6.857 R0O1 Notes

Spring 2016

1 Intro

These are the notes for the first recitation of 6.857. They borrow heavily
from Prof. Rivest’s past 6.857 lecture notes on finite fields.

2 Groups and Finite Fields

This section will deal with groups and fields.

2.1 Groups

Definition 1 A group is a set G equipped with a function - : G x G — G
(i.e. for a,b in G, a-b is also in G; sometimes we just write ab instead of
a-b) such that the following properties hold:

e Vabce G: (ab)c=a(bc)
o There exists an identity element e € G such thatV a € G : a-e=e-a=a

e V a €G, 3 an inverse a’ €G such that: a-a’ =a’a=e

In addition, if for all a.b in G it is true that ab=ba, then we call G a
commutative (or abelian) group.

It is easy to prove that the identity element e is unique. Also, Va € G
the inverse a’ is also unique (Hint: use proof by contradiction)

2.2 Finite Fields

Definition 2 A finite field F is a system (S,+,-) where S is a finite set and
+,- are binary operations on S, such that the following properties hold:

o (S,4) is an abelian group with O being the identity element. Therefore:



e VabeceS: (at+b)+c=a+(b+c)

e VacS:at0=0+a=a

e ¥V a €S, 3 an inverse (-a) €G such that: a+(-a)=(-a)+a=0
o YV abe S:atb=b+ta

In addition (here S* =S —0):

o (S*,.) is an abelian group with 1 being the identity element.
o VabceS: (ab)c=a(bc)

evVaecS:al=1la=a

o YV acS* 3 an inverse a~! €G such that: a-a " =a"' - a=1
o Vabe S:ab=ba

Finally:

o VabceS: (atb)c=ac+b-c

It can be proven using the properties of fields that 0- g = g- = 0 for all
geF.

A simple example of a finite field is Zy = {0, 1}. Addition in this field is
just XOR (i.e. 0+40=1+1=0and 1+0=0+1=1). Multiplication is
like AND (iel-1=1and0-0=1-0=0-1=0). You can check that all
the properties of finite fields are satisfied in Zo.

Another example of a finite field is Z, = {0,1,2,...,p — 1} which is the
set of residues modulo a prime number p.

Solving linear equations in finite fields is very intuitive.

Specifically if we want to solve a-x+b = 0 where a # 0 then we proceed
as follows:

a-x+b=0=(a-2+b)+(=b) =0+ (-b)=—-b=a-z+(b+(=b) =
~b=az2+0=-b=a-r=-b=>al(a-z)=at(-b)=(ata) =
a '(=b) = 1-2 = a1 (-b) = 2 = a~}(—b) which is what one would expect.



2.3 Existence of Finite Fields

Theorem 1 (Galois) For all primes p and for all positive integers n there
exists a unique finite field with p™ elements.

We call this field GF(p™). Of special interest to cryptography is the case
where p=2. The field GF(28) is used in the Advanced Encryption Standard
(to be covered later in the term).

Next, we describe what GF(2¥) looks like for general k.

Definition 3 GF(2%) = {ap_12* ' + ap_22F 2 + ... + a1 +ag : a; € Za}
where Zy = {0, 1} is the finite field with 2 elements.

Each element in GF(2F) is simply a polynomial of degree < k — 1 with
coefficients in Zs = {0,1}. We can represent an element g = ap_1zF 1 4
ap—ox* 2 + .. 4 a1x + ap in GF(2%) simply by its coefficients. I.e. we can
write g = ap_1ag_9...a1ag.

A simple example is GF(2%) = {0,1,z,z + 1}

2.4 Addition in GF(2%)

Addition in GF (2”f is simply the addition of the coefficients of the respective
polynomials. For example, in GF(22) we get (x + 1) + = = 1 (using the
coefficient notation this can be written as 11 + 10 = 01 which is bitwise
XOR). Therefore the additive inverse of any element g in GF(2¥) is g itself
(because g + g = 0; check this yourself as an exercise).

2.5 Multiplication in GF(2)

Multiplication in GF(2*) involves two steps. The first step is to multiply
the two polynomials normally using Z, arithmetic. The resulting polyno-
mial may have degree > k which is obviously not an element of GF(2F). We
must then divide by an irreducible polynomial of degree k and the result
will then be an element of GF(2F).

For example, in GF(22), the irreducible polynomial we use is 2 +z + 1.
Therefore (z + 1) - (z + 1) = (22 + D)mod(z? + z + 1) = z. In GF(28) the
irreducible polynomial we use in the AES is 28 + 2% + 23 + 2 + 1.



3 Fermat’s Theorem for Finite Fields

Theorem 2 For all elements g in a finite field F' (where F has n elements)
the following equalities hold:

e g+g+g+..+9g=0

n times

e g-g-g-...-g=1 when g% 0
—_—

n — 1 times



