
Cryptographic Dating

John Mikhail, Emad Farag, Edgar Minasyan, Malek Ben Romdhane

May 2016

Abstract

Dating apps have proliferated recently, allowing clients to express interests in other
clients. Many of these dating apps promise their clients to keep this data private
unless there is mutual interest between two clients. When that happens, both clients
are notified. However, at all steps, the server knows all the choices of the clients. We
describe a cryptographic protocol for hosting a secure platform for dating, which
hides any information about client choices from servers. Our protocol is not a direct
peer-to-peer communication. It takes advantage of a centralized but oblivious server
that acts as a middleware among clients. In this paper, we build on top of "Protocols for
Secure Computations" by Andrew C. Yao. We briefly introduce Yao’s method for secure
multiparty computation then dive in the mathematical design of our protocol. Finally,
we describe our proof-of-concept implementation of the protocol and we discuss the
limitations it might have in a practical system.

1 Introduction

The dependence on technology in our everyday life has been exponentially increasing in
the last decade. People use their smart-phones to rent cars, listen to music and stream movies.
The emergence of technology did not just stop there. In the last five years we have witnessed
large increase in the number of dating apps and their user base. The sensitive information these
websites hold has raised privacy concerns about the online dating scene. In July 2015, Ashley
Madison, a popular dating platform was hacked and information about millions of users were
leaked online resulting in the breakup of many families. In this paper we tackle the issue of the
security of dating platforms by proposing and building a cryptographically-secure dating service
that imposes more security constraints than the ubiquitous platforms that are currently in use.

The dating problem is as follows: for every pair of people, each person must decide whether
they like the other person or not. If both of them like each other, then both of them are informed
about the result. If the feeling is not mutual, and one of the parties does not like the other person,
they should obtain no information on whether the other person likes them or not. In our security
model, we additionally impose the restriction that the platform maintainer (i.e. the server), does
not learn anything about the choices of the clients.

1



The dating problem can be reduced to calculating an AND function where the two input bits
represent the choices for each client. If both of them like each other, both will have 1 as their input
bit, and the result will be 1. Otherwise, the result is 0. The goal is to allow two parties to compute
the AND function together without compromising their inputs. If one client has 0 as their input,
they should not know the other client’s input bit. Most importantly, third parties involved in the
computation should have no information about either the input or the result of the function.

This falls under a set of problems known in the world of cryptography as secure multiparty
computation. There has been significant research on the subject, which served as basis for our
solution to this problem. In this paper we outline previous work. We then explain our solution and
the design choices behind it. We then present a summary of a proof-of-concept implementation.
Finally, we discussed the limitations implied by our model.

2 Secure Multiparty Computation

The idea of secure computation was first introduced by Andrew C. Yao in 1982 [3]. The purpose
of secure multiparty computation is to enable multiple distinct parties to securely compute a
function, so that they would all learn the output of the function without learning anything about
the other parties’ inputs. There are several desired properties for a secure multi-party computation:
privacy, correctness, guaranteed output delivery, fairness [2]. These are the main properties of an
ideal security model, but some assumptions must be held to uphold all of the aforementioned
properties. We firstly discuss the basic building blocks for the model and then describe the
construction for secure multiparty computation. The case described is two-party computation,
and one can find the general multiparty case in [2].

2.1 Oblivious Transfer

Oblivious transfer is a simple information transfer model involving two parties. The following
version is suggested by Even et al [1]. The two parties involved are a sender and a receiver. As
input the sender has a pair of strings (x0, x1) while the receiver has a bit σ ∈ {0, 1}. Oblivious
transfer enables the receiver to obtain xσ with the sender having no information about σ and the
receiver having no information about the other string x1−σ. The protocol guarantees the privacy
mentioned above with the assumption of decisional Diffie-Hellman problem being hard.

2.2 Garbled Circuit

A garbled circuit is the main building block of our model. Any computation that can be
performed by a Turing machine can be represented by a circuit of logical gates. Yao showed
how to represent any such computation as a "garbled circuit" to able be able to use it in secure
two-party computation. One party designs the circuit by representing each possible input bit in
the circuit by a random bit string (symmetric encryption key). The garbled output of every gate is
the original output encrypted using the keys representing its input bits.

For our case, our computation is only a single AND gate, f (a, b) = a AND b. The input bit

2



for Alice is represented by A0 if she chooses 0 and A1 if she chooses 1. Similarly, Bob’s bit is
represented by the keys B0 and B1 respectively. Moreover, the circuit has random bit strings
for each of the possible outputs: R0 and R1. The garbled circuit for this function will have 4
garbled values - one for each possible input combination - encrypting the output bit string with
the corresponding input symmetric encryption keys:

EncA0(EncB0(R0))

EncA0(EncB1(R0))

EncA1(EncB0(R0))

EncA1(EncB1(R1))

These 4 garbled values constitute the garbled circuit for two-party AND function.

