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Abstract

A threshold cryptosystem involves collaboration
among k of n users to take some cryptographic action.
These actions could include encrypting, decrypting,
signing and verifying. Threshold schemes are advan-
tageous in situations where the involved parties wish
to divide the power to sign or decrypt a message, so
that no one party can take action without the sup-
port of some other parties, and in situations in which
the parties wish to minimize the damage that a sin-
gle compromised secret could cause. Such schemes
are closely related to and often dependent on secret-
sharing protocols such as Shamir’s polynomial-based
secret sharing scheme. When analyzing threshold
cryptosystems, it’s important to consider factors such
as interactivity, trusted third parties, amount of re-
quired re-computation, efficiency, and burden on out-
side users. For our project, we implemented Thresh-
old RSA, a system that is a variant of standard RSA
signatures and that enables a size-k subset of n par-
ties to produce a valid RSA signature on a message.
Our project contributes a Python implementation of
the scheme as well as a discussion of its advantages,
disadvantages and performance. We intended to fur-
ther extend Threshold RSA to support anonymity
and deniability, such that parties could not deter-
mine which k parties participated in producing the
signature. However, we did not implement this extra
feature due to time constants.

1 Overview of Threshold RSA

In Threshold RSA, the RSA modulus N and public
key e are publicly known. The two primes p and q,

as well as the private key d are kept secret and are
unknown to anyone. The parties engage in collabo-
rative but untrusting protocols to generate additive
shares, pi, qi and di, of the secrets. The protocols are
collaborative because they requires parties to broad-
cast certain calculated values to other parties, and
are untrusting because all parties can verify certain
properties about the broadcast messages to ensure
that other parties are honest.

Threshold RSA has several desirable properties:

• No trusted third party; no trusted central server

• Distributed system; distributed computation
can parallelize work for greater efficiency

• A subset of fewer than k people cannot produce
a valid RSA signature on a message

• An attacker cannot use an existing signature to
gain information about how to produce future
signatures

• Parties do not need to reshuffle or regenerate
their secrets after each signature

• Receivers of signatures produced by Threshold
RSA can verify those signatures in the exact
same manner as they would signatures produced
by standard RSA; no extra work required

One potential drawback of Threshold RSA is that
the members of the size-k subset that collaborates to
sign a message is known to the other parties. We
imagined that this could lead to coercion, in the
case that one party does not wish for the message to
be signed, and therefore pressures or even threatens
other parties to not sign, and is capable of knowing
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whether or not those other parties did or did not sign.
In our intended extended version of Threshold RSA,
parties would choose a random unique identifier for
each attempted signature and communicate through
Tor to preserve anonymity.

1.1 Use Cases

We consider several use cases for a system such as
Threshold RSA. Some of these use cases are partic-
ularly applicable for the version of Threshold RSA
that also supports anonymity.

• A vote at an international conference - for mat-
ters of international security and interest, it is
important that votes are private so that coun-
tries cannot coerce each other

• A union board endorsing a presidential candi-
date - using Threshold RSA ensures that some
threshold number of board members actually
does support this candidate, and it’s not just
one board member speaking for all of them.

• Business deals - if not all parties can attend every
meeting, the group can still go forward with a
deal

2 Threat Model

The threat model for Threshold RSA involves an ad-
versary who is attempting to forge an RSA signature
on some message of his choice, or is attempting to
interfere with an honest signature attempt and pre-
vent a size-k subset from outputting a valid signature.
This adversary may have access to the network (al-
though the network traffic may be encrypted using
standard TLS). The adversary may also have com-
promised, either through technical or personal means,
the secret shares of k − 1 parties. Although a com-
putationally unbound adversary can break RSA by
brute-force searching for the secret keys, we assume
that the adversary lacks the computational resources
to do this.

We consider the following types of adversaries, and
later discuss how Threshold RSA performs in the face
of each of these types of adversaries.

