
Chasm: Fault-Tolerant, Information-Theoretic Secure Cloud
Backup using Secret Sharing

Alex Grinman, Akshay Ravikumar, Julian Fuchs, Kevin Li
{agrinman, akshayr, jfuchs, kmli}@mit.edu

https://github.com/agrinman/chasm

5/11/2016

Abstract

Most "secure" cloud backup software encrypts a
user’s data under a symmetric key that either they
store on their computer or backup elsewhere. If a
user loses the key when their computer crashes, their
encrytped, backed-up data is unrecoverable! Some
systems deal with this problem by generating a sym-
metric key that is dervied from a password the user
is asked to memorize. A password sacrifices entropy
and ultimately weakens the security of the system.
The cost of real security in these types of systems
is fault-tolerance, which is the underlying motivation
for backing up to the cloud. In this paper we present
Chasm, a fault-tolerant secure cloud backup solution
based on Shamir’s k-out-of-n secret-sharing scheme.

1 Motivation

There are many commericial backup solutions that
claim to provide confidentiallity and integrity of
user data. Some examples include Mozy, Carbonite,
Crashplan, and Backblaze. All of these products
essentially work the same way: data is encrytped
using symmetric encryption along with an messege
authentication code for integrity and sent to the
storage service’s cloud data store. Unfortunately,
this mechanism of encrypting the data does not solve

any problem, it simply concentrates the problem in
a short symmetric key. The maintainence of this
symmetric key is central to the fundamental security
of the system.

The threat model that most of these existing
solutions operate under is that the adversary is a
"hacker" who breaks into the storage service and
steals data. Hence, in this adversarial model, the
hacker will not be able to decrypt the data without
the key.

However, we find three problems with this so-
lution:

1. Low-entropy for password based derived
keys. If the symmetric key used is dervided
from a user memorizable password, then the en-
tropy of the key is much lower, and therefore a
hacker or even the a powerful cloud storage ser-
vice could decrypt the data by brute-force guess-
ing the password.

2. Fault-tolerance for lost keys. If the symmet-
ric key is not password-derviced, it must be ran-
dom and too long to memorize, hence the user
must store it somewhere. This defeats the pur-
pose of performing the cloud backup in the first
place, as now if they key is lost due to a com-
puter crashing, the data is irrecoverable.

1

https://github.com/agrinman/chasm


3. Usability. Remembering passwords or storing
keys is an extra hassle for the user, which makes
system less usable. In fact, most users do not en-
crypt their personal cloud backup either because
the software is too complicated or the extra bur-
den is simply not worth the promised protection.

2 Introduction

With these motivating flaws of existing solution in
mind, we present the design and implementation of
Chasm, a secure cloud backup solution that is truly
fault-tolerant and provides information-theoretic
confidentiality and integrity based on Shamir’s
Secret Sharing Scheme.

The Chasm system is designed for the every-
day user. Chasm has no passwords and provides a
user-interface that everyone already knows: simply
drag and drop a file into the Chasm folder, and the
rest is taken care of.

Chasm operates over already existing, indepen-
dently operated cloud storage services like Dropbox,
Google Drive, iCloud Drive, Microsoft One Drive, or
AWS, which most users today already have accounts
with.

The security strength of Chasm is determined
by N , the number of cloud services the user has
delegated Chasm to use, and K the user chosen
recoverability threshold. Chasm secret share the
user’s private data between N cloud storage services,
setting the recoverability threshold to K using
Shamir’s scheme.

3 Threat-Model

Before we describe the details of Chasm, we first
present our adversarial and threat models. We con-
sider the following adversaries:

1. A Malicious Cloud Storage Service is mo-
tivated to read user data for a variety of rea-

sons like system performance upgrades, market
research, or possibly even to sell for more profits.

2. A Hacker who breaks into a storage ser-
vice motivated to find valuable user data to ex-
pose for blackmail, sell, or even use to access
bank accounts.

3. A Nation-state actor could be motivated to
learn more about a political dissident or state
enemy, spy on its own citizens, or spy on citizens
of foreign countries.

