
Privacy Preserving K-Means Clustering
6.857 Final Rport

Amartya Shankha Biswas, Akshat Bubna, Dustin Doss, Sarah Scheffler

May 11, 2016

1 Introduction

Given the exponential rise in the size of datasets over the past decade, novel tools are
needed to process and make use of this information. Machine learning, a relatively old
subfield of computer science, has gained prominence based on its ability to extract models
for meaningful decision-making based on large amounts of data. Fields as wide-ranging as
medical diagnosis, disaster response, image and speech recognition, and network breach
detection have all benefited from advances in machine learning.

However, data-owning parties often find it undesirable or impossible to share the
information they collect. Companies may have obligations towards user privacy, aspire
to monetize their data, or may need to keep their data private to protect their own
platform. Medical organizations have privacy obligations in the United States under the
Patient Privacy Act. However, it is very often useful to share data in the development of
a machine learning model, giving it more predictive power over a wider range of inputs.
To solve this dilemma, we turn to cryptography to enable privacy-preserving machine
learning, in which parties can gain an output model based on shared data, without
having to reveal individual data points to each other.

We recognize that many organizations interested in using privacy-preserving learning
would rather use a provided implementation than build a solution themselves. Thus,
our goal in this work was to provide a prototype of a usable privacy-preserving machine
learning implementation with particular focus on performance, to demonstrate the use-
fulness of such a system. We also wanted our system to be conceptually-scalable: we
provide building blocks that can be used to build additional privacy-preserving machine
learning algorithms other than the single one we implemented.

Based on the work of Saeed Samet, Ali Miri, and Luis Orozco-Barbosa [9] (often
referred to in this paper as “SMO07,”) we have devised and implemented a system to
allow disparate parties to utilize their disjoint datasets in order to develop a k-means
model usable by all parties. This system leverages multi-party computation and an open-
source implementation of the Paillier cryptosystem [3] to implement a k-means clustering
algorithm over data that is distributed among different parties. Our implementation can
be found at https://github.com/sarahscheffler/pp-k-means.

1



There are many other homomorphic encryption-based machine learning protocols, but
very few of them are accompanied by implementations, and the ones that do have an
implementation are slow, unoptimized, and in some cases, incomplete. [2] [8] We chose
SMO07 because it was a suitably simple algorithm that we could implement it in the
time provided. We also looked for opportunities to improve the algorithm’s performance
and security.

The rest of this paper is organized as follows: Section 2 describes related work and
other research paths we think would be useful to this paper. Section 3 explicitly defines
our problem and threat model, and provides example use cases. Section 4 summarizes
our protocol, including the original algorithm provided by [9] and more details about the
Paillier cryptosystem. Section 5 is a description of the system we have built to run the
protocol, with focus paid to networking concerns and usability. Section 6 is an initial
performance analysis, and section 7 describes paths for future research on this project.

2 Related Work

Present literature presents classifiers which are trained on unencrypted datasets and
subsequently classify encrypted data points. [8] adopts such an approach for hyperplane,
näıve Bayes and decision tree classifiers. Work has also been done on securing data for
a classifiers in distributed settings, in which individual worker nodes are treated as
untrusted. [4] uses the MapReduce framework for this approach.

Applying neural networks on homomorphic encryption schemes has been studied in
some detail. Since fully homomorphic encryption is slow, [2] proves that homomorphic
encryption that applies only to degree bounded polynomials is a viable alternative.
However, the speed and practicality of this method is still unclear.

The epsilon-diferential privacy model promised in [1] also provided interesting direc-
tions of research. This paper provides strong guarantees on securing a logistic regression
model. We also looked examined of securing a machine learning system against adver-
sarial attacks ([5], [6], [11]) to further strengthen the system.

3 Problem Description and Threat Model

This protocol is designed parties who have a shared data format, but different datasets.
These parties are interested in the benefits of a k-means model trained on their data,
but they all want to keep their data confidental from all other parties.

3.1 Example Use Cases

These examples have been provided to motivate potential uses for our privacy-preserving
k-means algorithm.

Example A Several companies have been collecting log data about their network in
an effort to detect and measure network intrusion by malicious parties. These compa-

2



nies want to be able to use machine learning to determine the extent to which their
networks have been compromised as proposed by [10] and others. However, company
policy prohibits the sharing of this information, since sharing it could help malicious
parties penetrate their network. The companies have all been collecting the same kinds
of data, and the data can be put into a common format with a small amount of scripting.
The companies can use this protocol to use the k-means clustering algorithm to combine
their information so as to better secure their networks.

