Classifying Windows Malware
with Static Analysis

Maryann Gong, Uma Girkar, Benjamin Xie
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Email: {mmgong, umag, bxie} @MIT.edu

Abstract—Adversaries are creating new types of malicious
software, or malware, at an increasing rate. The amount and di-
versity of malware are making classic security defenses more and
more ineffective. Our objective is to analyze multiple dimensions
of Windows executable programs. We used machine learning
techniques to build and train a classifier to identify malicious
software from benign software. We find that the best mixed
features classifier we created performs over 10% better than the
average performance of 57 commercial anti-virus programs we
tested against. In analyzing the performance of the commercial
anti-virus programs, we also find bias in the design decisions that
sacrifices security in favor of usability.

I. INTRODUCTION

Problem Statement: In the past 2.5 years (since 2013),
there have been more new kinds of malware created than the
ten years before that combined [1], as depicted in Figure 1.
The need to detect previously unseen malware is growing. Of
particular concern are the Windows operating systems, which
run on over 85% of desktops today [2]. The proliferation of
smart mobile devices further increases the attack surface. It is
believed that 80% of infected mobile devices have been traced
to connections to Windows computers and laptops [3].

= New Malware

Last update: 05-03-2016 09:35 Copyright © AV-TEST GmbH, av-testorg

Fig. 1: Number of new malware threats by year [1]

Our objective is to use supervised machine learning tech-
niques to create a classifier that accurately identifies malware,
even if the malware is new and previously unseen. We take
steps towards this objective by creating and training a classifier
that uses static analysis to detect malware in the form of
Windows portable executable files (.exe files). Using static

analysis techniques, we analyze files without running them
and extract features used for classification. We find that our
results better average results from 57 publicly available anti-
virus services and also identify biases in the design of anti-
virus services that pose threats to users. We also compared
the classifier we built to other common machine learning
classifiers and find that we were able to outperform them as
well.

A. Security/Attack Model

Attackers write malicious software that is designed to
compromise, infiltrate, or damage a computer system without
the owner’s consent, and, in some cases, knowledge. This
software can infect a machine via various methods, such as
cross site scripting attacks, through infected removable drives,
or through spam emails [4]. We assume that an adversary
has no direct access to the target computer system and does
not have the ability to login to the computer, directly or
remotely. Once installed, malware can be used by adversaries
to steal sensitive information, perform computations (botnets),
and leverage money from the user (ransomware). Ideally,
adversaries should have none of these powers to access the
computer system itself. In some cases, adversaries may be
allowed to observe network traffic to and from the computer
system, but they should not be able to observe and modify
components within the system.

The goals of static malware detectors are to identify a
wide variety of existing malware (if not all), identify newer
modifications or variants of existing malicious software, and
identify completely new malware, while also identifying be-
nign software as safe all without running the program in
question.

Users are assumed to be honest in that they will not
attempt to disable or compromise malware detection programs.
We assume that they will accidentally attempt to download
malware. Upon attempting to install a malicious program,
the malware detection software should abort the installation
process, quarantine the program, and alert the user the file
was suspected to be malicious. Suspected malware can only
be run if the informed user understands the risks and chooses
to run it anyways.

II. PREVIOUS WORK

Traditional approaches to malware detection can be catego-
rized into two categories: static analysis and dynamic analysis.

Static analysis involves analyzing a suspected file without
running it, as first proposed by Lo 1995 [5]. Static analysis
is more secure and efficient because it can be done without
running a potentially malicious file. The greatest limitation to
static analysis is obfuscation of code.

To prevent detection, malware creators obfuscate code by
deliberately attempt to write and package it such that the
malicious code is difficult to read without being run first.
Obfuscation techniques have shown to be successful against
common anti-virus programs such as Norton because they
focus on matching syntax. Recent research has focused on
identifying malware by analyzing the semantics of programs
[6]. Static analysis can better common obfuscation techniques,
but Moser 2007 has shown that generic analysis of obfuscated
code is NP-hard [7].

