
Updatechain: Using Merkle Trees for Software

Updates

halpin (Harry Halpin)

May 11th 2016

1 Introduction

The underlying problem of software updates is: How can a user detect if they
have been given a malicious software update? For example, in the Apple vs.
FBI court-case, the FBI claimed it needed access to a master signing key from
Apple to install a update that would let them unlock an iPhone. However, there
is a concern that the FBI could then use its access to the master signing key
to send updates with targeted backdoors to users [9]. The key problem is that
software updates rely almost entirely on a trusted server delivering updates that
are validated only by checking a signature. In this paper, we propose a solution
called Updatechain that creates an audit log of the binary files in an update
using a Merkle tree. We also allow users to verify the chain by relying on multi-
signatures from multiple witnesses that maintain their own copy of the Merkle
tree in case an updatechain becomes controlled by the adversary. We overview
in Section 2 the motivation for more security in software updates. Section 3
details a threat model that can successfully compromise current signature-based
approaches and presents a security policy to prevent these attacks. Related
approaches like The Update Framework [6] and Binary Transparency [10] are
reviewed in Section 4. Section 5 overviews the design of Updatechain and shows
it fulfills the security policy. Section 6 presents an API for adding an update,
witnessing an update, and verifying updates, including mediations for targetted
attacks that rely on Tor and replay attacks that build on the Bitcoin blockchain.
Lastly, we detail next steps in Section 7 and conclusions in Section 8.

2 Motivation

Due to the FBI vs. Apple case, there has been increasing interest who controls
the keys to sign, and thus authorizes the installation of software updates. A
software update is software that modifies existing software on a user’s machine
through an authorized channel. Although software is continually updated, there
has been little analysis of securing the update process itself. The problem with

1



software updates as although the channel is authorized and trusted by the end-
user, since an update by nature has a high level of privilege, subverting an
update mechanism is an obvious security vulnerability that can be exploited.
For example, some are worried about “backdoors” that allow some malicious
behavior to be delivered to a user.

In the case of Apple, it is clear that a backdoor was refused. Yet in the
other high profile Juniper case, a hack was put into firmware that, likely by
changing constants in the Dual EC DRBG generator, allowed keys used by
the Juniper VPN to be predicted and so passively gathered VPN traffic to be
decrypted.1 One interesting aspect of the case is that while it was reported
the vulnerability was present for over three years, it is unclear at what precise
version the vulnerability first appeared. Although a security bug was fixed,
there was no audit log to allow the different versions of the Juniper firmware
to be audited, so that Juniper users could detect at what time a silent upgrade
to their firmware inserted a backdoor into their systems. Thus, it seems some
form of cryptographically-verified audit log of all updates for a given application
would be useful to discover the exposure to a malicious update.

The FBI vs. Apple may only be the tip of the iceberg, and these requests for
backdoors in software delivered via updates may be increasing. For example,
the LEAP Encryption Access Project is an open-source project for end-to-end
encrypted e-mail aimed at high-risk activists who use the riseup.net e-mail
provider.2 When the LEAP Encryption Access Project attempted to incorpo-
rate, they were given a request for a “back door key” that they refused based
on the reason that “it is well established in cryptographic research that such
back doors only undermine the security of the system and lead to eventual ex-
ploitation by a nefarious attacker.”3 Even if the owner of a software package
refuses to co-operate with a backdoor request, a determined attacker would then
attempt to steal the signing keys for software updates or attack the channel the
update is delivered over. In order to prevent these kinds of attacks, LEAP is
now using The Update Framework (See Section 4.1 for a description) in order
to prevent subverted updates.

However, often attacks are not on all users of software, but on one or more
targeted users. These users are typically selected based on their IP address,
including the use of ranges as IP addresses over geographical areas. For example,
it appears that malicious parties committed a targeted attack against Tibetan
activists using a malicious update of the popular Android-based KakaoTalk.4

In fact, now there is a widespread market for signing keys of popular Android
updates, where the buyer of the signing key then uses the key for some form of
malware.5

1http://edition.cnn.com/2015/12/18/politics/juniper-networks-us-government-security-
hack/

2http://leap.se
3Although the full proceedings of this request for a backdoor have not yet been public, the

author has viewed the request.
4https://blogs.mcafee.com/mcafee-labs/tibetan-activists-targeted-with-more-android-

malware/
5http://www.androidpolice.com/2011/03/01/the-mother-of-all-android-malware-has-

2



3 Problem Definition

The problem with software updates is although the channel is authorized and
trusted by the end-user, since an update by nature has a high level of privilege,
subverting the update mechanism allows malicious code access to the same priv-
ilege level of the application, an exceptional danger in the case of application
environments that are not sandboxed. With powerful privilege levels, the mali-
cious update could install a backdoor on the user’s computer or otherwise cause
considerable harm.