2.3 The model

In the original formulation for the two-party computation model, Alice generates the garbled
circuit, sends it to Bob along with the key representing her input bit. Afterwards Bob uses
oblivious transfer to get the key representing his input bit and uses his and Alice’s key to compute
the output. That is, Bob chooses σ, then uses oblivious transfer to get Bσ from Alice without her
knowing σ. Finally, Bob sends the computed answer to Alice and she informs about the result of
the computation.

The problem with this approach is that it assumes that Alice and Bob are honest. Specifically,
we assume that Bob will send the correct output he computed to Alice. However, if Bob is not
honest, he can choose not to send the computed output to Alice, or send a different value. There
is no way to enforce fairness in this model unless we assume that both parties follow the protocol
without cheating.

In our design, Alice and Bob design the garbled circuit together and send it along with the
keys representing their bits to a third-party server which will perform the computation and send
the result back to both Alice and Bob. The server will not know the output of the circuit because it
does not know which value of R represents 0 or 1. It also will not know what whether the keys
for Alice and Bob represent 0 or 1.

3 Design

This section describes the different parties involved in our proposed solution to the dating
problem, and how they interact. We base it on secure two-party computation.

3



3.1 Security Policy

The obvious approach to preventing a server from accessing private information is to remove
the server from the process. According to Lindell and Pinkas, in order to achieve security against
malicious adversaries, with fairness and guaranteed delivery, the number of corrupt parties t
should be less than half of the number of parties n, i.e. t < n

2 [2, p. 84]. As two-party computation
is used for our purposes, i.e. n = 2, the required level of security could be achieved if we have
t = 0 corrupt parties. However, it is not reasonable to assume the honesty of both clients. Even
though one can ignore t = 2 case, as it is not necessary to accommodate two clients trying to cheat
each other, the system should still take care of t = 1 case.

Thus, to ensure fairness, we need to introduce a server that mediates the interaction between
the two clients. This server makes sure that everybody is computing the same circuit, and that
everybody proceeds to all steps at the same time, thus ensuring fairness. The server is also needed
from a practical point of view to act as an intermediary of any communication between any two
clients because it is unreasonable to expect all clients to be online at the same time. Thus, we need
to make different assumptions about the different actors in this cryptosystem:

• Server: Since the server is here to ensure fairness, it should be honest-but-curious. It will
follow the protocol but might be able to see any interaction. Given this information, it should
still not be able to know any information about the choices of the clients and the final result,
as this is the motivation of our project.

• Clients: In any dating service model, privacy is of at most importance. A pair of clients
should only be notified of any result if they both like each other. Any notification should
be symmetric. We assume that in a realistic model, many clients might want to cheat the
system to figure out who likes them without expressing that they like the other person back.
Thus we cannot assume an honest client. However, if both clients are cheating, then we do
not make any guarantees. The system is only tasked with the protection of the privacy of
honest clients.

3.2 Initial contact

Initially, the clients should establish a secure communication channel. Thus, we assume the
existence of a trusted party to verify the identity of the clients. The clients use a certificate signed
by the trusted party to authenticate themselves and all their communication. They initially register
with the server. Then, two clients initiate a communication scheme. Initiating a communication
scheme does not imply anything about the choice of a client. This communication scheme should
be initiated with all members of the community or a randomized subset in order not to convey
information. The server act as an intermediary for any communication between two clients.

3.3 Random Numbers Generation

As explained in the previous section the two clients need to come up with six random numbers
together: A0 and A1 as the keys representing Alice’s possible input bits, B0 and B1 representing
Bob’s possible input bits, R0 and R1 representing the output of the AND gate.

4



Figure 1: Diffie Hellman key exchange to generate seed

To hide the numbers from the server, Alice and Bob agree on a seed for a pseudo random
number generation through Diffie Hellman key exchange. The Diffie Hellman key exchange is
secure through the server since it guarantees security when there is a eavesdropper. We also sign
the communication with the clients’ certificates, which are signed by a trusted party. This prevents
a man-in-the-middle attack. Once they both have a seed they generate six random numbers, using
the first two random numbers to represent the possible bits of Alice’s choice, the second two
numbers to represent Bob’s possible choice. The last two random numbers represent the AND gate
output. The pseudo random number generator used should be cryptographically secure, so that
the server cannot guess the seed or the generated numbers given a subset of those numbers. For
the remainder of the paper, we will use the following names to refer to the randomly generated
numbers:

0 bit for Alice→ A0
1 bit for Alice→ A1
0 bit for Bob→ B0
1 bit for Bob→ B1

0 bit for Result→ R0
1 bit for Result→ R1

3.4 Creating The Garbled Circuit

Using the generated random numbers, Alice and Bob encrypt R0 and R1 using the combination
of (A0, A1) and (B0, B1) as keys to an industry standard symmetric encryption scheme (referred
to here by Enc).