Dynamic analysis runs programs in isolated or limited
settings to determine if programs are malicious. More specif-
ically, dynamic analysis typically executes malware binaries
and decides during runtime when the program has been
unpacked if it is malicious or not. At this point, most ob-
fuscation has been removed [8]. Examples of dynamic anal-
ysis techniques include monitoring threads and processes and
simulating common Internet protocols (INetSim). The main
limitation to dynamic analysis is that limited (often single)
paths of execution are examined, leading to an incomplete
picture of malware activity.

A. Machine Learning for Malware Detection

Machine learning for malware analysis can be roughly
categorized into two categories: classification and clustering.

Reserachers have come up with a number of machine
learning-based malware detection algorithms in recent years.
One such framework for the automatic analysis of malware
behavior with machine learning [8] uses clustering to auto-
matically identify novel classes of malware with similar be-
havior. Another algorithm targeted towards malware detection
in Android devices extracts features from packaged Android
applications. It then uses these extracted features to train an
One-Class Support Vector Machine [9]. The main idea behind
this algorithm is to generate a classifier that will classify the
majority of the training data as positive and classify testing
or training data as negative only if it is significantly different
from the training data. The algorithm is constructed this way
because known, benign applications are far more accessible
than malicious ones.

Clustering yields a faster runtime performance in prac-
tice, but it requires processing files in batches. Recent work
by Reick 2011 has used both classification and clustering
techniques for more incremental analysis [8]. The features
analyzed include analyzing strings in binary executables as
well as the binaries themselves.

III. METHODS
A. Dataset

Our dataset consists of a total of 3,294 Windows Portable
Executable (PE) files. This dataset is split between 2,382
known, verified malware programs and 912 known, benign
software programs. This dataset was collected and provided
by the company Cyphort [10], a computer and network se-
curity company focused on fighting advanced persitant threats
(APTs). We split this dataset 80% and 20% into a training and
test set respectively. In our test set, we maintained a similar
class balance as in our entire dataset, meaning the test set
should be approximately 70% malware and 30% benign files.

B. Features

1) Dynamic-Link Libraries: One of the key sets of features
we used is a list of dynamic link libraries used by each Win-
dows executable. A Dynamic Link Library, or DLL, is a shared
library that contains code, resources, data, or any combination
of the aforementioned. They share the file extension .dll. These
DLLs are used by Windows programs to share functionality
and resources between themselves. Much of the functionality
of Microsoft Windows Operating Systems is provided through
use of DLLs [11].

Commonly used resources, code, functions, or data are
packaged in DLLs, which can be bound or linked to some
Windows program. USER32 and WSOCK32 our examples of
DLLs. USER32 is a user interface library and WSOCK32 is a
Windows socket application programming interface [12]. The
use of these shared libraries is motivated by resource reduction
and modularity. By dynamically linking these shared modules
at runtime, programs can avoid code duplication, improving
overall program performance. In addition, these separately
imported, shared libraries encourage modularity, allowing for
DLLs to be individually fixed and updated without disrupting
the applications that use them [13].

We can infer certain characteristics about a program through
the set of DLLs it uses. We used these DLLs to help distin-
guish between benign and malware executables.

We used GNUs objdump command to extract the list of
DLLs used by a Windows executable [14]. The program
headers in the program executable files contain information
such as the file size and also the list of DLLs used by the
program. We were able to parse the DLLs from the output
generated by the objdump command.

We use a bag-of-words approach when representing the
DLLs for each file. That is, we look at frequency and existence
of DLLs without considering the order. Once we extracted the
list of DLLs for each file, we constructed a feature vector for
each file where each index corresponded to a specific DLL
whose value was either 1 or 0, indicating whether that DLL
was present in the file or not. The overall dimensionality, or
number of DLLs, found for our data set was 414.