1. A spectator who only has access to the informa-
tion that is intended to be public

2. A listener who can access all communication net-
work

3. A man in the middle who can listen and modify
what travels over the network

4. A dishonest participant in the scheme

5. An outside coercer who can extract secret infor-
mation out of multiple participants

3 Previous Work

We based our implementation off of the description of
the algorithm in H.L. Nguyen’s paper RSA Thresh-
old Cryptography. We are also aware of the existence
of other threshold cryptosystems such as ring signa-
tures. There are several important protocols that
Threshold RSA uses, such as Shamir’s secret shar-
ing protocol, the BGW protocol (which we describe
later), and standard RSA.

4 How Threshold RSA Works

4.1 Summary

First, all parties must agree on public parameters N ,
n, k, and e, where n is the number of parties, k is the
threshold, N is the RSA modulus, and e is the RSA
public key. The parties agree on an N by first com-
puting shares of p and q, and then working together
to verify that N is the product of two primes, with-
out ever revealing their own share of p and q. This
is a one-time start-up cost of the system. Following
this, for every potential message, the parties each in-
dividually decide if they want to sign the message or
not. If fewer than k parties want to sign the message,
the signature is aborted. Otherwise, some size-k sub-
set begins the process of producing a signature. This
process begins with the subset-presigning algorithm,
a protocol that occurs among the k participating par-
ties. During this algorithm each party computes and
broadcasts values and commitments that allow the
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Figure 1: This shows the general sending flow. The
colored lines indicate the different values sent to all
other parties. The black lines show the commitments
that are the same and sent to all parties

other parties to determine if they are honest, and to
gain knowledge about how to reform the secret key d
without the participation of the other n − k parties.
Then, each of the k parties produces a signature share
on the message, broadcasts its signature share to the
other k − 1 parties, and verifies the signature shares
that it receives from the other parties. If all parties
agree that the signature shares are valid, then they
combine their signature shares to produce the final
signature. This final signature is equivalent to the
normal RSA signature on message m, which is md.

The basic structure of most parts is that each party
does some computation and outputs both values to
each individual other party, and broadcasts commit-
ments, or proofs to everybody that their computation
is correct and honest.

4.2 Agreeing on an N

4.2.1 Distributed Computation of Shares of
p and q

The parties use the same process to generate pi as
they use to generate qi. We describe the process for
pi, and the process for qi is identical. The goal is for
each party to have a share pi such that

n∑
i=1

pi = p (1)

Figure 2: This shows the general receiving flow. Each
party receives both computation output and a com-
mitment from each other party and uses the commit-
ments to check the computation is honest

First, the parties agree on a large number M . All
arithmetic for generating pi is done moduloM . Then,
each party selects a secret random ai. The product
of the ai is what we set as p. However, no one party
should know what p is. The ai form a multiplicative
sharing of p, since

n∏
i=1

ai = p (2)

We need to alter this to an additive sharing, i.e.
give each party a pi such that equation (1) holds.
We achieve this by running several iterations of the
BGW protocol, described below.

4.2.2 Distributed Computation of N

After each party has a pi and qi, they wish to compute
N , where

N = (

n∑
i=1

pi)(

n∑
i=1

qi) (3)

They achieve this by running the BGW protocol
once, and then broadcasting the resulting shares and
summing them to get N .

4.2.3 BGW protocol

This protocol takes as input the pi values and all of
the qi values, and produces an additive sharing of the

3



quantity N = (
∑n
i=n pi)) ∗ (

∑n
i=n qi), meaning that

no one knows N at the end of the protocol, but every
party gets a share Nj , and the sum of the Nj values
is equal to N .