Example B Medical researchers for health companies that possess sensitive patient
information wish to use the k-means clustering algorithm to gain some knowledge about
how their patients’ symptoms might be related. For privacy reasons, they cannot share
the individual data points with each other or with any other parties. They all collect
the same kind of information about each patient, and can then use this protocol to run
k-means on their combined data without fear that they are violating privacy agreements.

3.2 Threat Model

The adversaries in this model fall into two categories:

• External attackers (e.g., on the network at large)

• Parties involved in the computation

We are assuming that all parties involved in the computation are semi-honest; that is,
they will follow the protocol correctly, but try to get as much extra information as they
can. As such, our results focus on confidentiality rather than integrity.

Against external attackers, we assume that any and all inter-party communication can
be eavesdropped on. As such, it is necessary to ensure both confidentiality and integrity
all traffic between the parties. The goal of these actions are to prevent this attacker from
learning the data being shared, and to prevent them from altering the communication
without the knowledge of the parties.

We assume that parties holding data in this computation are looking out only for
themselves, but also that their main goal is to learn the legitimate outcome of this
protocol. We treat these parties as honest but curious: they will follow the protocol
correctly but they will also try to read the other parties’ data at every opportunity.

4 Protocol Description

4.1 K-means Clustering Algorithm

In the k-means clustering problem, the goal is to partition a data-set into k clusters
and build a classifier that can classify other data points into one of these clusters. We
represent each cluster by a ”mean”. Then, the cluster that a data point belongs to is
the one wtih the closest mean. Mathematically, the objective is to minimize the sum of
squares of distances of each data point to its nearest mean.

3



The algorithm works by choosing k random initial guesses. Each data point is then
sorted into a cluster by finding the guess nearest to it. Then, for each cluster, the new
guess for the mean is recomputed as the centroid of all points sorted into that cluster.
This process is rerun with these new guesses for cluster means. This process iterates
until some stopping criterion is met.

With Privacy-Preserving k-means, our goal is to calculate these k means when different
parties own different datapoints, and do not want others to learn them. We build on
a scheme from Samet, Miri, and Orozco-Barbosa [9] to homomorphically encrypt each
party’s data and learn the k means for the combined dataset keeping our threat model
discussed in Section 3 in mind.

4.2 Original SMO07 algorithm

The original algorithm proposed by Samet and Miri in [9] uses a multi-party addition
algorithm to perform privacy-preserving k-means clustering on horizontally-partitioned
data. We first describe the multi-party addition algorithm.

4.2.1 Paillier Homomorphic Encryption

In order to implement this protocol, parties need to be able to compute functions on the
data without being given access to all of it. This will be achieved by using homomorphic
encryption to allow operations on encrypted data.

We use the Paillier cryptosystem[7]. This is an additive homomorphic encryption
scheme which provides non-deterministic encryption. This means that given any two
ciphertexts, we can compute a new cipher text which encrypts the sum of the two
original plaintexts without the knowledge of the secret key. i.e. without decrypting the
given ciphertexts.

The basic operation is the multiplication of two ciphertexts, which is equivalent to the
addition of the underlying plaintexts. More formally, E(m1, r1) · E(m2, r2) (mod n2)
decrypts to m1 +m2. Also, we can multiply an encrypted plaintext by an unencrypted
plaintext through exponentiation. Formally, E(m1, r1)

m2 (mod n2) decrypts to m1 ·m2.
Now we see how to use these properties to construct a multi-party addition protocol.

4.2.2 SMO07 Multi-Party Addition

This is a summary of the Multi-Party Addition algorithm described in [9].
Let there be k parties, P1, P2, . . . , Pk, where each party Pi possesses a private input

xi. The goal of this protocol is for each party Pi to end with a private share `i such that

k∑
i=1

xi =

k∏
i=1

`i

To accomplish this, we will use an additive homomorphic encryption scheme Enc Dec,
and KeyGen, where KeyGen creates public encryption key e and private decryption key
d.

4



The steps of the protocol are as follows:

1. P1 runs KeyGen and gets the keys d and e for this protocol. They broadcast e to
all parties.

2. P1 calculates Ence(x1) and sends it to P2.

3. For i = 2 through i = k − 1 (in order), Pi calculates

Ence(xi) ·
i−1∏
j=1

Ence(xj)

and sends the result to Pi+1.

4. Pk takes the value of
∏k−1

i=1 Ence(xi) given to them by Pk−1 and multiplies it by

the encryption of their own input Ence(xk) to compute
∏k

i=1 Ence(xi).