Given these adversaries, we consider the following
threats:

• Cloud storage services can directly read and copy
any data that they are storing for the user

• Large cloud hosting services, nation state actors,
or even hackers can have large computational re-
sources, which may allow them to brute-force the
passwords or weak keys

• A nation-state actor (like the NSA for example)
can by legal means coerce K of the storage ser-
vices to leak user-data.

• A nation-state actor may even by legal means re-
quire the cloud storage services to deny the user
access to their data, thereby causing a denial-of-
service attack.

Chasm is designed to defend against these adversial
threats with the assumption that at-least K-out-of-
N cloud storage services are not corrupted in these
ways.

The fear of nation-state attackers is especially
prevalent in Europe, following the revelations of Ed-
ward Snowden. There, concerns grow over the fact
that most cloud storage services are US-based and
hence susceptible to strong-arming by the American
government. Many businesses hence seek alternatives
or secure backup schemes in which the cloud storage
service cannot necessarily be trusted [2].

2



4 Related Work

As mentioned previously, existing commercial backup
schemes suffer problems of over-reliance on a pass-
word. But in addition to this, their numerous fea-
tures add a layer of confusion between the user and
the backup provider, and layers of complication mag-
nify potential for human error to introduce vulnera-
bilities. In a sense, these services seem to offer a
security-through-obscurity scheme in which the user
simply has to trust that the services provide the
promised security.

And even if they do live up to the promised stan-
dards, there continues to exist a vulnerability under
our current threat model; namely, that exactly one
organization controls the data. From a risk manage-
ment point of view, increasing the number of orga-
nizations responsible and decentralizing via a secret
sharing scheme can reduce the probability of a breach
resulting in harm considerably, and increase the sur-
vivability of storage [12].

There exist a number of proposals in the literature
for backup schemes of various styles. Each of these
trades off different levels of confidentiality, availabil-
ity, and integrity of data, especially with considera-
tions for the performance of secret sharing schemes
and the space costs of replication schemes.

One common technique is to increase availability
in the case of a breach is state machine replication,
whereby many machines provide the same service,
in this case, backup the same data, and if during
restoration, a majority of the machines agree on an
answer, that answer is treated as correct [10]. In or-
der to preserve confidentiality, the data needs to be
encrypted before upload. However, in addition to be-
ing very costly space-wise, the need to encrypt data
presents a number of problems. In particular, in a
state machine replication scheme, key management
is difficult to deal since all the data need to be redis-
tributed [9].

Another, more efficient form of replication is a quo-
rum system. Rather than have all the servers dupli-
cate the data, in a quorum system each of the servers
have some subset of the data such that they over-
lap in data with other systems. More specifically,

each server has some nonempty intersection with ev-
ery other server [8]. One such scheme that combines
a quorum system with secret sharing distributes mul-
tiple shares to each server, such that they overlap and
multiple servers have copies of the same shares, but
no x− 1 of the servers together have all of the shares
and any x of them do [5].

While these replication systems are used to im-
prove Byzantine fault tolerance, against situations
even where servers arbitrarily deviate from what they
are intended to do, they are bulky and somewhat
inflexible. For example, share renewal in long-term
storage systems is A number of solutions have been
proposed that combine various replication systems
with secret sharing [11, 6]. The motivation for such
solutions primarily stems from the fact that secret
sharing is a fairly computationally expensive process,
as demonstrated by benchmarks performed by Sub-
biah and Blough (2005) [11]. To improve on various
problems with pure secret sharing schemes, other im-
provements have been suggested. For example, POT-
SHARDS uses two layers of secret sharing to im-
prove computational performance [3], while another
scheme, which is more computationally expensive, al-
lows verification of shares after they have been com-
puted, and provides for simpler methods of share re-
newal [1].

There also exist schemes, which instead of secret
sharing the data itself, encrypt the data with an AES
key and secret share the key [4]. While such a scheme
is much more computationally feasible, Subbiah and
Blough (2005) points out that such a scheme still is
susceptible to the weaknesses of the cryptographic
keys itself, so compromise of the keys by brute-force
or by holes in application security can reveal all the
information [11].