4.2.4 Verification that N = pq

Verifying N

We first check that N is not divisible by any prime
up to some bound

We then want to make sure it is the multiply of
two primes

1 = g(p−1)(q−1) = gpq−(p+q)+1 mod N
1 = g(p−1)(q−1) = gN−(

∑n
i=1 pi+

∑n
i=1 qi)+1 mod N

1 = g(p−1)(q−1) = gN−p1−q1+1 ∗ Πn
i=2g

−(pi+qi)

mod N

4.3

Secret Share Generation Given a public N and public
key e, we wish to find values of di such that the sum
is d, the private key, without any one person having
knowledge of it

First, each party i computes

φi =

{
N − (p1 + q1) + 1 if i = 1

−(piqi) if i > 1

Now we wish to generate the sum of φi mod e.
To do this, each party breaks their φi into n pieces
φi,j such that

∑n
j=1 φi,j = φi. Each party dis-

tributes piece k to party k. Each party j sums up
all
∑n
i=0 φi,k and takes it mod e. These sums are

broadcasted to everyone, allowing everyone to com-
pute

∑
φi mod e. Furthermore, no information is

revealed about individual φi and only minimal infor-
mation about φ is given as e is small compared to
φ.

Now we define

ψ = φ(N) mod e =

n∑
i=1

φi mod e

and

ψ−1 = φ(N)−1 mod e

Each party i can now compute

di =

{
b 1−φ1φ

−1

e c if i = 1

b−φ1φ
−1

e c if i > 1

Given a value of x in the range [0, n] to account for
the floors, di satisfies the following.

n∑
i=1

di + x =
1− φ−1

∑n
i=1 φi

e(
n∑
i=1

di + x

)
e = 1 mod φ(N)

.
The remaining value of x can be caluclated by

encrypting on a dummy message, m. Each party
sends medi to a given party. That party calcu-
lates m′ =

∏
medi and performs calculations until

m′(mx)e = m mod N . That party then adds x to
its value of di.

4.4 Dealing Algorithm

Each party i shares its section of the secret using
Shamir Secret Sharing Algorithm.

fi(x) = ai,k−1x
k−1 + ...+ ai,1x+ di

then sends fi(j) to each party j. It also broadcasts
gai,j∀j to all parties as commitments on each coeffi-
cient. These can be used to prove the user was honest
as follows.

gfi(j) = gai,k−1x
k−1+...+ai,1x+di mod N

gfi(j) = Πk−1
t=0 (gai,t)

jt

4.5 Subset Presigning Algorithm

The subset presigning algorithm needs to be run only
once by the k signing parties. This means that if k
parties wish to sign a message and they have never
performed the subset presigning algorithm together,
then they will perform it, but if they have ever per-
formed the algorithm at some point in the past, then
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they will not need to perform it. The algorithm gen-
erates values that are necessary for each party to pro-
duce its signature share on a message.

Each party ti generates a share sti , such that the
sum of the sti values is equal to the sum of the re-
maining private keys + some integer multiple, xI , of
M . Each of the parties then computes xI by search-
ing through the space of all possible values, which is
from [k − n, k + 1]. The value of xI is publicly ver-
ifiable by all of the k parties, and will be important
for computing the final signature.

4.6 Signature Share generation

Each party produces a partial signature on the mes-
sage

ct,i = mdti+sti mod N

Along with a zero knowledge proof of knowing
dti + st,i. We note that gdti+st,i = bti,0hti so we
provide a proof that the discrete logarithm of bti,0hti
in base g is equal to the discrete log of ct,i in base
m. This proof can be used by Chaum and Pedersons
protocol (Chaum, 1992). The formulation of this
proof is very similar to Schnorrs Discrete Logarithm
POK but provides two challenge messages rather
than one.

At the end of this stage, all signers broadcast their
signature to everyone in the signing party to verify.

4.7 Signature Share verification

Each party in the signing party verifies the individ-
ual signatures and proof of knowledge of every other
party to make sure the signature is valid

4.8 Signature Share combination

Each party has published their signature share. Now,
each party computes

m−xIMΠk
i=1cti = m−xIMΠk

i=1m
dti+sti mod N

m−xIMΠk
i=1cti = m−xIM

∑k
i=1 dti+sti mod N

m−xIMΠk
i=1cti = m

∑n
i=1 di = md mod N

m−xIMΠk
i=1cti = s

This value s, is the final signature. It is equal to
md, which is the signature that would have been pro-
duced by standard RSA.

