
6.857 R01 Notes

Spring 2016

1 Intro

These are the notes for the first recitation of 6.857. They borrow heavily
from Prof. Rivest’s past 6.857 lecture notes on finite fields.

2 Groups and Finite Fields

This section will deal with groups and fields.

2.1 Groups

Definition 1 A group is a set G equipped with a function · : G × G → G
(i.e. for a,b in G, a·b is also in G; sometimes we just write ab instead of
a·b) such that the following properties hold:

• ∀ a,b,c ∈ G : (a·b)·c=a·(b·c)

• There exists an identity element e ∈ G such that ∀ a ∈ G : a·e=e·a=a

• ∀ a ∈G, ∃ an inverse a’ ∈G such that: a·a′=a’·a=e

In addition, if for all a.b in G it is true that ab=ba, then we call G a
commutative (or abelian) group.

It is easy to prove that the identity element e is unique. Also, ∀a ∈ G
the inverse a′ is also unique (Hint: use proof by contradiction)

2.2 Finite Fields

Definition 2 A finite field F is a system (S,+,·) where S is a finite set and
+,· are binary operations on S, such that the following properties hold:

• (S,+) is an abelian group with 0 being the identity element. Therefore:
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• ∀ a,b,c ∈ S : (a+b)+c=a+(b+c)

• ∀ a ∈ S : a+0=0+a=a

• ∀ a ∈S, ∃ an inverse (-a) ∈G such that: a+(-a)=(-a)+a=0

• ∀ a,b∈ S : a+b=b+a

In addition (here S∗ = S − 0):

• (S∗,·) is an abelian group with 1 being the identity element.

• ∀ a,b,c ∈ S : (a·b)·c=a·(b·c)

• ∀ a ∈ S : a·1=1·a=a

• ∀ a ∈ S∗, ∃ an inverse a−1 ∈G such that: a·a−1=a−1 · a=1

• ∀ a,b∈ S : a·b=b·a

Finally:

• ∀ a,b,c ∈ S : (a+b)·c=a·c + b · c

It can be proven using the properties of fields that 0 · g = g· = 0 for all
g ∈ F .

A simple example of a finite field is Z2 = {0, 1}. Addition in this field is
just XOR (i.e. 0 + 0 = 1 + 1 = 0 and 1 + 0 = 0 + 1 = 1). Multiplication is
like AND (i.e 1 · 1 = 1 and 0 · 0 = 1 · 0 = 0 · 1 = 0). You can check that all
the properties of finite fields are satisfied in Z2.

Another example of a finite field is Zp = {0, 1, 2, ..., p − 1} which is the
set of residues modulo a prime number p.

Solving linear equations in finite fields is very intuitive.

Specifically if we want to solve a ·x+ b = 0 where a 6= 0 then we proceed
as follows:

a · x+ b = 0⇒ (a · x+ b) + (−b) = 0 + (−b) = −b⇒ a · x+ (b+ (−b)) =
−b ⇒ a · x + 0 = −b ⇒ a · x = −b ⇒ a−1(a · x) = a−1(−b) ⇒ (a−1a) · x =
a−1(−b)⇒ 1 ·x = a−1(−b)⇒ x = a−1(−b) which is what one would expect.
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2.3 Existence of Finite Fields

Theorem 1 (Galois) For all primes p and for all positive integers n there
exists a unique finite field with pn elements.

We call this field GF (pn). Of special interest to cryptography is the case
where p=2. The field GF (28) is used in the Advanced Encryption Standard
(to be covered later in the term).

Next, we describe what GF (2k) looks like for general k.

Definition 3 GF (2k) = {ak−1xk−1 + ak−2x
k−2 + ... + a1x + a0 : ai ∈ Z2}

where Z2 = {0, 1} is the finite field with 2 elements.

Each element in GF (2k) is simply a polynomial of degree ≤ k − 1 with
coefficients in Z2 = {0, 1}. We can represent an element g = ak−1x

k−1 +
ak−2x

k−2 + ... + a1x + a0 in GF (2k) simply by its coefficients. I.e. we can
write g = ak−1ak−2...a1a0.

A simple example is GF (22) = {0, 1, x, x + 1}

2.4 Addition in GF(2k)

Addition in GF (2k is simply the addition of the coefficients of the respective
polynomials. For example, in GF (22) we get (x + 1) + x = 1 (using the
coefficient notation this can be written as 11 + 10 = 01 which is bitwise
XOR). Therefore the additive inverse of any element g in GF (2k) is g itself
(because g + g = 0; check this yourself as an exercise).

2.5 Multiplication in GF(2k)

Multiplication in GF (2k) involves two steps. The first step is to multiply
the two polynomials normally using Z2 arithmetic. The resulting polyno-
mial may have degree ≥ k which is obviously not an element of GF (2k). We
must then divide by an irreducible polynomial of degree k and the result
will then be an element of GF(2k).

For example, in GF (22), the irreducible polynomial we use is x2 +x+ 1.
Therefore (x + 1) · (x + 1) = (x2 + 1)mod(x2 + x + 1) = x. In GF (28) the
irreducible polynomial we use in the AES is x8 + x4 + x3 + x + 1.
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3 Fermat’s Theorem for Finite Fields

Theorem 2 For all elements g in a finite field F (where F has n elements)
the following equalities hold:

• g + g + g + ... + g︸ ︷︷ ︸
n times

= 0

• g · g · g · ... · g︸ ︷︷ ︸
n− 1 times

= 1 when g6= 0
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