There are a number of principals at work in a software update. A software
update is software that modifies existing software on a user’s machine through an
authorized channel. This channel can be anything, including installing updates
via portable hard disks or distributed via a peer-to-peer protocol such as Satori.6

Typically the channel should be an authenticated and encrypted TLS session,
although often plaintext HTTP is used to deliver updates. There is an update
server that hosts the updates. This update server pushes the software update
to one or more clients (the device of a user) on behalf of the owner of the
update (which may be the application developer, a package maintainer, a trusted
repository manager, or the like).

Although large amounts of software is updated every day and many different
systems, the vast majority of update systems simply use the verification of a
signature by the owner’s signing key on the update to secure the update process.
The precise owner may vary by the kind of system. Some update models require
each application developer sign their own code with a digital signature (Android)
while other systems require the app-store itself sign all the updates (Apple).
Other systems are mixed (Windows) and some establish a PKI chain of trust
from a master signing key to all updates (Linux). Normally, the digital signature
may be verified before installation, but some systems allow this verification to
be manually overridden (Linux, Windows). In many cases the update server
may be a third-party that may or may not have access to the signing key but
simply mirrors the signed updates. Some update servers also publish a checksum
(the hash of the binary) on the update server in order to let the user check the
integrity of the update, although verification of the checksum may also not be
enforced and currently many checksums use a hash function such as MD5 that
is not collision-resistant. As stated earlier, the central problem is: How can
a user detect if they have been given a malicious software update? The most
obvious answer is to ensure that the update does indeed come from the owner,
which can be determined via a signature from the owner’s signing key.

Despite this obvious solution, it is exceedingly difficult to determine if the
owner themselves is malicious. One of the only recourses is a witness (such as
a security audit by a trusted party) that verifies that the update indeed fulfills
its intended purpose. Another for feasible problem to solve is whether or not
a user can determine if other users have received the same update? Users may

arrived-stolen-apps-released-to-the-market-that-root-your-phone-steal-your-data-and-open-
backdoor/

6https://play.google.com/store/apps/details?id=com.satori.Satori

3



want some level of customization or localization, but in general the user will
want to verify that the update they are not being singled out for attack. Lastly,
the owner would want to receive the latest update, and not miss a new update.
In summary the problem is that the user’s client wants to be able to verify that
they have received the latest non-malicious update via an honest channel.

3.1 Threat Model

In our threat model, the attacker’s goal is to install a subverted update carrying
malicious code via a channel onto one or more clients. We assume the owner of
an update server is initially honest and that there existed an honest channel to
the client such that at some point (the initial installation of the software), the
correct public key of the owner was given to the client for signature verification
of the updates. We assume an attacker is skilled at the subversion of systems
and so can block channels and subvert update servers or any witness of an
update server but does not have any special cryptographic powers that allow
them to forge signatures or otherwise subvert cryptographic primitives. There
are two distinct kinds of attackers.

The most powerful attack is called a subverted server attack, the attacker has
successfully compromised the signing key of the owner and can send malicious
updates to all clients. The updates would be verified as signed by the correct
private key of the owner as the attacker controls the signing key. If an attacker
did not seize the private keys of the owner, we assume the client could detect the
fake signatures and reject the updates. In a variation on this attacked called
a targeted attack, the attacker may also decide to send malicious updates to
one or more targeted clients, where this subset of all clients is chosen via some
criteria. In this attack all the updates are correctly signed, but that different
clients are receiving different updates signed by the same valid owner’s key. If
this attack is impossible, the attacker would then try to control the channel
via a man-in-the-middle attack, which would allow a malicious update to be
presented for installation. This man-in-the-middle attack would be equivalent
to the subverted server attack if the attacker controlled the signing key, although
it does not require the update server itself to be compromised, only the signing
key of the owner to be compromised by the attacker. If the signing key was not
compromised, the client would reject the updates.