2) Strings: Portable Executable format files also contain
printable strings within their headers and the bodies of the
files. These printable strings could reveal information re-
garding the nature of the program, whether it is benign or

TABLE I: Most common strings from benign and malware
files

Benign Malware
Sleep GetProcAddress
GetCurrentProcess ExitProccess
ExitProcess GetLastError
CloseHandle SVW3
LoadLibraryA CloseHandle

110e¢ Ocba b400 cd09 bE21 401 21ed 6854
7369 7020 6672 7267 6d61 7220 7165 6975
6572 2073 694d 7263 736{ 6661 2074 6957
646e 7761 2¢73 0a0d 0024 0000 0000 0000
454¢ 305 026¢ 0009 0000 0000 0302 0004
0400 2800 3924 0001 0000 0004 0004 0006
000c 0040 0060 021e 0238 0244 0215 0000
0001 0004 0000 0R02 0032 1304 0000 030a

Fig. 2: Example of hexdump command output.

malicious. These strings could be part of the file name, file
author signatures, bits of recycled code, or information on
system resources used [12]. We were able to extract these
printable strings from file using the GNU strings command
[14].

In Table I, we display the most common printable strings
found in both our benign training dataset and our malware
training dataset.

We assume a bag-of-words approach when constructing
our strings representation of our dataset. Using the set of
extracted strings from our dataset, we constructed binary
attribute vectors where each string represents a binary feature.
For each file, we indicated whether the specific string was
present or not in the file with either 1 or 0.

3) Byte Sequences: The portable executable files contain
binary representations of the machine instructions. For our
byte sequences set of features, we converted the binary code
file into a hexadecimal file. In this representation, each ma-
chine instruction is a 2-byte word composed of two, 2-digit
hexadecimal numbers. Whereas the DLL features set revealed
resource information for a program, byte sequences represent
which specific machine instructions are used and called in a
program [12]. We reasoned that benign and malware programs
would display distinct patterns of machine instruction calls.

To extract the byte sequences, we utilized the hexdump
linux command to convert the binary code into lines of 4-digit
hexadecimal words [15]. To simplify computations, maintain
program efficiency, and reduce feature dimensionality, we
consider a random subset of the machine instruction words
from the program file. First we select a random subset of 100
lines from the program file. Then, from each selected line,
we randomly choose a subset of 10% of the words from the
line. We again assume a bag-of-words representation for our
features. The feature vector for each file is a binary attribute
vector where each machine instruction word from the dataset
represents a particular attribute in the vector. For each attribute

for a file, we indicate the presence of the specified word with
1 and its absence with 0.

C. Classification

1) Naive Bayes: We used the Naive Bayes classifier on
each of our feature sets individually to distinguish between
malicious files and benign files. The classifier is based on
the Bayes rule and relies on the assumption that the pre-
dictors are not dependent on each other within each class.
In other words, in order to determine P(X|Y) where X =
< X1, Xo,...X,, >, the algorithm assumes that all the X;s
are conditionally independent of each other given Y. Each
X; is also independent of all subsets of the other X;s given
Y. However, this classifier has been found to work well even
when the conditional independence assumptions do not hold.

The Naive Bayes method uses the training data to estimate
the parameters of a probability distribution. For the prediction
step, the Naive Bayes classifier then computes the posterior
probability of the testing set for each class. The test data is
classified as the class with the highest posterior probability.The
formula for computing the posterior probability by the Naive
Bayes algorithm is derived as follows:

PY = Yi|X1X..X,) =
P(Y = Y)P(X1X2..X,|Y = Y3)
> P(Y = V) P(X1 X0 X, [Y = Y))

This equation comes directly from the Bayes rule. Now using
the conditional independence assumptions made, we obtain the
following equations.

