6.857 Recitation 08: Public-Key Cryptography

Conner Fromknecht

April 5, 2016

Today

e Sage Demo

El Gamal Recap

e IND-CCA2

Cramer-Shoup Cryptosystem

Elliptic Curve Pedersen Commitments

Sage Demo

If you don’t have Sage installed, you can make an account at https://cloud.sagemath.com to get
free access to a Sage terminal. The following example shows how to setup an Elliptic Curve and
demonstrates simple operations on the curve’s points.

sage: Field = Zmod(p)
sage: Curve = EllipticCurve(Field, [a, bl)
sage: G = Curve.point((x, y))

G= (x : y : z) written in projective form
Interpret as (x/z, y/z) for z = {0,1}

So z = 0 is point at infinity

sage: P = 2x%G

sage: B = G + 15%P

B = 31%G

1 El Gamal Recap [1, p. 365]

e Defined over a cyclic group G with order ¢ and generator g.

Gen(11): Construct group (G, q,g) = G(1*). Choose = il Zq and compute h = g®. Public
key pk = (G, ¢, g, h) and private key sk = (G, q, g,).

Enc(pk,m € G): Choose r %l Zq and output ciphertext ¢ = (¢",m - h").

e Dec(sk,c): Let ¢ = (¢1,c2). Compute ca/cf = m.

https://cloud.sagemath.com

RSA Recap [1, p. 355]

e Defined for N = pq where p and g are large primes.
e Gen(1*):

— Run GenRSA(1*) to obtain N, e, and d
— Public key pk = (N, e)
— Secret key sk = (N, d)

e Enc(pk,m € Z%): Compute ¢ = m® mod N

e Dec(pk,c € Z%): Compute m =m? mod N
where we define GenRSA(17):

e (N,p,q) + GenModulus(1*)

o Let o(N) =(p—1)(¢—1)

e Choose e such that ged(e, p(N)) =1
Compute d = e~! mod ¢(N)

Return N, e, d

IND-CCA2

Indistinguishability under Adaptive Chosen Ciphertext Attacks is defined as a two phase game
between an examiner £ and an adversary A.

e Strongest notion of security for public key encryption.

e Mathematically captures the idea that the adversary can’t do better than guessing, even after
extensive access to the challenge ciphertext and oracle.

Phase 1: Find
e & generates (pk, sk) using Gen(1*)
e & send pk to adversary A
e A computes for polynomial time in A, with access to decryption oracle Dec(sk, -)
e A outputs mg and m; and any state information s. (|mg| = |m1| and mg # mq)
Phase 2: Guess
o & picks b <& {0,1} and computes ¢’ = Enc(pk, m;)
e & sends (¢, s) to adversary
e A computes for polynomial time in A, again with access to Dec(sk, -) for any input except ¢’
e A outputs I;, his guess for b.
A wins if b = b. Encryption scheme is IND-CCA2 secure if Pr[b = b] < + +negl(N).

Cramer-Shoup Cryptosystem
Problem: El Gamal encryption exhibits multiplicative homomorphism, so an attacker can create
valid encryptions of other messages. Given two ciphertexts

c¢1 = Enc(pk,m1) = (¢",m1-y")

c2 = Enc(pk,m2) = (¢°,m2 - y°)

we can compute

r—+s r+5)

cr-ca=(g""%, (my-ma) -y
= Enc(pk, m1 - ma2)

Solution: Cramer-Shoup cryptosystem—solves malleability in El Gamal. Creates IND-CCA2 en-
cryption scheme, defined over group cyclic group G with prime order gq.
Gen(1%)

e Choose g1, g2 el

e Choose secret key sk = (z1,x2,y1, Y2, 2) %l Zqg

e Hash function H : G3 — Zgq, maps three elements in G to Z,.

x1 T2 Y1 Y2

°®c=91'9%", d=9g1 9y, h=gi

e Public key pk = (g1, 92,¢,d,h, H)
Enc(pk,m € G)

e Choose r <& Zyq

o U =gj, ug =g, e=m-h"

e o= H(uy,us,e)

o U= CT’d’I‘Oé

e Ciphertext ¢ = (u1,u2,e,v)
Dec(sk,c)

o o= H(uy,ug,e)

o If i TV Y522 oLy REJECT.

o m=ce/uj

Elliptic Curve Pedersen Commitments

Similar to El Gamal Pedersen Commitments, provides perfect hiding for the committed value.
e Setup(1?): Construct (E,, ¢,G) = G(1*) with prime order ¢ and generator G. Choose secret
adt Z4 and compute public H = aG. Output (E,, ¢, G, H).

e Commit(z € Z;): Choose r il Zq. Compute commitment ¢ = 2G + rH.

e Reveal(z,r € Z;): Check ¢ =2G +rH.

Perfect Hiding
Possible for given commit ¢ = Commit(z) to reveal any z'?
c=2G+rH=2'G+rH
zG +arH = 2'G +ar'H
(x+ar)G = (' +ar')H
r+ar =12 +ar
r'=@—-2a") a+r

We know 3 a, since ¢ is prime. In addition = # 2/, so r # 7.
Computationally Binding
Possible to compute =’ and 7'?

G +rH =2'G+rH
z+ar =2 +ar

a=(z—2")/(r—1")
=logs H mod p.

Would require breaking DLP on G.

Malleability—Additive Homomorphism

¢ = Commit(z) = G +rH
d=G+c=(x+1)G+rH

References

[1] J. Katz and Y. Lindell. Introduction to modern cryptography, 2008.

mod ¢
mod ¢

	El Gamal Recap [p. 365]KL08