5. Pk randomly selects `k (that is not the additive identity under Enc), computes `−1
k ,

and then sends yk =
(∏k

i=1 Ence(xi)
)`−1

k
to Pk−1.

6. For i = k−1 to 2, Pi randomly selects a non-identity `i and corresponding `−1
i , puts

the value yi+1 they received from Pi+1 to the power of `−1
i , and sends yi = y

`−1
i
i+1 to

Pi−1.

7. P1 decrypts y2 and sets the calculated value as their share `1. That is,

`1 = Decd (y2) (1)

= Decd


(

k∏
i=1

Ence(xi)

)`−1
k

...`−1
2

 (2)

The end result of this algorithm is that we now have shares `i of the original secret
values xi such that

k∑
i=1

xi =

k∏
i=1

`i.

The original paper also proved correctness and gave a security analysis, which are
ommitted here to save space.

4.2.3 SMO07 K-Means

As presented originally in SMO07, the SMO07 Multi-Party Addition (MPA) algorithm is
leveraged to compute the means on a set of encrypted data points where different parties
own different data points. The protocol is as follows assuming n parties P1 through Pn:

5



1. The (public) value k is agreed upon by all parties, and k random initial guesses
for the means are broadcasted to all parties.

2. Each party Pi finds the closest mean to each of its data points.

3. Consider the jth of the k means, and call this mean µj . Let `ji be the sum of data
points owned by party i in cluster j, and let rji be the count of these data points.
By definition,

µj =

∑n
i=1 `ji∑n
i=1 rji

.

To find this, the MPA algorithm is run separately for the `ji values and the rji
values. So we get

∑n
i=1 `ji =

∏n
i=1 pji and

∑n
i=1 rji =

∏n
i=1 qji.

4. P1 receives all the pji and qji values, computes the final quotient µj and sends it
back to each party.

5. This process is repeated for all j from 1 to k.

5 System Description

Our code can be found at https://github.com/sarahscheffler/pp-k-means.
Our system simulates multiple parties by running multiple independent processes.

These processes communicate over sockets using the ZeroMQ library. For n parties, we
create n processes, each assigned a process number from 0 to n − 1. This allows each
process to know which sockets to communicate on, and follow a protocol that determines
the order they send and receive messages in.

We implement a Multi-Party Addition function (getAddShares), which when run
simultaneously on all of these processes, securely adds the input to each of these functions
and returns the result to process 0. Before every iteration of this function, a public-
private key pair is generated using the Paillier cryptosystem. Process 0 broadcasts the
public key to each party.

Every process has an instance of the KMeans class, which is used in every itera-
tion to compute the local centroids. After the getAddShares functions compute global
centroids, this KMeans object is updated with the new means.

6



Figure 1: Number of Datapoints vs Runtime Figure 2: Computing Entities vs Runtime

Figure 3: Dimensions of Data vs Runtime Figure 4: Data Cluster Count vs Runtime

6 Performance Analysis

The original system design upon which our implementation was based did not provide
performance metrics. Given our goal of presenting a realistic, performance-optimized
private learning system, accurate and clear measures of system performance under a
variety of conditions was important. We present such metrics in this section.

We examine four variables independently: the total number of datapoints used, the
number of independent computing entities communicating, the dimensionality, and the
count of clusters (means) found in the data. Each of these is evaluated independently,
with all other variables held constant, and compared to runtime. It is clear that these
variables also have synergistic effect: increasing, for example, the number of datapoints
as well as the dimensionality of each datapoint will lead to multiplicitive increases in
runtime. However, observing changes based on the individual effects of each variable is
sufficient to draw intreresting conclusions about the performance of this system.

7



For the purposes of these analyses, we generated random datasets with specified
bounds and distributions. Each parameter-set was run and evaluated over 10 iterations–
in realistic situations, the number of iterations would vary with convergence time de-
pending on the data and random initialization of the centroids. These analyses were run
on a 64-bit Linux machine with 8GB of RAM and an Intel i5-4690K (4 cores at 3.5GHz)
processor.

At a high-level, we see that this system is highly performant under a variety of condi-
tions on the data and participating entities. As shown in figure 1, a trial using 500000
datapoints (over 4 clusters, 5 clients, and 2 dimensions) was completed in under 1 minute.
This suggests that even quite high counts of data yield reasonable runtimes, a property
not found in many comparable secure machine-learning systems. Additionally, scaling
to include 20 clients (with 100000 datapoints) was very reasonable, only increasing run-
times to around 90 seconds. Data gathered from trials varying the dimensionality and
number of data clusters showed similar linearity in the results.