P(Y = Yi| X1 Xo... X)) =
PY =Y [[P(Xi]Y =Y3)
>, PY =Y;) [IP(X|Y =Y))

We can manipulate this equation to find the class with the
highest posterior probability to get:

Y « argmaz,, P(Y = Y;) [[P(Xi|Y = Ya)

We can ignore the denominator because it is not dependent on
Yk-

2) Combining Feature Set Classifiers: We utilized three
different methods of combining our main feature sets of
DLLs, strings, and byte sequences. The first method simply
merges the individual feature vectors into one large vector. The
second method trains a classifier on each individual feature
set, equally weights the classifiers, and takes the majority vote
of their output classifications. The final method again trains
a classifier on each individual feature set, then averages the
outputted posterior probabilities of each class, and selects the
class that maximizes the average posterior probability.

a) Merging Feature Vectors: In this method, we merged
the three separate feature vectors into one large feature vector.
We appended the binary attribute features for DLLs, strings,
and byte sequences into one large, combined feature vector.
The dimensionality of the individual DLLs, strings, and byte
sequence feature vectors were 414, 1502, and 445 respectively.
The combined feature vector has dimensionality of 2361. We
then ran our same Naive Bayes classifier on this new combined
feature vector to determine the final class predictions. This
combined classifier does not associate attribute features with
their original feature sets and does not leverage the information
this relationship might yield.

b) Equally-Weighted Voting: For the equally-weighted
voting scheme, we first trained and tested our Naive Bayes
classifier on each of the individual feature sets to get three
separate sets of class predictions. Then to combine these
classifiers we took the majority for each test sample. For
example, if test sample x was labeled as benign by two of the
feature set classifiers and malware by the remaining classifier,
then our equally-weighted voting classifier would classify test
sample x as benign. This method naively gives each set of
features equal importance.

¢) Maximum Averaged Posterior Probabilities: Finally,
for our last combined classifier method, we utilized the average
of the posterior probabilities on each feature set. Similarly
to the equally weighted voting scheme described above, we
first applied our Naive Bayes classifier individually on each
of the feature sets. Recall from the previous section where we
described the algorithm, Naive Bayes calculates the posterior
probability of a sample belonging to each class (benign or
malware) given the set of features or observations for that test
sample, and then outputs the class with the maximum posterior
probability. For this combined classifier method, we average
the calculated posterior probabilities from each feature set and
then select the class with the maximum average posterior
probability [16]. Although each feature set technically has
an equal weight, the level of confidence of the classifiers
of each feature set does affect the overall weighting of the
output classification. If a classifier on a particular feature set
is very confident (has a high posterior probability for a class),
then this will be reflected in the combined classifiers posterior
probabilities.

IV. RESULTS

We tested and evaluated our Naive Bayes classifier on all
three individual feature sets of dynamic link libraries, strings,
and byte code sequences. The results from the three individual
feature sets are displayed in table II. Next, we tested three
different classifier combination methods (as described in the
previous section) on the combined data set consisting of all the
feature sets. The results from these three methods are shown
in table III. For each experiment, we count the number of
true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). True positives and true negatives
refer to malicious and benign samples respectively that were
correctly classified. False positives refer to benign samples that

were misclassified as malware. Similarly, false negatives are
malicious samples that were misclassified as benign.

TABLE II: Performance on Individual Feature Sets

l Feature Set H TP [TN [FP [FN H Accuracy ‘

DLLs 456 | 66 | 116 | 20 79.33%
Strings 176 | 182 0 300 54.41%
Byte Sequences || 469 | 98 84 7 86.17%

The highest performing feature set consisted of the byte
sequence features, while the lowest scoring features were the
strings. We anticipated that the byte code sequences may have
the highest accuracy due to the nature of the information it
brings. Specifically, byte sequences reveal information on each
individual machine instruction called by the program. Further-
more, this particular feature set had the largest dimensionality
at 1,502, which was more than three times the dimensionality
of the other two feature sets. We discuss a possible explanation
for the low performance of our classifier on our strings feature
set due to code obfuscation later in our section on limitations.