Finally, while all these schemes exist within the
minds and writings of academics, one example of se-
cret sharing-based backup being used in enterprise
systems is at the Kyoto University Hospital, where
the confidentiality, integrity, and availability of pa-
tient records are all crucial to maintain, and the data
must be recovered quickly in the case of database dis-
aster [7].

3



Figure 1: Basic structure of Chasm. When a file is
added to the Chasm folder, its contents are secret
shared across all connected storage services.

5 How Chasm Works

The primary interface to Chasm is the command-line
utility, written in Go, which can perform all of the
following tasks. For specific usage information, run
chasm –-help. There is also a GUI under develop-
ment.

5.1 Setup
The main step in setting up Chasm is connecting it
to several cloud storage services, such as Dropbox or
Google Drive. Chasm requires at least two to func-
tion and does support multiple accounts on the same
service. The user is responsible for authenticating
themselves to those services; in most cases, the ser-
vice will provide a one-time code that the user can
copy-paste into Chasm to allow it to read and write
the user’s cloud storage.

When Chasm is started for the first time, it cre-
ates a "Chasm folder" at the specified location (by
default, the user’s home directory) and initializes it
with a .chasm file. The .chasm file stores all the in-
formation necessary for Chasm to function: authen-
tication tokens for each cloud service and metadata
about each file (see below for specifics).

5.2 Sharing/backup
The Chasm folder can be used like any regular di-
rectory: users can add, modify, and remove both
files and directories. Chasm listens for all filesystem
events within this folder; when a file is created or
modified, Chasm splits it into n shares using Shamir’s
secret sharing scheme, and uploads one share to each
cloud store. Removing a file causes all of its shares to
be deleted from the cloud stores. Performance is not
an issue: the Go implementation of Shamir’s shar-
ing can process multi-megabyte files for small n and
k in less than a second; moreover, the sharing and
uploading all happens in the background.

To reduce the amount of information available to
an adversary who has access to a cloud store, Chasm
assigns random IDs to each file and flattens the direc-
tory structure. These features are both implemented
through the .chasm file, which contains a mapping
between the IDs and the full original file paths. The
only file not obscured in this way is the .chasm file
itself, since Chasm needs to be able to find it first to
restore the rest. One additional benefit of this de-
sign is that moving or renaming a file in the Chasm
folder only requires resharing the .chasm, and not
the affected file, since its content did not change.

5.3 Restoring

To restore the backed-up files, Chasm must first be
connected to all the cloud stores as described in sec-
tion 5.1. After that, Chasm can completely restore
the file contents and directory hierarchy of the orig-
inal Chasm folder. It downloads the shares stored
on every cloud store, and restores .chasm first. It
then recreates all the other files, and recreates the
necessary folder structure according to the metadata
in .chasm.

Shamir’s secret sharing is a malleable scheme, so
an adversary with write access to the cloud stores
could corrupt the user’s data. To prevent this, the
.chasm file also includes the SHA-256 hash of each
file, allowing Chasm to detect modified files. If k < n,
then Chasm can also try different combinations of
shares to figure out which share was corrupted and
restore the file uncorrupted.

6 System Guarantees

Chasm is based off Shamir’s Secret Sharing
Scheme, which provides information-theoretic secu-
rity. Therefore, we may make the following guaran-
tees:

• Confidentiality As long as less than k out of
n services collude, no adversaries can gain any
information about the user’s data. Therefore,
we have information-theoretic confidentiality.

4



• Fault-Tolerance As long as the user still has
access to data from k out of n services, she can
recover any lost data when, for example, her
computer crashes.

• Integrity The integrity of shares is verified by
computing the SHA-256 hash of each share.
Therefore, as long as k out of n shares have not
been corrupted, the original data can be recon-
structed.

The user can set the values of k and n as needed,
determining the extent to which these three proper-
ties are upheld.

