6.857 Recitation 08: Public-Key Cryptography

Conner Fromknecht

April 5, 2016

Today

- Sage Demo
- El Gamal Recap
- IND-CCA2
- Cramer-Shoup Cryptosystem
- Elliptic Curve Pedersen Commitments

Sage Demo

If you don't have Sage installed, you can make an account at https://cloud.sagemath.com to get free access to a Sage terminal. The following example shows how to setup an Elliptic Curve and demonstrates simple operations on the curve's points.

```
sage: Field = Zmod(p)
sage: Curve = EllipticCurve(Field, [a, b])
sage: G = Curve.point((x, y))
# G = (x : y : z) written in projective form
# Interpret as (x/z, y/z) for z = {0,1}
# So z = 0 is point at infinity
sage: P = 2*G
sage: B = G + 15*P
# B = 31*G
```

1 El Gamal Recap [1, p. 365]

- Defined over a cyclic group \mathbb{G} with order q and generator g.
- Gen(1 $^{\lambda}$): Construct group (\mathbb{G}, q, g) = $\mathcal{G}(1^{\lambda})$. Choose $x \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and compute $h = g^x$. Public key $pk = (\mathbb{G}, q, g, h)$ and private key $sk = (\mathbb{G}, q, g, x)$.
- $\text{Enc}(pk, m \in \mathcal{G})$: Choose $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and output ciphertext $c = (g^r, m \cdot h^r)$.
- $\operatorname{Dec}(sk,c)$: Let $c=(c_1,c_2)$. Compute $c_2/c_1^x=m$.

RSA Recap [1, p. 355]

- Defined for N = pq where p and q are large primes.
- $Gen(1^{\lambda})$:
 - Run GenRSA(1^{λ}) to obtain N, e, and d
 - Public key pk = (N, e)
 - Secret key sk = (N, d)
- $\operatorname{Enc}(pk, m \in \mathbb{Z}_N^*)$: Compute $c = m^e \mod N$
- ullet $\operatorname{Dec}(pk, c \in \mathbb{Z}_N^*)$: Compute $m = m^d \mod N$

where we define $GenRSA(1^{\lambda})$:

- $(N, p, q) \leftarrow \texttt{GenModulus}(1^{\lambda})$
- Let $\phi(N) = (p-1)(q-1)$
- Choose e such that $gcd(e, \phi(N)) = 1$
- Compute $d = e^{-1} \mod \phi(N)$
- Return N, e, d

IND-CCA2

Indistinguishability under Adaptive Chosen Ciphertext Attacks is defined as a two phase game between an examiner \mathcal{E} and an adversary \mathcal{A} .

- Strongest notion of security for public key encryption.
- Mathematically captures the idea that the adversary can't do better than guessing, even after extensive access to the challenge ciphertext and oracle.

Phase 1: Find

- \mathcal{E} generates (pk, sk) using $Gen(1^{\lambda})$
- \mathcal{E} send pk to adversary \mathcal{A}
- \mathcal{A} computes for polynomial time in λ , with access to decryption oracle $Dec(sk,\cdot)$
- A outputs m_0 and m_1 and any state information s. $(|m_0| = |m_1| \text{ and } m_0 \neq m_1)$

Phase 2: Guess

- \mathcal{E} picks $b \stackrel{R}{\leftarrow} \{0,1\}$ and computes $c' = \text{Enc}(pk, m_b)$
- \mathcal{E} sends (c', s) to adversary
- \mathcal{A} computes for polynomial time in λ , again with access to $\mathrm{Dec}(sk,\cdot)$ for any input except c'.
- \mathcal{A} outputs \hat{b} , his guess for b.

 \mathcal{A} wins if $\hat{b} = b$. Encryption scheme is IND-CCA2 secure if $Pr[\hat{b} = b] \leq \frac{1}{2} + negl(\lambda)$.

Cramer-Shoup Cryptosystem

Problem: El Gamal encryption exhibits multiplicative homomorphism, so an attacker can create valid encryptions of other messages. Given two ciphertexts

$$c_1 = \operatorname{Enc}(pk, m_1) = (g^r, m_1 \cdot y^r)$$

 $c_2 = \operatorname{Enc}(pk, m_2) = (g^s, m_2 \cdot y^s)$

we can compute

$$c_1 \cdot c_2 = (g^{r+s}, (m_1 \cdot m_2) \cdot y^{r+s})$$

= Enc $(pk, m_1 \cdot m_2)$

Solution: Cramer-Shoup cryptosystem—solves malleability in El Gamal. Creates IND-CCA2 encryption scheme, defined over group cyclic group \mathbb{G} with prime order q.

 ${\tt Gen}(1^\lambda)$

- Choose $g_1, g_2 \stackrel{R}{\longleftarrow} \mathbb{G}$
- Choose secret key $sk = (x_1, x_2, y_1, y_2, z) \stackrel{R}{\leftarrow} \mathbb{Z}_q$
- Hash function $H: \mathbb{G}^3 \to \mathbb{Z}_q$, maps three elements in \mathbb{G} to \mathbb{Z}_q .
- $c = g_1^{x_1} g_2^{x_2}, \ d = g_1^{y_1} g_2^{y_2}, \ h = g_1^z$
- Public key $pk = (g_1, g_2, c, d, h, H)$

 $\operatorname{Enc}(pk, m \in \mathbb{G})$

- Choose $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$
- $u_1 = g_1^r$, $u_2 = g_2^r$, $e = m \cdot h^r$
- $\bullet \ \alpha = H(u_1, u_2, e)$
- $v = c^r d^{r\alpha}$
- Ciphertext $c = (u_1, u_2, e, v)$

Dec(sk,c)

- $\bullet \ \alpha = H(u_1, u_2, e)$
- If $u_1^{x_1+y_1\alpha}u_2^{x_2+y_2\alpha} \neq v$, REJECT.
- $m = e/u_1^z$

Elliptic Curve Pedersen Commitments

Similar to El Gamal Pedersen Commitments, provides perfect hiding for the committed value.

- Setup(1 $^{\lambda}$): Construct (\mathbb{E}_p, q, G) = $\mathcal{G}(1^{\lambda})$ with prime order q and generator G. Choose secret $a \stackrel{R}{\leftarrow} \mathbb{Z}_q$ and compute public H = aG. Output (\mathbb{E}_p, q, G, H).
- Commit $(x \in Z_q)$: Choose $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$. Compute commitment c = xG + rH.
- Reveal $(x, r \in \mathbb{Z}_q)$: Check c = xG + rH.

Perfect Hiding

Possible for given commit c = Commit(x) to reveal any x'?

$$c = xG + rH = x'G + r'H$$

$$xG + arH = x'G + ar'H$$

$$(x + ar)G = (x' + ar')H$$

$$x + ar \equiv x' + ar' \qquad \text{mod } q$$

$$r' \equiv (x - x')/a + r \qquad \text{mod } q$$

We know $\exists a$, since q is prime. In addition $x \neq x'$, so $r \neq r'$.

Computationally Binding

Possible to compute x' and r'?

$$xG + rH = x'G + r'H$$

$$x + ar = x' + ar'$$

$$a = (x - x')/(r - r')$$

$$= \log_G H \mod p.$$

Would require breaking DLP on G.

Malleability—Additive Homomorphism

$$\begin{split} c &= \mathtt{Commit}(x) = xG + rH \\ c' &= G + c = (x+1)G + rH \end{split}$$

References

[1] J. Katz and Y. Lindell. Introduction to modern cryptography, 2008.