Since the eventual goal of our tool is to prevent user’s ma-
chines from becoming compromised by malware, we wish to
prevent malicious software from being misclassified as benign.
Therefore, the first priority is to minimize false negatives. Our
byte sequence features have by far the lowest false negative
rate at approximately 1.06%, whereas our strings features has
a very high false negative rate at 45.59%. The DLLs feature
set also yielded a relatively low false negative rate at 3.04%.
However, it is significant to note that the strings feature set
had zero false positives, meaning no benign programs were
misclassified as malware. This could also indicate that the
classifier on the strings feature set was slightly biased towards
negative, or benign, classification.

TABLE III: Performance on Combined Feature Set Classifiers

’ Combination Method H TP ‘ TN ‘ FP ‘ FN H Accuracy

Merged Feature Vect. 316 | 167 | 15 | 160 73.40%
Eq. Weighted Voting 455 | 66 | 116 | 21 79.18%
Maximum Avg. Posterior || 454 | 128 | 54 22 88.45%

We combined our separate feature sets by merging the
feature vectors themselves, combining the classifiers in an
equally weighted voting scheme, and by averaging the pos-
terior probabilities outputted by each classifier. These three
methods are described in greater detail in the Methods section.
The performance of the three different combination methods
align with their levels of sophistication.

The simplest method of combining the feature sets was
by explicitly merging the actual feature vectors themselves.
This resulted in a 73.40% accuracy rate, which is lower than
the individual performance of both DLLs and byte sequence
features. The high dimensionality of the combined feature
set may cause overtraining, negatively impacting performance.
Also, similar to the strings features, there is a relatively low
false positive rate and high false negative rate. This indicates

that the strings feature set had a negative influence on the
overall classifier using this method.

The next method was slightly more complex. The equally
weighted voting scheme outputted the majority decision of
the three separate feature sets. Accuracy improved over the
first method to 79.18%. However, this is still lower than the
individual performance of the byte sequence feature set and
comparable to the DLL feature set. This can be attributed to
the fact that despite strings’ relatively poor performance, it
still has the same weight vote as the other classifiers.

The last method, taking the maximum of the averaged
posterior probabilities, was the most sophisticated and used
the output of the individual feature set classifiers at a finer
granularity past the hard, class assignment to the actual
posterior probabilities. The performance of this method was
the highest out of all combination methods and all individual
feature set classifiers at 88.45%. It had relatively low false
negative and false positive rates at 3.3% and 8.2% respectively.

V. DISCUSSION
A. Comparing to the State of the Art

We compare our performance to that of 57 publicly available
Anti-Virus software using VirusTotal [17]. We analyze a
sample of 1,484 files from our dataset (814 benign files,
670 malware files) and report our results in Table IV. We
find the average accuracy of the 57 Anti-Virus programs
to be 77.49%. We note that Anti-Virus programs tend to
bias towards classifying files as benign, as evidenced by the
strong performance in identifying benign files (true negative)
and tendency to classify malware as benign (false negative).
A likely explanation is the balance between usability and
security. While false positives are safer for a system, they
present a strain on the user as they become frustrated that
their anti-virus program constantly warns them of files that
are often trusted. False negatives are more dangerous to the
system though, so the underlying justification for Anti-Virus
companies is likely that some form of anti-virus software
running on a system is better than none at all or a disabled
anti-virus program. We argue that users should be informed
of this design decision which places users at greater risk and
perhaps have a choice of deciding “security levels” of their
anti-virus to balance usability and security.

We did not compare our algorithm with other malware

TABLE 1V: Average Performance of 57 Commercial Anti-
Virus Services (from VirusTotal)

l TP l TN l FP l FN “ Accuracy‘
(056 [005 | 005 [044 || 77.49% |

detection algorithms because our binary and malicious files
did not match the format of the files required to run these
algorithms. Additionally, it did not make sense to compare
the accuracy between algorithms tested on different datasets.
As a result, we compared our algorithm to other state of
the art machine learning classifiers using the data obtained

by extracting certain features from the original binary and
malicious files. We tested the data with the support vector
machine classifier [18], binary decision tree classifier [19],
and the discriminant analysis classifier [20]. The resulting
accuracies are displayed for the DLL features (Table V),
strings features (Table VI), and byte sequence features (Table
VII).

