Hashing

Today

- Hashing Definition
- Desirable Properties
 - One-Way
 - Collision Resistant
- Finding Collisions
 - Birthday Attack
 - Floyd's Two-Finger Algorithm
- Inverting H
 - Rainbow Tables

Definition

- a hash function H maps a universe U to a finite set S
- more concretely: $H: \{0,1\}^* \to \{0,1\}^{\lambda}$

Some Desirable Properties (more to come next lecture)

The definition is extremely loose. For example, a function that just truncates or is constant is technically a 'valid' hash function. Thus, we define some desirable properties. Each use case of hash functions will require a certain subset of these criteria.

- One-Way (non-invertible)
 - $-x \leftarrow U, y = H(x)$
 - given y, infeasible to find x' s.t. H(x') = y
 - necessary for password storage
- Collision Resistant
 - difficult to find $x \neq x'$ s.t. H(x) = H(x')
 - necessary for hash tables, Bitcoin (digital signatures)
- There are more! Save for lecture on Monday

Finding Collisions

- Goal: break CR of H with $x \neq x'$, s.t. H(x) = H(x')
- Idea 1: store random (x, H(x)) pairs until two collide

Birthday Attack

- try random pairs until one collides, or you run out of resources
- succeeds with a relatively high constant probability in $O(\sqrt{|S|})$ time and memory (since you are checking $\Theta(n^2)$ pairs), but this is prohibitively large for $|S| \ge \sup 2^{128}$.
- see Katz and Lindell Lemma 10.2 for proof.

- Idea 2: treat repeated applications of $H: S \to S$ as a directed graph, look for a cycle. Once found, last element on tail = x, last element on cycle = x'
- How do we know cycles exist? If we assume H is a random oracle (to be covered next lecture), then we can expect to "loop back" to some previously visited node after $\approx \sqrt{|S|}$ traversals (same intuition as birthday attack). Then, with probability $\approx 1 \frac{1}{\sqrt{|S|}}$ (very close to 1), we loop back to a node that is not the first, and there is a tail of length > 0. Now let's see how to use this...

Floyd's Two-Finger Cycle Detection Algorithm

- We set two pointers a, b to a random node x
- We then advance b twice as fast as a until they meet again
 - Set a = H(a), b = H(H(b)) until a = b

• Informal Proof

- If a and b begin on a node which leads to a cycle, they will eventually meet.
 - * More formally: Thm: let x be a node on a tail of length t to a cycle of length n. Then after i iterations, $i \ge t$, the position of a and b are as follows:

```
\begin{array}{ll} \cdot & a = x_{(i-t) \mod n} \\ \cdot & b = x_{(2i-t) \mod n} \end{array}
```

- * Note that $\forall i \geq t$ s.t. i is a multiple of n, $a = b = x_{-t \mod n}$
- * : after $\max(t + (-t \mod n), n)$ iterations, a and b will meet at node $x_{-t \mod n}$
- Suppose a = b = x' after d iterations (we detected a cycle). How do we use this to find a collision?
 - We know $x' = x_{-t \mod n}$
 - Set $a = x = x_{-t}$, $b = x_{-t \mod n}$, step each one edge at a time, remembering last element visited for each
 - After t steps, a and b will meet at x_0 . Return $x_{-1}, x_{-1 \mod n}$ as colliding pre-images

• Analysis

- Time:
 - * Phase 1: $3 \max(t + (-t \mod n), n)$ hashes
 - * Phase 2: 2t hashes
 - * Overall: $\Theta(n+t)$ hashes
- Memory:
 - * 4 pointers, O(1)

Inverting Hash Functions

Rainbow Tables

- Goal: create a space/time tradeoff by storing head and tail of hash chains of length k
- First attempt:
 - Precomputation: assume we want to store hashes of n pre-images

```
* choose \frac{n}{h} random pre-images x_i
```

- * store $(x_i, H^{(k)}(x_i))$ for each x_i
- Query: target hash y, want to find x s.t. H(x) = y
 - * let $y_i = H^{(i)}(y)$
 - * compute y_i for $i \in \{1 \dots k\}$

- * check if any y_i equals tail of any chain
 - · if so, start at head of chain, hash until y reached, last pre-image inverts y
- Problem: only works for pre-images that are also images of H, but most passwords people use don't look like pseudorandom bits
 - Instead, create a reduction function R which maps images of H back into a target set P, i.e. 10 letters followed by 2 digits
 - example of R: treat input as 10 base 26 digits followed by 2 base 10 digits, and truncate the rest
- Modified Algorithm:
 - Precomputation:
 - * choose $\frac{n}{k}$ random pre-images $p_i \in P$
 - * chain function is now $C = R \circ H$
 - * store $(p_i, C^{(k)}(p_i))$ for each p_i
 - Query: target hash y, want to find $p \in P$ s.t. H(p) = y
 - * compute $C^{(i)}(R(y))$ for $i \in [1, k]$
 - * proceed same as first version, but we risk false positives since R maps to a smaller set P
 - * i.e. even if $C^{(i)}(p) = R(y)$, it is possible that $H(p) \neq y$, in which case we just skip this false positive and continue searching
- Analysis for querying n preimages:
 - Time:
 - * Precomputation: $\Theta(n)$
 - * Query: O(k)
 - Memory: $\Theta(\frac{n}{k})$
- Combating Rainbow Tables:
 - Salt your passwords! Storing H(p||r) where r is a long random bit string makes precomputing a rainbow table infeasible