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Problem Set 3

This problem set is due on Monday, March 21, 2016 at 11:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Each problem should be in a separate PDF. Have one and only one group member submit the finished
problem writeups. Please title each PDF with the Kerberos of your group members as well as the problem
set number and problem number (i.e. kerberos1 kerberos2 kerberos3 pset3 problem1.pdf).

You are to work on this problem set with groups of your choosing of size three or four. If you need help
finding a group, try posting on Piazza or email 6.857-tas@mit.edu. You don’t have to tell us your group
members, just make sure you indicate them on Gradescope. Be sure that all group members can explain the
solutions. See Handout 1 (Course Information) for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must be provided as a separate pdf.
Mark the top of each page with your group member names, the course number (6.857), the problem set
number and question, and the date. We have provided templates for LATEX and Microsoft Word on the
course website (see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we may distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Our department is collecting statistics on how much time students are spending on psets, etc. For each
problem, please give your estimate of the number of person-hours your team spent on that problem.

Problem 3-1. More Block Chains

This problem is intended to bolster your understanding of why two keys are necessary for using CBC–MAC
mode on variable length messages. To clarify, when two keys are used in CBC–MAC mode, the final block
of the ciphertext is encrypted using a different key than all other blocks. This step is crucial to preventing
various types of attacks, here we will explore length extension attacks specifically.

Let us consider a variant of CBC–MAC mode, call it CBC-MAC’, which encrypts all blocks using the same
key k. Here the CBC–MAC’ can be computed by first applying a block cipher in CBC mode to a message
M = (m1,m2, . . . ,mn) with IV = 0. In general, each ciphertext ci is computed as

c0 = 0

ci = Ek(ci−1 ⊕mi)

The CBC–MAC’ result is taken to be the last ciphertext, specifically cn. (Note that we assume that the
message is padded as usual to be an integral number of blocks long, by always appending a “1” and then
appending enough zeros as needed to fill out the last block.)

The problems below will assume an adversary has access to a CBC–MAC’ oracle O, which accepts queries
of the form Ok(M) and returns a CBC–MAC’ of M under a fixed key k.

(a) Assume the CBC–MAC’ oracle uses some fixed, publicly-known IV . Describe a length extension
attack that an adversary could exploit to generate a new valid MAC. More specifically, for any M1

and M2 of the attacker’s choosing, provide a method for generating a CBC–MAC’ for a new message
M ′ = M1||M2. The adversary cannot query O for CBC–MAC’ on M ′.

(b) Now assume that the CBC-MAC’ oracle uses a fresh random IV for every query, which it returns
with the CBC–MAC’ result for that query. Find another length extension attack where M2 does not
need to be fixed before querying, again the adversary cannot query for the new message M ′. Here
the attack must simply produce a valid CBC–MAC’ under k for some M ′ = M1||M2. In other words,
the attack does not need to work for all M1 and M2.
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Problem 3-2. Apple vs. FBI

Read the following paper by Phillip Rogaway: http://web.cs.ucdavis.edu/~rogaway/papers/moral-fn.
pdf

Explain how his ideas may be applicable from the point of view of an Apple engineer. Be sure to discuss
their possible relevance to the Apple vs. FBI case.

Problem 3-3. Spicy or Random? Distinguishing Reduced Round Salsa

A common way to encrypt messages of variable length is to use a stream cipher. These stream ciphers
are commonly built upon trusted block ciphers. One such block cipher is the Salsa20 block cipher (https:
//cr.yp.to/snuffle/salsafamily-20071225.pdf). It is remarkably simple, consisting of only 32-bit xor,
addition, and cyclic shifts, giving it great performance on commodity hardware. Much cryptanalysis has
gone into the Salsa20 cipher (which consists of 20 rounds). No one has had any (public) success in recovering
a secret key when more than 8 out of 20 rounds are run (https://eprint.iacr.org/2007/472.pdf). Let’s
see how we can do!

Instead of conducting key-recovery attacks, we will be looking at distinguishing Salsa20 ciphertexts from
random.

One method for distinguishing a cipher is to use the Chi-Squared test
https://en.wikipedia.org/wiki/Pearson’s_chi-squared_test#Discrete_uniform_distribution . The
Chi-Squared test helps determine how similar two distributions are. The Chi-Squared distribution is defined
as

χ2 =

N−1∑
i=0

(Ei −Oi)
2

Ei

Where N is the number of possible events of a random variable, Ei is the expected value of event i, and Oi

is the observed value of event i.

It has expected value and standard deviation

E(χ2) = N − 1

σ(χ2) =
√

2(N − 1)

We will generate B blocks of salsa output by setting a random key and incrementing the nonce for each
block. We can leverage this Chi-Squared distribution by considering the random variable Ri = the number
of times a specific byte in the 512-bit output has value i throughout all of the B total output blocks. Now
we can use the Chi-Squared distribution between Ri and uniformly random bytes. In this case, N = 28, and
Ei = B

28 . We then compute Oi by storing counts of each value of our byte of interest in the salsa output.
Finally, we compute χ2 and decide the output is not random if χ2 deviates by more than three standard
deviations from the mean.

Let Sk(r, n) be an r-round salsa cipher with 256-bit key k, and nonce n, as describe in Section 4.1 of
https://cr.yp.to/snuffle/salsafamily-20071225.pdf, except with last initial state XOR-ing omitted.
We compute block i for i ∈ 0, . . . , B − 1 by computing Sk(r, i), or encryptions of all zeros with nonce = i in
the python implementation (as in my salsa.py).

Use the Chi-Squared test to distinguish Sk(r, n) for as high of an r as you can. You may
generate as many ciphertext blocks as you wish (arbitrarily high B). Also try varying which
and how many bits of the output blocks you analyze. Please submit your code, an explanation
of your distinguishing techniques, and your results to Gradescope.

We have provided a python salsa20 implementation in the file salsa20.py and an example usage of it in
my salsa.py.

Note: ChaCha is a different cipher than Salsa20, make sure you use a Salsa20 implementation.
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