TABLE V: Other Classifier Performance on DLLs

l ML Classifier H TP [TN [FP [FN H Accuracy ‘

SVM 466 | 124 | 58 | 10 79.64%
Binary Decision Tree 444 | 100 | 82 | 32 79.94%
Discriminant Analysis || 360 | 113 | 33 | 21 74.57%

TABLE VI: Other Classifier Performance on Strings

l ML Classifier H TP [TN [FP [FN H Accuracy ‘
SVM 440 | 130 | 52 | 36 86.63%
Binary Decision Tree 442 | 125 | 57 | 34 86.17%
Discriminant Analysis || 438 | 116 | 66 | 38 84.19%

TABLE VII: Other Classifier Performance on Byte Sequences

l ML Classifier H TP [TN [FP [FN H Accuracy ‘

SVM 471 | 90 92 5 85.26%
Binary Decision Tree 460 | 76 | 106 | 16 81.46%
Discriminant Analysis 362 | 85 61 19 80.27%

The accuracy produced by the other machine learning
classifiers significantly varied across the individual feature
sets. For the DLL feature sets, the other machine classifiers
performed roughly around the same as our classifier. Our
classifier performed better than the support vector machine,
binary decision tree, and discriminant analysis classifiers for
the byte sequences feature set. Finally, all three of the other
machine learning classifiers performed much better than our
classifier on the strings feature set. However, our combined
classifier still yields the highest accuracy overall.

B. Limitations

Program obfuscation may have provided a barrier to the
extraction of strings from all our files (see II). Designers of
malware programs sometimes attempt to avoid detection by
obfuscating their code. When code is obfuscated, the program
is packed in a manner that makes fields of the file hard to
read. This can inhibit static analysis methods, such as reading
printable strings from an executable. This code packing does
not hinder the actual execution of the program because at
runtime wrapper program unpacks the program. However,
prior to runtime it is often difficult to determine whether
a program is in fact packed or unpacked. Possible program
obfuscation could adversely impact the efficacy of the strings
features set [21].

C. Future Work

We only used the Naive Bayes classifier on the individual
features sets to distinguish between malicious and benign
files. Although the Naive Bayes classifier requires only a
small amount of training data to estimate the parameters of a
probability distribution and is easy to implement, it relies on
the conditional independence of variables within each class.
This likely resulted in a loss of accuracy as dependencies
almost always exist within variables. Other more sophisticated
boosting classifiers such as Adaboost or RobustBoost that
can model the dependencies between these variables could
be tested on the individual feature sets. It would also be
interesting to test some novel malware detection algorithms
such as those cited in the previous works section on the benign
and malicious files dataset directly.

Additionally, since false negatives are much more harmful to
the user than false positives, further work could involve mod-
ifying the algorithm to focus on minimizing false negatives.
The potential drawback to doing this however is that if the
chance of a false negative is small enough, further tweaking
the algorithm to minimize the number of false negatives could
significantly worsen the performance of the algorithm. To top
it off, minimizing the number of false negatives could lead to
an increase in the number of false positives. Although false
positives do not compromise the security of the system, they
can discredit the integrity of the classifier and hinder usability.

VI. CONCLUSION

We investigated the application of static analysis and ma-
chine learning techniques to identify and distinguish malicious
Windows software from benign software. The static nature of
our methods allows our tools to analyze software portable exe-
cutables without actually running the program and potentially
compromising a user’s machine.