7 Usability

Chasm provides a simple solution for distributed se-
cret sharing of potentially sensitive data. Because
many users already have services like Dropbox and
Google Drive, users can install Chasm with minimal
overhead.

Similarly, the recovery process is extremely simple.
For example, if a user’s computer crashes, he can
simple install Chasm on his new computer, log into
his file storage services, and recover his data with
a simple command. Restoration can happen at any
time on any device. The only requirement is that
users know the passwords to these services, which is
a reasonable expectation. The user does not need to
remember or store any encryption keys.

Finally, Chasm offers a simple and usable interface.
Upon starting the Chasm process, users can simply
drag-and-drop files into the Chasm folder to sync it
across connecting file stores. A GUI for a desktop
application is currently being created, which removes
the technical overhead in using the command line and
increases the simplicity in syncing, restoring, and log-
ging into the different services.

8 Issues

There exist several known issues and security vulner-
abilities, but fortunately their solutions are within
reach.

In the current framework, it is very easy for an
adversary to determine the number of files and size
of each of the files. While the file structure and the
names of each of the files is hidden, this information
leakage could potentially be unacceptable to a highly
paranoid user. The solution to this is to concatenate
data and then redivide into blocks of fixed size, so
that only the quantity of data being backed up is
visible.

While the cloud storage services gain no informa-
tion about the data since they only receive one of
the shares, a potentially malicious service provider
or anyone listening on the network on which backups
are taking place might be able to look at the out-
bound shares. Fortunately, most of the cloud storage
services that people use often use secure communica-
tion protocols to transmit data over networks.

While using secret sharing precludes the need for
passwords or keys to encrypt data, Chasm still re-
lies on users having secure accounts on cloud storage
websites. The insinuation is that users might more
easily remember their account information for com-
monly used websites such as Google, compared with
their passwords for seldom-used backups that don’t
often require password inputs. This presents the po-
tential problem that for users with poor password
security on their various cloud storage accounts still
have vulnerable; namely, adversaries can exploit weak
or reused passwords to gain access to backed-up data
if they are aware of the scheme that is being used. To
improve security on this front is outside the realm of
what Chasm can do for users; Chasm’s security pre-
supposes its users having adequate security on their
cloud storage accounts. Luckily, for many users this
is a simple fix - they can adopt longer, more unique
passwords, and use two-factor authentication.

Researchers in backup systems often point to the
fact that secret sharing is extraordinarily computa-
tionally expensive. Benchmarks done by, for one,
Subbiah and Blough (2005) [11], show that for large
values of n or x, or for very large amounts of data,
processes such as polynomial interpolation in finite
fields can grow very expensive. In that respect,
Chasm is not designed necessarily for very large net-
works on servers used to communicate data; notwith-
standing the needs of extraordinarily paranoid users,

5



the use of up to n = 5 is far more than enough to
provide the security needed under our threat model.
Furthermore, Chasm is not designed necessarily for
backup of large files like videos, and even if it is used
for this, uploading is done in the background and
will not be an extreme inconvenience to users. The
restore function, since it is not done very often, is not
bad if it is too costly anyway.

There exists, still, the possibility that an adver-
sary, or a malicious cloud storage organization, might
silently modify the shares. By sharing the hashes of
the shares, Chasm is still able to detect these modifi-
cations, and it is computationally difficult for an ad-
versary to modify data completely silently, assuming
target collision resistance. If more than n− x of the
servers are compromised and data is modified, then
Chasm can do nothing to recover the data, but the
extent of this intolerance is no worse than Chasm’s
Byzantine fault tolerance or crash tolerance: if more
than n− x servers simply crashed, or did not return
the right data, then the data is irrecoverable anyway.

