e)

• If ux1+y1α1 ux2+y2α2 6= v, REJECT.

• m = e/uz1

Elliptic Curve Pedersen Commitments

Similar to El Gamal Pedersen Commitments, provides perfect hiding for the committed value.

• Setup(1λ): Construct (Ep, q, G) = G(1λ) with prime order q and generator G. Choose secret

a
R←− Zq and compute public H = aG. Output (Ep, q, G,H).

• Commit(x ∈ Zq): Choose r
R←− Zq. Compute commitment c = xG+ rH.

• Reveal(x, r ∈ Zq): Check c = xG+ rH.

3

Perfect Hiding

Possible for given commit c = Commit(x) to reveal any x′?

c = xG+ rH = x′G+ r′H

xG+ arH = x′G+ ar′H

(x+ ar)G = (x′ + ar′)H

x+ ar ≡ x′ + ar′ mod q

r′ ≡ (x− x′)/a+ r mod q

We know ∃ a, since q is prime. In addition x 6= x′, so r 6= r′.

Computationally Binding

Possible to compute x′ and r′?

xG+ rH = x′G+ r′H

x+ ar = x′ + ar′

a = (x− x′)/(r − r′)
= logGH mod p.

Would require breaking DLP on G.

Malleability—Additive Homomorphism

c = Commit(x) = xG+ rH

c′ = G+ c = (x+ 1)G+ rH

References

[1] J. Katz and Y. Lindell. Introduction to modern cryptography, 2008.

4

	El Gamal Recap [p. 365]KL08