Our main contributions include applying various machine
learning techniques to the problem of malware detection, com-
paring our results to current state-of-the-art detection tools,
and identifying a potential security vulnerability in the design
decisions of current anti-virus software. We used data mining
techniques to extract meaningful, static features from PEs and
subsequently applied Naive Bayes on our extracted features to
classify executables as malicious or benign. Furthermore, we
compared our results to the anti-virus program Virus Total
and other machine learning classifiers like support vector
machines, binary decision trees, and discriminant analysis.
Finally, we identified a security vulnerability in the design
tradeoffs of current anti-virus software. Prioritizing the mini-
mization of false positives over minimizing false negatives can
allow malware to infiltrate a user’s machine undetected.

As machine learning techniques progress and improve, we
anticipate further improvement of machine learning perfor-
mance in the detection of malware. We believe that further
research in the application of these methods to security prob-
lems could lead to safer, more secure systems.

ACKNOWLEDGMENT

We thank Evangelos Taratoris (MIT EECS) for his guidance
and support through this project. We also thank Dr. Fengmin
Gong (Cyphort Inc.) for providing us with the data to make
this research possible.

While we cannot explicitly share the dataset used in
our analysis, this paper can be made publicly available
immediately.

[1]
[2]

[3]

[8]

[9]

REFERENCES

“AV-Test,” “https://www.av-test.org/en/statistics/malware/”, accessed
May 1, 2016.

Net marketshare. Accessed May 6, 2016. [Online]. Avail-
able: https://www.netmarketshare.com/operating-system-market-share.
aspx?qprid=10&qpcustomd=0

Alcatel-Lucent, Alcatel-Lucent malware report shows significant rise
in mobile infections via PCs and adware in first six months of 2015.
Alcatel-Lucent, 2015.

Microsoft. How does malware infect your pc? [Online]. Available:
https://www.microsoft.com/security/portal/mmpc/help/infection.aspx

R. W. Lo, K. N. Levitt, and R. A. Olsson, “Mcf: a malicious code filter,”
Computers & Security, 1995.

M. Christodorescu and S. Jha, “Static analysis of executables to detect
malicious patterns,” in Proceedings of the 12th Conference on USENIX
Security Symposium - Volume 12, 2003.

A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual, 2007.

K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis
of malware behavior using machine learning,” Journal of Computer
Security, 2011.

J. Sahs and L. Khan, “A machine learning approach to android malware
detection,” in Intelligence and Security Informatics Conference (EISIC),
2012 European, 2012.

[10]
[11]

[12]

[13]
[14]
[15]

[16]

(17]
[18]

[19]
[20]

[21]

Cyphort. [Online]. Available: http://www.cyphort.com/

M. Corporation. Dynamic-link libraries. [Online].
Available: https://msdn.microsoft.com/en-us/library/windows/desktop/
ms682589(v=vs.85).aspx

M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data mining
methods for detection of new malicious executables,” IEEE Symposium
on Security and Privacy, 2001.

M. Corporation. (2007) What is a dll? [Online]. Available: https:
//support.microsoft.com/en-us/kb/815065

1. Free Software Foundation. (2014) Gnu binutils. [Online]. Available:
https://www.gnu.org/software/binutils/

I. O’Reilly Media. linux devcenter hexdump. [Online]. Available:
http://www.linuxdevcenter.com/cmd/cmd.csp?path=h/hexdump

D. M. Tax, M. van Breukelen, R. P. Duin, and J. Kittler, “Combining
multiple classifiers by averaging or by multiplying?” Pattern Recogni-
tion, 200.

Virustotal. [Online].
documentation/public-api/
J. Sukens and V. J., “Least squares support vector machine classifiers,”
1999.

S. Shlien, “Multiple binary decision tree classifiers,” 1989.

M. Sebastian, R. Gunnar, and J. Weston, “Fisher discriminant analysis
with kernels,” 1999.

L. Mehta. (2016) Static malware analy-
sis. [Online]. Auvailable: http://resources.infosecinstitute.com/
malware-analysis-basics-static-analysis/#article

Available: https://www.virustotal.com/en/