The less powerful attack is a replay attack. If an attacker cannot control
either the update server or the channel, the attacker can simply block the chan-
nel and so prevent new updates from reaching the user or delay the updates
in. There are many versions of a replay attack, including a “rollback attack”
where the client is tricked into installing an older version of the software (as
could be done via altering metadata about the update’s date of release) or an
“infinite install” attack where an update installation begins but never finishes.
The goal of the attacker in these instances is usually to keep the client running
older software so they can exploit vulnerabilities that that software.

4



3.2 Security Goal and Policy

The security goal of our system is to provide the properties that must hold so
that a client can verify that the update they received is the same as a non-
malicious update from the update server intended to be sent from the owner of
the update server. A number of security policies must then hold between the
principals:

• To prevent subverted server attacks, one or more witnesses should be able
to verify that an update is non-malicious.

• Only the owner should have access to a signing key for the update server.

• The witnesses can attest to their verification of the update by signing the
update with their own key and keeping its own copy. Each witness has its
own separate key and only the witnesses have access to their witness key.

• To prevent man-in-the-middle attacks, there is at least one honest channel
between a witness and the client.

• Each file in an update must be able to have its integrity checked by the
client and by witnesses.

• Each update must have a timestamp of its release that the client can verify.

• To prevent replay attacks, the client should be able to discover what the
latest version of an update is.

• In case a malicious update is discovered, the client should be able to
discover when the update was released.

4 Literature Review

4.1 The Update Framework

One of the primary failures of update systems is lost of key material, leading to
the powerful subverted server attack. The Update Framework (TUF) introduces
improved privilege separation to the update server that tries to improve over the
one master signing key by introducing two new types of keys with explicit trust
delegation [6]. Also, to avoid attacks TUF attempts to avoid any external PKI,
but instead hosts the entire key structure for a repository in a single metadata
file that specifies the latest version of the update that may contain multiple files
called target files. There are five roles: 1) A root role that delegates trusted keys
for the client and delegates keys to the rest of the roles. 2) A targets role that
signs the metadata for each target file (note that one may have many target
roles, up to n for n target files. 3) A snapshot role that signs the metadata
of what is the ‘latest’ update of target files. 4) A timestamp role that signs a
hash of each snapshot periodically to confirm the time. 5) A mirrors role that
allows one or more mirrors to hold copies of each target file and the metadata

5



file, with the total number of mirrors m and number of authoritative mirrors
required for installation n specified in the metadata file. Later versions of TUF
have developed delegation schemes for the various roles [3].

Each role has a different key, with the root key necessary to keep private
as it signs the rest of the keys. Hashes are done via SHA256 and signatures
via ECDSA or Ed25519. In order to install a software update, the client pe-
riodically downloads the timestamp to see if the snapshot has changed. If the
time of the last timestamp update is more frequent than the last update, then
it downloads the snapshot file and then iterates through each of the target files,
downloading them as well. The client may check using threshold signatures
from n of m mirrors. TUF attempts to prevent replay attacks via the use of the
snapshot and timestamp file, and prevents key compromises by separating the
keys between various roles and then (optionally) requiring threshold signatures
between mirrors.

While TUF is definitely an improvement over standard software updates
with a single authoritative key, it has no audit log of all updates and only
maintains the latest snapshot. Furthermore, TUF does not have any explicit
way to let a user determine if they are the victim of a targeted attack. Mirrors
help maintain at least one honest channel, but the mirrors are simply copies of
the entire update repository, and so the copying of the update repository is left
undefined, so the mirrors could copy a subverted update server. Since there is
explicit publishing of a timestamp and snapshot, a replay attack is more difficult
but not impossible, since an attacker could still block the channel to timestamp
and snapshot, especially for a targeted attack.

4.2 Binary Transparency

One of the problems facing TUF is that if there is a malicious update, there
is no audit log to discover when the update was released. The first version of
BinTrans was started by Huawei to focus primarily on firmware updates due to
issues like the aforementioned Juniper attack, but the latest versions attempt to
generalize for all possible binaries. Binary Transparency (BinTrans) is a recent
and still under development IETF draft that specifies the usage of Merkle trees
for audit logs with binary updates, where the leaves of the Merkle tree are
hashes of the binaries in an update [10]. It takes inspiration from the more
well-known Certificate Transparency IETF standard that uses Merkle trees to
provide an audit log for certificates used in TLS [4]. BinTrans currently specifies
that CertTrans logs should be used for BinTrans logs. BinTrans specifies a
Merkle Tree of the hash (SHA256) of a binary and a signature (either NIST
P-256 or RSASSA-PKCS1-V1 5 with at least 2048-bit keys) with a time-stamp.
However, while the specification is a straightforward extension of Certificate
Transparency, it does not take into consideration the privilege separation of
TUF in terms of keys. It is also does not take into account attacks on the
channel to the server hosting the BinTrans and so it does not prevent targeted
attacks. It does not have a notion of witnesses, although it could depend on
the CertTrans gossiping protocol [4]. Similar to TUF, there is still no way to

6



prevent blocking the channel to a BinTrans-hosting server and so prevent replay
attacks.