We do, however, acknowledge some potential weaknesses in our evaluation metrics.
First of all, the lack of direct comparative data hinders us from drawing conclusions
about the ability for us to improve the performance of our system. Additionally, the
trials were run with networking emulated and all computation occuring on a single
machine: clearly, there is substantial performance overhead in communicating between
machines, but this had countering effects as the independent processes competed for
computing resources. Finally, a more thorough study of this system’s feasiblity would
include substantially more repitition of trials and utilize multiple data-sources, to observe
conditions in reasonable use-cases of this system.

7 Future Work

One of the primary goals of this paper was to explore potential extentions to the frame-
work and algorithm implemented. This section will discuss various improvements and
extensions which could be applied based on this work:

7.1 System Improvements

There are various means by which the existing implementation of our algorithm may be
improved. From a performance standpoint, python is suboptimal: using a lower-level
language could provide opportunities for improvement. Additionally, it may be useful
to explore means by which our implementation could be parallelized–this may require
reimplementing various libraries, but could provide substantial improvements in this
regard.

In consideration of security, we have shown that our implementation stands up to
the threat models described in section 3.2. However, it may be possible to extend
this system to stand up to other types of attacks. Authentication schemes could be
used to guard against faulty or malicious implementations of the protocol. A central
managing controller could reduce the possibility for one party to antagonize the rest by,
for example, decrypting and distributing the results of the addition protocol. Finally, it

8



would be valuable to provide insurances against malicious/falsified data by, for example,
limiting the number of datapoints any single entity can supply.

Finally, there is more work to be done before this system fills our original goal of
“usability”. The development of supporting tools to aid organizations in identifying
targets for collaborative learning, standardizing data formatting, and providing an easy-
to-use frontend would all be valuable extensions in this space.

7.2 Related Protocols

In the process of implementing the k-means clustering algorithm, we established several
multi-party computation primitives which could be used in the development of additional
machine learning algorithms. The inspiring paper[9] described an implementation of a
multi-party ID3 identification-trees algorithm using these same primitives. In addition,
we could explore extensions of either the k-means or ID3 trees algorithms to allow for
more complex or inconsistant partitionings of data. These would likely be valuable in
responding to the nuances and disparities found in typical data sources.

8 Conclusions

We sought to develop a usable, conceptually-scalable implementation of a multi-party
machine learning algorithm over encrypted data. We chose to implement and explore the
horizontially-partitioned k-means clustering algorithm described in SMO07[9], with the
potential for performance and security enhancements. The implementation was coded
in python using the Paillier homomorphic encryption libraries [3]. Our evaluation of our
implementation suggests that we were successful in developing a performance-friendly
algorithm, but there is still substantial room for further development in usability. Future
work may involve implementing some of these usability improvements or utilizing the
developed computational primitives to create additional machine learning algorithms.

9



References

[1] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression.
Advances in Neural Information Processing Systems, 2009.

[2] Pengtao Xie et. al. Crypto-nets: Neural networks over encrypted data. ICLR, 2015.

[3] Mike Ivanov. Pure python paillier homomorphic cryptosystem, 2011.

[4] L. Guo Y. Guo Y. Fang K. Xu, H. Yue. Privacy-preserving machine learning algo-
rithms for big data systems. IEEE, 2015.

[5] Blaine Nelson Benjamin Rubinstein J.D. Tygar Ling Huang, Anthony Joseph. Ad-
versarial machine learning. AISec, 2011.

[6] Thomas Ristenpart Matt Fredrikson, Somesh Jha. Model inversion attacks that
exploit confidence information and basic countermeasures. ACM CCS, 2015.

[7] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in cryptology—EUROCRYPT’99, pages 223–238. Springer,
1999.

[8] Stephen Tu Shafi Goldwasser Raphael Bost, Raluca Ada Popa. Machine learning
classification over encrypted data. IACR, 2014.

[9] Saeed Samet, Ali Miri, and Luis Orozco-Barbosa. Privacy preserving k-means clus-
tering in multi-party environment. In Javier Hernando, Eduardo Fernández-Medina,
and Manu Malek, editors, Proceedings of the International Conference on Security
and Cryptography (SECRYPT 2007), pages 381–385. INSTICC Press, 2007.

[10] Robin Sommer and Vern Paxson. Outside the closed world: On using machine
learning for network intrusion detection. IEEE, 2010.

[11] Tom Tistenpart. Exploiting leakage in searchable encryption and machine learning,
jan 2016.

10


