
Hashing

Today

• Hashing Definition
• Desirable Properties

– One-Way
– Collision Resistant

• Finding Collisions

– Birthday Attack
– Floyd’s Two-Finger Algorithm

• Inverting H

– Rainbow Tables

Definition

• a hash function H maps a universe U to a finite set S
• more concretely: H : {0, 1}∗ → {0, 1}λ

Some Desirable Properties (more to come next lecture)

The definition is extremely loose. For example, a function that just truncates or is constant is technically a
‘valid’ hash function. Thus, we define some desirable properties. Each use case of hash functions will require
a certain subset of these criteria.

• One-Way (non-invertible)

– x← U, y = H(x)
– given y, infeasible to find x′ s.t. H(x′) = y
– necessary for password storage

• Collision Resistant

– difficult to find x 6= x′ s.t. H(x) = H(x′)
– necessary for hash tables, Bitcoin (digital signatures)

• There are more! Save for lecture on Monday

Finding Collisions

• Goal: break CR of H with x 6= x′, s.t. H(x) = H(x′)
• Idea 1: store random (x, H(x)) pairs until two collide

Birthday Attack

• try random pairs until one collides, or you run out of resources

• succeeds with a relatively high constant probability in O(
√
|S|) time and memory (since you are

checking Θ(n2) pairs), but this is prohibitively large for |S| ≥ say 2128.

• see Katz and Lindell Lemma 10.2 for proof.

1

• Idea 2: treat repeated applications of H : S → S as a directed graph, look for a cycle. Once found, last
element on tail = x, last element on cycle = x′

• How do we know cycles exist? If we assume H is a random oracle (to be covered next lecture), then we
can expect to “loop back” to some previously visited node after ≈

√
|S| traversals (same intuition as

birthday attack). Then, with probability ≈ 1− 1√
|S|

(very close to 1), we loop back to a node that is
not the first, and there is a tail of length > 0. Now let’s see how to use this. . .

Floyd’s Two-Finger Cycle Detection Algorithm

• We set two pointers a, b to a random node x
• We then advance b twice as fast as a until they meet again

– Set a = H(a), b = H(H(b)) until a = b

• Informal Proof

– If a and b begin on a node which leads to a cycle, they will eventually meet.
∗ More formally: Thm: let x be a node on a tail of length t to a cycle of length n. Then after i

iterations, i ≥ t, the position of a and b are as follows:
· a = x(i−t) mod n

· b = x(2i−t) mod n

∗ Note that ∀i ≥ t s.t. i is a multiple of n, a = b = x−t mod n

∗ ∴ after max(t + (−t mod n), n) iterations, a and b will meet at node x−t mod n

• Suppose a = b = x′ after d iterations (we detected a cycle). How do we use this to find a collision?

– We know x′ = x−t mod n

– Set a = x = x−t, b = x−t mod n, step each one edge at a time, remembering last element visited
for each

– After t steps, a and b will meet at x0. Return x−1, x−1 mod n as colliding pre-images

• Analysis

– Time:
∗ Phase 1: 3 max(t + (−t mod n), n) hashes
∗ Phase 2: 2t hashes
∗ Overall: Θ(n + t) hashes

– Memory:
∗ 4 pointers, O(1)

Inverting Hash Functions

Rainbow Tables

• Goal: create a space/time tradeoff by storing head and tail of hash chains of length k
• First attempt:

– Precomputation: assume we want to store hashes of n pre-images
∗ choose n

k random pre-images xi
∗ store (xi, H(k)(xi)) for each xi

– Query: target hash y, want to find x s.t. H(x) = y

∗ let yi = H(i)(y)
∗ compute yi for i ∈ {1 . . . k}

2

∗ check if any yi equals tail of any chain
· if so, start at head of chain, hash until y reached, last pre-image inverts y

• Problem: only works for pre-images that are also images of H, but most passwords people use don’t
look like pseudorandom bits

– Instead, create a reduction function R which maps images of H back into a target set P , i.e. 10
letters followed by 2 digits

– example of R: treat input as 10 base 26 digits followed by 2 base 10 digits, and truncate the rest

• Modified Algorithm:

– Precomputation:
∗ choose n

k random pre-images pi ∈ P
∗ chain function is now C = R ◦H
∗ store (pi, C(k)(pi)) for each pi

– Query: target hash y, want to find p ∈ P s.t. H(p) = y

∗ compute C(i)(R(y)) for i ∈ [1, k]
∗ proceed same as first version, but we risk false positives since R maps to a smaller set P
∗ i.e. even if C(i)(p) = R(y), it is possible that H(p) 6= y, in which case we just skip this false
positive and continue searching

• Analysis for querying n preimages:

– Time:
∗ Precomputation: Θ(n)
∗ Query: O(k)

– Memory: Θ(nk)

• Combating Rainbow Tables:

– Salt your passwords! Storing H(p||r) where r is a long random bit string makes precomputing a
rainbow table infeasible

3

	Hashing
	Today
	Definition
	Some Desirable Properties (more to come next lecture)
	Finding Collisions
	Inverting Hash Functions