5 Updatechain Design

The Updatechain design combines the concept of a Merkle tree for hashes of
files with the verification of an update by multiple witnesses, and adds explicit
defenses to prevent targeted attacks and replay attacks. The Merkle tree of the
hashes of the binaries in an update is called the Updatechain of the update.
A single update server may have its own updatechain per server, and each
updatechain may have multiple witnesses that try to verify the update and co-
sign each verified hash in updatechain. The first innovation of Updatechain is
the use of multi-signatures of the witnesses in addition to signature of the update
server itself, where all witness signatures must be verified for the installation
to continue (as otherwise one of the witnesses or the update server has been
compromised), and so detect the subverted server attack. The second innovation
is the use of Tor, an anonymizing relay, to provide a trusted channel to the
Updatechain and so prevent targeted attacks [8]. The last innovation is the use
of the Bitcoin blockchain to store the timestamped and signed Merkle root of the
update, allowing a peer-to-peer verification of the Updatechain and detection
of replay attacks [5].

The overall design is illustrated in Figure 1, where a malicious update is sent
to the client (targeted attack or subverted server) or the channel is blocked via
the “blue” arrow and a check to the update server’s updatechain is done using
the’ “purple” arrow. Note that after these two steps are complete, the client
has the option of preventing attacks by checking an updatechain via Tor and
the timestamp on Bitcoin via the “black” arrows.

5.1 Updatechain and Witnesses

Each update server has an audit log of all their updates. In detail, the update
server maintains an updatechain for each update U where there are n binary
files u in the update (u ∈ U). Similar to BinTrans, the updatechain of each
update server is a Merkle tree containing of the hashes of each binary (h(u))
using SHA256 for every leaf. The Merkle tree provides an audit log that is easy
to check for an update in O(log n) time with a corresponding Merkle root for
checking the whole tree. Similar to TUF, each update sever has a server’s signing
key kr that is derived from an owner’s signing key. Although Updatechain like
TUF allows separate keys to be used for the roles of each particular target file,
version(snapshot), and timestamp, for purposes of a clear exposition we will
simply use the server’s key as all the keys with roles in TUF are derived from
the master key of the owner, although in practice privilege separation should
be used between each update and the server, as well as possibly metadata. As
in TUF, each update contains metadata, including a timestamp t, a version
number v, and the list of all files in the update. When there is a new version of

7



Figure 1: Updatechain Architecture

an update, in order to form a “chain” of updates, we assume the latest version v
has each of its files added to the updatechain of the previous version v− 1. The
point of the Merkle tree is to provide an easy way for the client and any other
party (such as a witness) to verify the integrity of each file in an update. Each
leaf in the Merkle tree is signed by kr. We assume there will be key rotation of
kr and its public key finds its way to the client, and we’ll assume a log of all
previous keys are kept.

Witnesses exist to prevent subverted server attacks. Each updatechain m
may have one or more (l) witnesses wm

1 ...w
m
l . The group of witnesses is a pre-

authenticated group whose task it is verify the updatechain of a server and create
a copy in case the original updatechain gets subverted. For example, a trusted
group such as EFF or security specialists such as iSec partners could serve as a
witness for Google’s binaries for Android. The witnesses are a social group that
has established a trust relationship with the owner of the update server before
the update. The role of the witnesses is to detect a subverted server attack.
The canonical behavior of a witness is to take the source code of an update
and audit it for malicious behavior, such as a backdoor, and we assume they
can replicate the binary on the server and other witnesses via deterministically
building from source to binary. By having a group of witnesses, we assume that
an attacker will not be able to compromise all the witnesses but only a subset
of them and we increase the chances of an audit of the code being successful.
As the clients are assumed to be unauthenticated, the witnesses may not be
the client itself as an attacker could then ‘spam’ the updatechain by creating

8



fake witnesses. In addition there may be up to l witnesses with keys kw1 ...k
w
l

that they use to co-sign a leaf of m if they find no malicious behavior when
replicating the build and so the hashes of their binaries match. We also assume
a client can verify signatures by having a list of witnesses with each public
signing key pkw and update server key pkr. As suggested by Syta et. al in
terms of witnesses, we would also recommend Schnorr signatures are used as
opposed to traditional multi-signatures due to their scaling properties and have
well-understood security proofs that do not require features like randomnesses
that can be subverted [7].