EncA0(EncB0(R0))

EncA0(EncB1(R0))

EncA1(EncB0(R0))

EncA1(EncB1(R1))

Alice and Bob then send these four ciphers along with R0 and R1 separately to the server.
These 2 sets are sorted so that the server cannot guess which cipher belongs to which output or
identify R0, R1. The server only proceeds if the two circuits Alice and Bob sent are the same, up to
the byte level. This is guaranteed for honest clients because the numbers are the same, and they
are sorted.

5



3.5 Sending Preferences

The server then asks both Alice and Bob to submit their preferences. Alice sends either A0 or
A1 and Bob sends either B0 and B1. The server tries to decrypt all the ciphers it has. If one of the
decryptions opens a number in (R0 or R1), the server sends that number to both Alice and Bob.
If none of the decryptions is valid then the server will know that either Alice or Bob or both are
trying to cheat.

Figure 2: Communication scheme between clients and server

4 Implementation

A proof of concept system was implemented in Python. We used the cryptography1 library for
all base cryptographic functions and procedures, except for SHA256, which is already provided
by Python. The Diffie-Hellman key exchange was done using the SECP256R1 elliptical curve,
which is recommended by the National Institute for Standards and Technology. The pseudo
random number generator was implemented using a counter mode block cipher using SHA256,
where the IV is the RNG seed. AES is used for symmetric encryption. We use a 0 nonce
because our keys are already randomized and used only once, so that would conserve IND-
CCA2. The system functions correctly. A speed test run in a local commercial laptop running a
local server/client interaction averaged about 22ms per client. Thus we believe that the system
is efficient enough to be run in practical situations. The implementation can be viewed at
https://github.com/malekbr/crypto-dating.

1https://cryptography.io/

6



5 Attack Model

• We proved that this system guarantees the privacy of the client’s choices. With the as-
sumption of an honest server, the server can perform no attacks as it has no access to any
information about client’s choices or the final result.

• The system guarantees privacy and fairness under the assumption that the information is
not shared with the clients. Unless a malicious server is in place, this only happens in the
case of hacking. Even in this case, a hacker cannot determine any information other than the
choices of other people regarding himself. This is still a security improvement. Moreover,
since the server does not know how to interpret the information, it has no incentive to keep
it in memory. Thus a properly implemented system should have minimal impact in the case
of a leak.

• Another possible attack is a corrupted client trying to get information about other parties’
choices. In case of such an attack, we can assume that the adversary attacks an honest client.
This means that the honest client follows the protocol and sends the correct circuit along
with output bit strings. Therefore, any kind of modification to the circuit by the attacker will
not be approved by the server and the process will stop. One way to figure out the choices of
others for the attacker is to send 1 to everyone, and see all the matches, but with this attack
as the other party also ’knows’ that the attacker likes them, which just doesn’t qualify as an
attack.

6 System limitations

We introduce in this system an interactive communication scheme. This means that there needs
to be synchronization, and the swipe and wait paradigm of modern dating apps does not apply
anymore. Since there is a serve however, the clients need not to be connected at the same time, as
communication can be buffered. Synchronization can thus be implemented reasonably.

In this system, in order to keep privacy, a client needs to express choices about some number of
random clients, or about the whole community. This is to guarantee that the server does not figure
out the interests from the established connections. This increases the communication complexity,
and may put a limit on the total number of clients. This is more of an issue of scalability, but it
can be solved in multiple ways. The program can be limited to fixed-sized communities. There
can also be daily fixed random fixed size client pairing assignments. Some dating apps already
employ such a system, so it would be easy to integrate.

7 Conclusion

We design in this paper a system that extends the privacy of the clients of dating apps. It
blocks honest-but-curious servers from knowing the choices of the clients, including if two clients
expressed mutual interest. The system is based on garbled circuits, and protects honest clients
from cheating clients. Even in the case of a leak, the information leaked is minimal. The most
information a person would know is who expressed interest in them. We also argue that the
system is practical to implement, and provide a proof-of concept implementation.

7



References

[1] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. Commun. ACM, 28(6):637–647, June 1985.

[2] Yehuda Lindell and Benny Pinkas. Secure multiparty computation for privacy-preserving data
mining. Cryptology ePrint Archive, Report 2008/197, 2008. http://eprint.iacr.org/.

[3] Andrew C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, SFCS ’82, pages 160–164, Washington, DC, USA, 1982. IEEE
Computer Society.

8