5 Security of Threshold RSA

We analyze the security of Threshold RSA against
each type of attacker described in our threat model

5.1 Spectator

The spectator has access to the public information.
This means he gets the public key and modulo. To
him this scheme is identical to normal RSA. And thus
it has the same security properties and we take as
given the fact that an attacker with only the public
key can not generate a signature. Also if he cannot
modify any messages he cannot change the output of
the system.

5.2 Listener

If a listener has access to all messages then he can use
the messages sent around in the dealing algorithm
along with knowledge of Shamir’s Secret Sharing Al-
gorithm to collect all of the di and be able to sign
any message we wants. And thus from now on we
will assume that each pair of participants are able
to communicate securely. This could be done with
normal RSA and each party has a separate public,
private key pair that is known to all parties. With
this added assumption the Listener gains no informa-
tion that the Spectator does not have so he can not
either sign a new message or interrupt the signing
process

5.3 Man in the Middle

A man in the middle can both listen to the network
and modify the contents of messages. Keeping in
mind that each message going over the network can
be encrypted, when he modify the message he does
not know what he is changing it to. A Man in the
middle is able to gain no additional information to
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a listener so he is also not able to generate a signa-
ture. We want to insure that he is not able to disrupt
the process and cause an invalid signature to be out-
putted.

1. When generating N every party checks at the end
to ensure that it is the product of 2 primes, so
any interference with generating N would result
in a new N being generated, allowing the

2. To ensure that parties generate a proper share
of the secret key a known message is signed and
then verified

3. During the dealing algorithm along with the
shares for Shamir’s Secret Sharing Algorithm,
each user also publishes commitments on the co-
efficients he used that can then be verified by all
other users.

4. During the Subset Presigning Algorithm each
party also computes a commitment to their share
of the secret that can be checked by the other
parties

5. During Signature Share Generation each party
must produce a non interactive proof using the
Chaum and Pederson protocol that

cti = mdti+sti mod N ⇒ D logm cti = dti + sti

6. this proof is then verified during Signature Share
Verification

7. At this point each party can independently cal-
culate the final signature

Thus we can see that at each step each user submits
both his share of information and a proof that the in-
formation is correct, so if any piece is changed it will
be noticed and the stop repeated. So while a man
in the middle could just stop a signature from being
generated, that is as simple as stopping all commu-
nication, so we will ignore this case.

5.4 Participant

An attacking participant would try and sign a mes-
sage alone, or cause a signature to be unknowingly

invalid. As we showed in the previous section it is
unfeasible by changing his messages to not get caught
so he would be forced to submit valid messages, so
he cannot cause a invalid signature to be outputted.
However he could always invalidate a step stopping
the protocol from outputting anything, but as we said
above we are not considering this case. Thus we con-
sider if he could sign a document on his own. Signing
a message requires either knowing every bodies di or
the di of k people and the sti of those same people, or
determining p and q. We will show that it is impossi-
ble for a single participant to gain anybody else’s di.
We show this by relying on the security of Shamir
Secret Sharing Algorithm which is information the-
oretically secure for any group less than k to gain
information about the secret. We also relay on the
difficulty on the discrete log problem so that no com-
mitments can be undone. Generating p and q both
use the BGW protocol that also rely on Shamir Se-
cret Sharing Algorithm for its security. Due to both
of these a single one of the participants cannot gen-
erate a signature on their own.

Also during the protocol no information about any
participants secret share of the secret key is leaked
so any adversary is not learning information to help
them sign a document after multiple signatures.

5.5 Convincer

There are two cases for a convincer. The first is that
they have less than k people. In this case we can fall
back on the above participant case and see that for
each point we relayed on Shamir Secret Sharing Algo-
rithm which is perfectly secure for less than k people.
The second case is that they have more than k peo-
ple, in this case they can just follow the algorithm
properly and sign whatever they want.