9 Next Steps

Possible future additions to the core project concept
include:

• Support for more storage services, allowing
larger values for x and n

• Storing the uploaded files as blocks of uniform
size to obscure their size

• Encrypting the data before uploading

• Detecting if the storage services have colluded
(possibly not feasible)

• Increasing performance by parallelizing the gen-
eration of shares and uploading to the file stores

• Improving performance using methods outlined
in any of [11, 9, 3]

• GUI for setup and login instead of command-line
utility

10 Conclusion

In this paper we presented Chasm: an application
of Shamir’s Secret Sharing scheme that uses indep-
dent, pre-existing cloud storage services, like Google
Drive and Dropbox, to provide everyday users with
information-theoretic confidentiality, integrity, and
fault-tolerance for sensitive data and file backup in
the cloud. Chasm beats competing secure backup ser-
vices in usability, security, and even availability while
asking for almost zero trust beyond the correctness
of the client side application.

Chasm operates in a more realistic threat model
for today’s ever increasing dependence on cloud ser-
vices. Chasm distributes trust instead of relying on
any single point of failure, a principle which we hope
more services and application will start to adopt in
the future.

References

[1] Chor, Benny, Shafi Goldwasser, Silvio Micali,
and Baruch Awerbuch. "Verifiable Secret Shar-
ing and Achieving Simultaneity in the Presence
of Faults." 26th Annual Symposium on Founda-
tions of Computer Science (1985): 383-95.

[2] Gastermann, Bernd, Markus Stopper, Anja Kos-
sik, and Branko Katalinic. "Secure Implementa-
tion of an On-premises Cloud Storage Service for
Small and Medium-sized Enterprises." Procedia
Engineering 100 (2015): 574-83.

[3] Greenan, K., M. Storer, E.l. Miller, and C.
Maltzahn. "POTSHARDS : Storing Data for the
Long-term Without Encryption." Third IEEE In-
ternational Security in Storage Workshop (2005).

[4] Herlihy, Maurice P., and J. D. Tygar. "How
to Make Replicated Data Secure." Advances in
Cryptology - CRYPTO ’87 Lecture Notes in Com-
puter Science (1988): 379-91.

[5] Ito, Mitsuru, Akira Saito, and Takao Nishizeki.
"Secret Sharing Scheme Realizing General Access
Structure." Electronics and Communications in

6



Japan (Part III: Fundamental Electronic Science)
72.9 (1989): 56-64.

[6] Lakshmanan, S., M. Ahamad, and H.
Venkateswaran. "Responsive Security for
Stored Data." 23rd International Conference
on Distributed Computing Systems, 2003.
Proceedings.

[7] Kuroda, Tomohiro, Eizen Kimura, Yasushi Mat-
sumura, Yoshinori Yamashita, Haruhiko Hira-
matsu, Naoto Kume, and Atsushi Sato. "Apply-
ing Secret Sharing for HIS Backup Exchange."
35th Annual International Conference of the
IEEE Engineering in Medicine and Biology So-
ciety (2013): 171-74.

[8] Naor, Moni, and Avishai Wool. "Access Control
and Signatures via Quorum Secret Sharing." Pro-
ceedings of the 3rd ACM Conference on Computer
and Communications Security 9.9 (1996): 909-22.

[9] Reiter, Michael K., and Kenneth P. Birman.
"How to Securely Replicate Services." ACM
Transactions on Programming Languages and
Systems 16.3 (1994): 986-1009.

[10] Schneider, Fred B. "Implementing Fault-tolerant
Services Using the State Machine Approach: A
Tutorial." CSUR ACM Computing Surveys 22.4
(1990): 299-319.

[11] Subbiah, Arun, and Douglas M. Blough. "An
Approach for Fault Tolerant and Secure Data
Storage in Collaborative Work Environments."
Proceedings of the 2005 ACM Workshop on Stor-
age Security and Survivability (2005): 84-93.

[12] Wylie, Jay J., Michael W. Bigrigg, John D.
Strunk, Gregory D. Ganger, Han Kiliccote,
and Pradeep K. Khosla. "Survivable Information
Storage Systems." Computer 33.8 (2000): 61-68.

7


	Motivation
	Introduction
	Threat-Model
	Related Work
	How Chasm Works
	Setup
	Sharing/backup
	Restoring

	System Guarantees
	Usability
	Issues
	Next Steps
	Conclusion

