6.857 R01 Notes

Spring 2016

1 Intro

These are the notes for the first recitation of 6.857. They borrow heavily from Prof. Rivest's past 6.857 lecture notes on finite fields.

2 Groups and Finite Fields

This section will deal with groups and fields.

2.1 Groups

Definition 1 A group is a set G equipped with a function $\cdot: G \times G \to G$ (i.e. for a,b in G, $a \cdot b$ is also in G; sometimes we just write ab instead of $a \cdot b$) such that the following properties hold:

- $\forall a,b,c \in G : (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- There exists an identity element $e \in G$ such that $\forall a \in G : a \cdot e = e \cdot a = a$
- $\forall a \in G, \exists an inverse a' \in G such that: a \cdot a' = a' \cdot a = e$

In addition, if for all a.b in G it is true that ab=ba, then we call G a commutative (or abelian) group.

It is easy to prove that the identity element e is unique. Also, $\forall a \in G$ the inverse a' is also unique (Hint: use proof by contradiction)

2.2 Finite Fields

Definition 2 A finite field F is a system $(S,+,\cdot)$ where S is a finite set and $+,\cdot$ are binary operations on S, such that the following properties hold:

• (S,+) is an abelian group with 0 being the identity element. Therefore:

- $\forall a,b,c \in S : (a+b)+c=a+(b+c)$
- $\bullet \ \forall \ a \in S : a+0=0+a=a$
- $\forall a \in S, \exists an inverse (-a) \in G such that: a+(-a)=(-a)+a=0$
- $\bullet \ \forall \ a,b \in S : a+b=b+a$

In addition (here $S^* = S - 0$):

- (S^*,\cdot) is an abelian group with 1 being the identity element.
- $\forall a,b,c \in S : (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- $\bullet \ \forall \ a \in S : a \cdot 1 = 1 \cdot a = a$
- $\forall a \in S^*, \exists an inverse a^{-1} \in G such that: a \cdot a^{-1} = a^{-1} \cdot a = 1$
- $\bullet \ \forall \ a,b \in S : a \cdot b = b \cdot a$

Finally:

• $\forall a,b,c \in S : (a+b) \cdot c = a \cdot c + b \cdot c$

It can be proven using the properties of fields that $0 \cdot g = g \cdot = 0$ for all $g \in F$

A simple example of a finite field is $\mathbb{Z}_2 = \{0, 1\}$. Addition in this field is just XOR (i.e. 0 + 0 = 1 + 1 = 0 and 1 + 0 = 0 + 1 = 1). Multiplication is like AND (i.e $1 \cdot 1 = 1$ and $0 \cdot 0 = 1 \cdot 0 = 0 \cdot 1 = 0$). You can check that all the properties of finite fields are satisfied in \mathbb{Z}_2 .

Another example of a finite field is $\mathbb{Z}_p = \{0, 1, 2, ..., p-1\}$ which is the set of residues modulo a prime number p.

Solving linear equations in finite fields is very intuitive.

Specifically if we want to solve $a \cdot x + b = 0$ where $a \neq 0$ then we proceed as follows:

$$a \cdot x + b = 0 \Rightarrow (a \cdot x + b) + (-b) = 0 + (-b) = -b \Rightarrow a \cdot x + (b + (-b)) = -b \Rightarrow a \cdot x + 0 = -b \Rightarrow a \cdot x = -b \Rightarrow a^{-1}(a \cdot x) = a^{-1}(-b) \Rightarrow (a^{-1}a) \cdot x = a^{-1}(-b) \Rightarrow 1 \cdot x = a^{-1}(-b) \Rightarrow x = a^{-1}(-b)$$
 which is what one would expect.

2.3 Existence of Finite Fields

Theorem 1 (Galois) For all primes p and for all positive integers n there exists a unique finite field with p^n elements.

We call this field $GF(p^n)$. Of special interest to cryptography is the case where p=2. The field $GF(2^8)$ is used in the Advanced Encryption Standard (to be covered later in the term).

Next, we describe what $GF(2^k)$ looks like for general k.

Definition 3 $GF(2^k) = \{a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + ... + a_1x + a_0 : a_i \in \mathbb{Z}_2\}$ where $\mathbb{Z}_2 = \{0,1\}$ is the finite field with 2 elements.

Each element in $GF(2^k)$ is simply a polynomial of degree $\leq k-1$ with coefficients in $\mathbb{Z}_2 = \{0,1\}$. We can represent an element $g = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + ... + a_1x + a_0$ in $GF(2^k)$ simply by its coefficients. I.e. we can write $g = a_{k-1}a_{k-2}...a_1a_0$.

A simple example is $GF(2^2) = \{0, 1, x, x + 1\}$

2.4 Addition in $GF(2^k)$

Addition in $GF(2^k)$ is simply the addition of the coefficients of the respective polynomials. For example, in $GF(2^2)$ we get (x+1)+x=1 (using the coefficient notation this can be written as 11+10=01 which is bitwise XOR). Therefore the additive inverse of any element g in $GF(2^k)$ is g itself (because g+g=0; check this yourself as an exercise).

2.5 Multiplication in $GF(2^k)$

Multiplication in $GF(2^k)$ involves two steps. The first step is to multiply the two polynomials normally using \mathbb{Z}_2 arithmetic. The resulting polynomial may have degree $\geq k$ which is obviously not an element of $GF(2^k)$. We must then divide by an irreducible polynomial of degree k and the result will then be an element of $GF(2^k)$.

For example, in $GF(2^2)$, the irreducible polynomial we use is $x^2 + x + 1$. Therefore $(x+1) \cdot (x+1) = (x^2+1) mod(x^2+x+1) = x$. In $GF(2^8)$ the irreducible polynomial we use in the AES is $x^8 + x^4 + x^3 + x + 1$.

3 Fermat's Theorem for Finite Fields

Theorem 2 For all elements g in a finite field F (where F has n elements) the following equalities hold:

$$\bullet \ \underbrace{g+g+g+\ldots+g}_{n \ times} = 0$$

•
$$\underbrace{g \cdot g \cdot g \cdot \dots \cdot g}_{n-1 \text{ times}} = 1 \text{ when } g \neq 0$$