5.2 Keeping an Honest Channel via Tor

We can imagine the updatechain of a subverted update server or subverted wit-
ness providing false update information via targeting the client. Typically, a
target client of a targeted attack is identified by their IP address. In geograph-
ically bounded attacks, the attacked targets are also identified by a range of IP
addresses that stand-in for their geographical area, as an IP address can typi-
cally be resolved to at least the geographical area of the ISP (Internet Service
Provider) that assigns the IP address. Tor allows the IP address of a Tor client
that is sent over the Tor network to be anonymized, and replaced with the IP
address of an exit from the Tor network [8]. In order to prevent targeted attacks
on a particular client via their IP address when checking the updatechain, the
client maintains the honest channel with at least one witness via the use of the
Tor anonymizing proxy. At first glance, this would allow the same updatechain
to be retrieved from many IP addresses, as theoretically Tor could be considered
an approximation for a random IP address. However, in practice Tor users are
mostly in the United States and most Tor exit nodes are in Europe.7 So it is
better to have an updatechain accessed via a Tor Hidden Service, which is an
Internet service (such as a website) that can only be accessed via the Tor net-
work. Since a hidden service can only be accessed by the Tor network, its own
IP address is unknown and it cannot distinguish between the IP addresses of
those clients accessing the repository. Also, if the channel to the update server is
itself blocked or spoofed via a man-in-the-middle attack, the use of the witness
on the Tor hidden service should prevent the attack. This use of a witness on
the Tor hidden network should detect targeted attacks in particular, unless the
entire Tor network entry and exit nodes were being blocked. However, as Tor
is a dynamic network and as there is a considerable “arm’s race” between Tor
developers and various censors wanting to block Tor, we consider this unlikely
and as a client would simply come equipped with the latest Tor proxy access
to take advantage of any circumvention software developed by Tor. It does not
usually make sense to download all the updates from the update server itself,
as Tor incurs considerable latency delays.

7https://torflow.uncharted.software/

9



5.3 Finding the Latest Version with Bitcoin

Yet if there is a replay attack that blocks the channel to the update server
and all the witnesses, we would still want some way to determine if there is an
latest version even if we cannot prevent the attacker from blocking the channel.
Updatechain improves on TUF by allowing the timestamp of the update to be
verified via the use of the Bitcoin blockchain at low (although not zero) cost
[5]. Since the Bitcoin blockchain allows arbitrary metadata to be added via
the OP RETURN code,8 any updatechain server (as well as witnesses and even
clients) can simply add to the Bitcoin blockchain the signed SHA256 hash of its
Merkle root with a timestamp. So a replay attack cannot be successful unless
the attacker is able to successfully fork the Bitcoin blockchain, which is very
difficult. In essence, the hashing power of the Bitcoin blockchain provides an
additional assurance of the software update’s timestamp and the integrity of
the updates. This opens the question as to why the entire Bitcoin blockchain is
not used to store the entire updatechain or each of the binaries of an update.
While this would be theoretically possible, it would involve adding many new
transactions to the Bitcoin blockchain, and the cost would grow, while only
storing the Merkle root once per update allows a very low cost to be used
to store once for the entire update, achieving the same goal. The use of a
sidechain may not work, as a determined attacker could much more easily fork
the sidechain as it would require less hashing power. The same argument would
apply to creating a new alternative blockchain for private updates. Rather
than re-invent the wheel, it make the most sense to simply take advantage
of the massive hashing power already in the Bitcoin blockchain for providing
additional assurance against replay attacks.

6 The Updatechain API

We consider Updatechain to have a update server (repository) r that contains
the software update U = u1...un where u = {0, 1}∗ with an updatechain m.
Each repository has a secret signing repository key skr. There is also a Bitcoin
blockchain B that can add new data x in Bt = Bt−1(x) as an append-only log,
and also return x = B(x) if x is on Bitcoin blockchain. We are assuming the
use of Schnorr signatures or another aggregate signature scheme.

