
Massachusetts Institute of Technology Handout 3
6.857: Network and Computer Security February 22, 2016
Professor Ronald L. Rivest Due: March 7, 2016

Problem Set 2

This problem set is due on Monday, March 7, 2016 at 11:59 PM. Please note our late submission penalty
policy in the course information handout. Please submit your problem set, in PDF format, on Gradescope.
Each problem should be in a separate PDF. Have one and only one group member submit the finished
problem writeups. Please title each PDF with the Kerberos of your group members as well as the problem
set number and problem number (i.e. kerberos1 kerberos2 kerberos3 pset1 problem1.pdf).

You are to work on this problem set with your assigned group of three or four people. Please see the
course website for a listing of groups for this problem set. If you have not been assigned a group, please email
6.857-tas@mit.edu. Be sure that all group members can explain the solutions. See Handout 1 (Course
Information) for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must be provided as a separate pdf.
Mark the top of each page with your group member names, the course number (6.857), the problem set
number and question, and the date. We have provided templates for LATEX and Microsoft Word on the
course website (see the Resources page).

Grading: All problems are worth 10 points.
With the authors’ permission, we may distribute our favorite solution to each problem as the “official”

solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on your
homework submission.

Our department is collecting statistics on how much time students are spending on psets, etc. For each
problem, please give your estimate of the number of person-hours your team spent on that problem.

Problem 1-1. Floyd’s Two Finger Algorithm

Ben Bitdiddle is given a random oracle H : ZN → ZN . H responds to every unique query with (truly)
random response chosen uniformly from ZN . If a query is repeated, H responds the same way every time
that query is submitted. In this problem, the running time and space of a probabilistic algorithm refer to
the expected running time and space over the random choices made by the oracle and the algorithm.

(a) Ben Bitdiddle wants to find a collision x 6= x′ such that H(x) = H(x′). A natural approach, which
takes O(N) time and O(

√
N) space, is to query H on {0, . . . , O(

√
N)}, then compare each pair of

them to see if there is any collision.

Argue that this algorithm finds a collision with constant probability.

(The time complexity can be improved to O(
√
N) using a hash table, but that is not germane to this

problem.)

(b) Ben Bitdiddle went to the recitation and learned Floyd’s Two Finger Algorithm. The algorithm keeps
two pointers p and q, and picks a random x from ZN as the starting point.

At the first stage, p, q are initialized to x; in each step, p = H(p) and q = H(H(q)); repeat until
p = q.

At the second stage, p is set to x, and q remains at the meeting point; in each step, p = H(p) and
q = H(q); repeat until H(p) = H(q).

Finally, the collision is p and q.

Present an argument that Floyd’s Two Finger Algorithm always terminates with p 6= q such that
H(p) = H(q) if x lives in a tail of some cycle.

(c) Analyze the running time of Floyd’s Two Finger Algorithm in terms of the length of the tail and the
length of the cycle. Argue that the running time is O(

√
N).



6.857 : Handout 3: Problem Set 2 2

(d) Instead of finding collisions, Ben Bitdiddle wants to find x, x′ such that H(x) + H(x′) = 0 (mod N).

Describe an algorithm that takes O(
√
N) time and O(1) space.

Problem 1-2. 857coin

Rumor has it that a new cryptocurrency has sprung up at MIT. Lighter than litecoin, more wow than
dogecoin, 857coin brings a memory-intensive three-collision proof of work to the table.

In 857coin, blocks operate just as in bitcoin, except that blocks now have 3 unique nonces: n1, n2, n3.
To compute a proof of work for a difficulty d, we compute the hash hi of the block with respect to each
individual nonce ni for i = 1, 2, 3, and then check that h1 ≡ h2 ≡ h3 mod 2d.

Note: this problem is somewhat of an experiment for us, and we reserve the right to tweak it with reasonable
warning as events unfold.

Also note: we will not be bringing up the server until sometime around 5pm on Tuesday, February 23rd.

(a) To get started, visit http://6857coin.csail.mit.edu:8080/ and read the API for 857coin. Then,
look at the provided miner.py template and make the required modifications to begin mining. You
will receive full credit for part (a) after successfully mining a block that appends to any tree rooted at
the genesis block. To receive credit for your team, include your team members’ usernames separated
by commas in the block contents.

(b) Now see where you can optimize your miner even further. The slower your miner is in comparison
to other miners, the longer it will take to add to the main (longest) chain. Take a look at the three-
collision algorithms paper posted at https://courses.csail.mit.edu/6.857/2016/studentsOnly

for inspiration. You will receive full credit for part (b) if you ever append to the main chain. Remember
to include your team in the block contents! Also note that the earlier you start, the slower your
competition will be! Feel free to get creative by using different languages or hardware. Partial credit
will be awarded for mining blocks of the following difficulties:

• 4/5pts for difficulty 38 or greater

• 3/5pts for difficulty 37

• 2/5pts for difficulty 36

• 1/5pts for difficulty 35

Please submit your code, along with a brief explanation of your strategy, to Gradescope.

Problem 1-3. Merkle Trees

Merkle Trees were covered in lecture as an application of hash functions to authenticate a collection of
files. Merkle trees are binary (or more generally, k-ary) trees where each non-leaf node is the hash of the
concatenation of its children, and each leaf node is the hash of one file from the collection.

It was stated that we can use Merkle Trees to authenticate any collection of files as long as the hash function
we choose is collision resistant and the number of files in the collection is known.

(a) Prove that if the number of files that we are trying to authenticate is not known in advance, then
Merkle trees are not secure for authentication purposes. That is, as a mapping from collections of
files to hashes at the root, the mapping is not collision-resistant.

(b) Suppose we want to authenticate a variable number of files. Propose a simple modification that would
allow Merkle trees to be used securely for authenticating such a collection of files. (Note that the
number of files in the collection also needs to be authenticated.)

(c) Suppose we make the Merkle tree k-ary, for some integer k ≥ 2. Suppose that the tree has a large
number n of leaves, each representing one file. For what k do we minimize the length of the proof
needed to prove that a file is a member of the collection authenticated by the (modified) Merkle tree?
(In lecture, Professor Rivest said that the answer was likely to be k = 2 or k = 3. Is one of these
right?)


