Hashing

Today

e Hashing Definition
e Desirable Properties

— One-Way
— Collision Resistant

e Finding Collisions

— Birthday Attack
— Floyd’s Two-Finger Algorithm

o Inverting H
— Rainbow Tables

Definition

e a hash function H maps a universe U to a finite set S
o more concretely: H : {0,1}* — {0,1}*

Some Desirable Properties (more to come next lecture)

The definition is extremely loose. For example, a function that just truncates or is constant is technically a
‘valid’ hash function. Thus, we define some desirable properties. Each use case of hash functions will require
a certain subset of these criteria.

o One-Way (non-invertible)

-2+ Uy=H(x)
— given y, infeasible to find 2’ s.t. H(z') =y
— necessary for password storage

¢ Collision Resistant

— difficult to find = # 2’ s.t. H(x) = H(z")
— necessary for hash tables, Bitcoin (digital signatures)

e There are more! Save for lecture on Monday

Finding Collisions

o Goal: break CR of H with z # 2/, s.t. H(z) = H(z')
o Idea 1: store random (z, H(x)) pairs until two collide

Birthday Attack

e try random pairs until one collides, or you run out of resources

o succeeds with a relatively high constant probability in O(1/|S|) time and memory (since you are
checking ©(n?) pairs), but this is prohibitively large for |S| > say 2!28.

e see Katz and Lindell Lemma 10.2 for proof.

o Idea 2: treat repeated applications of H : S — S as a directed graph, look for a cycle. Once found, last
element on tail = z, last element on cycle = z’

o How do we know cycles exist? If we assume H is a random oracle (to be covered next lecture), then we
can expect to “loop back” to some previously visited node after ~ 4/|S| traversals (same intuition as
birthday attack). Then, with probability ~ 1 — ﬁ (very close to 1), we loop back to a node that is

not the first, and there is a tail of length > 0. Now let’s see how to use this. ..

Floyd’s Two-Finger Cycle Detection Algorithm

e We set two pointers a, b to a random node x
e We then advance b twice as fast as a until they meet again

— Set a=H(a), b= H(H(b)) until a = b
e Informal Proof

— If @ and b begin on a node which leads to a cycle, they will eventually meet.
* More formally: Thm: let x be a node on a tail of length ¢ to a cycle of length n. Then after i
iterations, i > t, the position of a and b are as follows:
a4 = Z(j—t) mod n
b= L(2i—t) mod n
*x Note that Vi >t s.t. i is a multiple of n, a =b=2_; mod n
* .. after max(t + (—t mod n),n) iterations, a and b will meet at node £_¢ mod n

o Suppose a = b =z’ after d iterations (we detected a cycle). How do we use this to find a collision?

— We know 2’ = 2_+ mod n

— Seta=z=x_¢, b =12_4 mod n, step each one edge at a time, remembering last element visited
for each

— After ¢ steps, a and b will meet at zy. Return _1,2_1 104 » as colliding pre-images

e Analysis
— Time:
* Phase 1: 3max(t + (—t mod n),n) hashes

* Phase 2: 2t hashes
% Overall: ©(n 4+ t) hashes

— Memory:
* 4 pointers, O(1)

Inverting Hash Functions

Rainbow Tables

o Goal: create a space/time tradeoff by storing head and tail of hash chains of length &
o First attempt:

— Precomputation: assume we want to store hashes of n pre-images

* choose 7 random pre-images ;
* store (z;, H®)(2;)) for each z;

— Query: target hash y, want to find x s.t. H(z) =y
x let y; = HO (y)

* compute y; for i € {1...k}

x check if any y; equals tail of any chain
if so, start at head of chain, hash until y reached, last pre-image inverts y

e Problem: only works for pre-images that are also images of H, but most passwords people use don’t
look like pseudorandom bits

— Instead, create a reduction function R which maps images of H back into a target set P, i.e. 10
letters followed by 2 digits
— example of R: treat input as 10 base 26 digits followed by 2 base 10 digits, and truncate the rest

e Modified Algorithm:

— Precomputation:

* choose % random pre-images p; € P

* chain function is now C = Ro H
* store (p;, C%)(p;)) for each p;

— Query: target hash y, want to find p € P s.t. H(p) =y
x compute C(R(y)) for i € [1, k]
* proceed same as first version, but we risk false positives since R maps to a smaller set P
% ie. even if C(p) = R(y), it is possible that H(p) # y, in which case we just skip this false
positive and continue searching
o Analysis for querying n preimages:
— Time:
% Precomputation: ©(n)
x Query: O(k)
— Memory: O(%)
e Combating Rainbow Tables:

— Salt your passwords! Storing H (p||r) where r is a long random bit string makes precomputing a
rainbow table infeasible

	Hashing
	Today
	Definition
	Some Desirable Properties (more to come next lecture)
	Finding Collisions
	Inverting Hash Functions