6.1 Adding an Update to the Updatechain

m=Add(U,m): When a new update is to be added to m for version v at times-
tamp t, construct the binary hash tree m and add the Merkle root mroot to
B.

1. For each ux ∈ U , apply SHA256 to obtain h(ux).

2. Sign each leaf x with owner’s signing private key σskr (h(ux)).

8https://github.com/bitcoin/bitcoin/pull/2738

10



3. If n is odd, then an update un+1 = un is added to keep the Updatechain
balanced.

4. For each leaf h(ux) and h(ux+1), parent nodes h(w) are constructed h(w) =
h(h(ux) ‖ h(ux+1)).

5. Repeat previous step until Merkle tree m is built with level z.

6. If there is no previous existing version v − 1, then mroot = h(h(z1) ‖
...h(z2)).

7. If there is a previous version (v−1), then recalculate the mroot = h(mv−1
root ‖

mv
root)

8. Create signed Merkle root metadata mmetadata = σskr (mroot ‖′ 0x0′+v ‖′
0x0′ + t))

9. Add metadata to blockchain B(mmetadata)

6.2 Witness an Updatechain

m=Witness(W,U,m): One or more (l) witnessesW = w1...wl with secret signing
keys skw1 ...sk

w
l can verify an updatechain by co-signing based. The leaf x of

Merkle tree m is indexed to the beginning of U and denoted mx. Error messages
that show an attack have been discovered are given by E(’name of attack’) as
defined in the threat model.

1. For each w ∈W

(a) For each file ux ∈ U , audit ux.

(b) If no security flaw is found in ux and h(ux) 6= mx, then σskw(mx)
else E(subverted server)

2. w = m

6.3 Verifying an Update

{True,False}=VerifyUpdate(U,m,W): There is a client c (with public signing
keys skw1 ...sk

w
l of the witnesses and public signing key pkr of the update server)

that is trying to determine if their local copy of the update U has the same
integrity as m. The leaf x of m is indexed to the beginning of U and denoted
mx. We assume there is a single aggregate signature (σW = σsk1 ...σskl) of all
the witnesses. The usage of Tor for a client and a witness available at a hidden
service wtor is given by wtor = Tor(c, w). For verification an error message E
should cause the process to abort.

1. V erify(pkr,mmetadata, σskr (mmetadata)) else E(man-in-the-middle attack)

2. If mroot = Tor(wroot) else E(targeted attack)

11



3. B(mmetadata) = mmetadata else E(replay attack)

4. For each ux ∈ U

(a) If V erify(pkr, h(ux), σskr ) and V erify(pkr, h(ux), σw) else E(subverted
server)

7 Next steps

A “proof-of-concept” of updatechain is still under implementation based on the
work of RS-Coin[2].9 More importantly there is also more work to be done before
Updatechain is ready for usage. First, there needs to be performance testing
on how the number of witnesses, the use of Tor, and the use of the Bitcoin
blockchain impact the practical efficiency of checking updates. In terms of the
underlying assumptions, the method has only been detailed insofar as it would
apply to the case of a single software update based on a group of binaries that
can all be deterministically built and checked by witnesses. In reality, software
updates are often much more complex and involve entire interlinked groups
of updates from multiple update servers, where the updates may or may not
be compiled from source code that can be verified by witnesses. Furthermore,
many code-bases also are currently interlinked with dynamic code delivery for
the Web: For example, many applications often require registration via a Web
form. Thus, in the future the Updatechain approach needs to be scalable, apply
to the installation of software from source code rather than binaries, to take
into account software dependencies, and work with Javascript from the Web.

7.1 Scalability

Updatechain needs to be scalable to entire distributions of updates, not just
single updates. For example, as of 2016 there are possible 69,559 packages
in Ubuntu,10 with a total of 80,000 files on a typical default installation of
Ubuntu. Given the number of updates (Ubuntu averaging 3 updates a year
of their packages) we need to make sure our approach scales. Note that also
there are critical security updates in between version numbers. Over 2015,
Ubuntu 15.04 received approximately 100 updates.11 With new versions being
released approximately once a year, we need to be able to scale the approach
from a single software package containing ≤ 100 files to entire operating systems
approaching ≤ 100,000 and trees of version updates that could eventually go
over a ≤ a million files. One next step is simply to test scalability over much
larger collections of files. It is possible the approach may have to be simplified
for the auditing of entire distributions.