6 Implementation

We used Python to set up a simulation of a network
with a set of n parties that can communicate with
each other. We then follow the protocol described
above so that given n parties agree on the public in-
formation. Then, a subset of them can agree and
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sign a message. The parties are also able to deter-
mine if the other parties are honest by verifying what
the other parties broadcast. We check that the final
signautre produced by our scheme is in fact equiva-
lent to the signature that would be produced using
standard RSA.

We were not able to generate p,q,and N properly
because of time constraints that will be discussed be-
low. We also did not set it up to run on different
machines because it was not necessary to analyze the
system. Lastly, we had hoped to set up the system
to run over the TOR network to test giving each user
anonymity, but again were limited by time.

The full implementation can be viewed here
https://github.com/hlee95/threshold-rsa.

7 Discussion

7.1 Interactiveness

Interactiveness is the involvement of everyone to
reach an agreement on public information by inter-
acting with each other. This scheme consists of both
interactive and noninteractive phases. Specifically,
the only phases which are interactive are the Dealing
and Subset Presigning Phases. All other phases in-
volve each party computing values on their own. In
this sense, this scheme is deemed partially interac-
tive.

7.2 Share Refreshing

In this system, the construction of di is only gener-
ated once per set of people. This is due to the fact
that no information about di is leaked to others when
a person signs. Therefore di can be reused any num-
ber of times with any set of signers. However, other
values such as sti are publically generated from the
set of I. So whenever the set of signers change, the
Subset Presigning Phases must be processed. Fur-
thermore, whenever we consider a different set of peo-
ple, such as when people leave or enter, we must gen-
erate values from the beginning as none of the values
are correct.

7.3 Threshold RSA vs. other k-of-n
signing schemes

Threshold RSA is more trustworthy than many other
threshold signing schemes because there is no trusted
central server. This means that no entity knows the
secret key d, or the primes p and q. This removes the
possibility of an adversary compromising a server to
gain all of the secrets.

Additionally, Threshold RSA has limited share re-
freshing, making it more attractive for frequent use,
since it avoids the overhead associated with generat-
ing new secret shares.

We considered implementing threshold ring signa-
tures instead of Threshold RSA, but the ring signa-
ture scheme requires an exponential number of opera-
tions (O(nk) operations for naive ring signatures and
O(2tn log) (Bresson, 2002)), making it less efficient
than Threshold RSA, which requires a quadratic
number of operations (mostly for broadcasting mes-
sages).

7.4 Expensive startup cost to gener-
ate N

When we ran our simulation of the system, we found
that all parts of the Threshold RSA protocol are
time-efficient, with the exception of the initial startup
cost to find a ”good” N and the corresponding pi and
qi shares for each party. A ”good” N is an N that
is the product of two primes. We noticed that the
protocol for trying to find an N is essentially a guess
and check method, where the probability of getting
a ”good” N is on the order of 10−6. When we ran
our algorithms to generate shares of p and q and to
verify N , we found that even after 16 hours of at-
tempts, we could find no suitable N . We are certain
that our algorithms are correct because when we tried
them on smaller numbers they were able to produce
valid results. We therefore decided to bypass the long
startup cost of generating N by randomly selecting
two primes p and q, and breaking them up into ad-
ditive shares. This is inconsistent with the proto-
col, but is necessary in the simulation to be able to
demonstrate the system in a timely manner. We note
that during real use of the system, we would not use
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this method, and we would use the proper algorithm
to generate N while keeping p and q private.

8 Conclusion

Overall, our project resulted in a working simulation
of Threshold RSA. It has an expensive one-time start-
up cost that may make it impractical for some uses.
Future work on this project would involve running
multiple clients on different machines and setting up
the network communication between them, and then
moving to using Tor to provide anonymity. If we are
able to use Tor for the communication between par-
ties, then our system will be beneficial in situations
where the parties want to have deniability, to pre-
vent other parties from coercing them. We see this
is as a very applicable real-world system, especially
for groups in which the parties are fixed (to prevent
needing to start-up the system more than once). We
plan to continue working on the project, and perhaps
release a fully functioning system in the future.
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