9https://github.com/hhalpin/updatechain
10http://packages.ubuntu.com/yakkety/allpackages?format=txt.gz
11http://www.ubuntu.com/usn/vivid/

12



7.2 Source Code

One of the primary issues with our approach is it defines a software update as
a binary blob and assumes there to be a deterministic build from the source
code to the binary for both the witness and client. Using an updatechain of
the hash of the binary only works as long as there is no non-determinism from
the compiler (such as many techniques used in compiler optimization) or other
non-malicious causes for the binaries not to match (such as localization). The
problem of deterministic builds has been actively solved for a fairly large part
of the Debian environment by the reproducible build effort.12 An alternative
approach would be to convert the source code of each file into binary, using
a technique such as Base64, and then store the hash of the source code in
Updatechain. While it is possible an attacker could attack the compiler, it is
unlikely.

7.3 Dependencies

Our approach also assumes that a single collection of binary files contains the
application. Indeed, this is not often the case, as usually there are underlying
dependencies. The use of the secure “Off-the-Record” messaging system given
by libotr relies on the XMPP library libpurple, which has been shown to have
security vulnerabilities.13 In order to give security guarantees, one needs to
do operations that check multiple binaries against relevant parameters such as
their version number, including not just the downloaded application code but
already pre-existing libraries. This kind of simplified interpreter is familiar to
blockchains in terms of Bitcoin’s Script language, and already new languages
specialized in providing guarantees for updates over the Bitcoin blockchain have
started to be under development, such as Dex.14 Since we want Updatechain to
be used for general purpose updates, it seems providing a separate interpreter
may be less useful than allowing the generic Updatechain API to be integrated
into existing installation management scripting languages such as make and
configure for C.

7.4 Web

In reality, many applications are spread throughout a mixture of native code,
compiled to binary on a client, and Web-based code that is dynamically ran
from a server. However, Javascript code is both not delivered as a binary but
delivered as Javascript via a browser and often delivered in an obfuscated fash-
ion, presenting problems for Updatechain. The W3C has recently developed a
new standard called Subresource Integrity that allows both a hyperlink tag or
a script tag to contain a hash of some Javascript code, and to only execute the

12https://wiki.debian.org/ReproducibleBuilds
13http://motherboard.vice.com/read/desktops-urgently-need-a-more-secure-chat-program-

adium-pidgin
14Personal communication from Peter Todd.

13



linked Javascript if the hash matches [1]. As they are listed as authoritative
for particular Javascript code, the hashes from Subresource Integrity could be
added to Updatechain, although they would not be signed by default, but could
be explicitly signed by the maintainer of the server or the user who executes
the code. An additional future feature is that Updatechain’s API could be pre-
sented as REST API that could be access by a browser via HTTPS, allowing the
installation of Javascript to checked in the browser as part of a Web Application.

8 Conclusions

Updatechain shows that software updates can be done in a Merkle-tree method
that is both easily auditable and multi-signatures allow the use of witnesses to
verify the veracity of updates, thus giving a user reasonable assurance that they
have received the same update as other users, protecting against a number of
attacks such as man-in-the-middle attack on the connection between the user
and an updatechain and replay attacks that withold an update. In order to
detect attacks on targeted users, a number of defenses have been implemented
the use of the Bitcoin blockchain for periodic storage of “timestamps” on updates
as well as the use of Tor to provide access to an Updatechain that cannot
be censored via IP address level control. Although the current approach will
be integrated into The Update Framework that is used by “mission critical”
software such as LEAP that is likely to be targeted for attack, future work into
scalability and integration into deterministic builds should allow Updatechain
to be used on entire operating systems.

References

[1] Frederik Braun, Devdatta Akhawe, Joel Weinberger, and Mike West. Sub-
resource integrity, 2016. https://www.w3.org/TR/SRI.

[2] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies.
arXiv preprint arXiv:1505.06895, 2015.

[3] Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz, and
Justin Cappos. Diplomat: using delegations to protect community repos-
itories. In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 567–581, 2016.

[4] Ben Laurie, Adam Langley, and Emilia Kasper. Rfc 6962: Certificate
transparency, 2013. https://tools.ietf.org/html/rfc6962.

[5] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[6] Justin Samuel, Nick Mathewson, Justin Cappos, and Roger Dingledine.
Survivable key compromise in software update systems. In Proceedings of
the 17th ACM conference on Computer and communications security, pages
61–72. ACM, 2010.

14



[7] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Linus Gasser,
Nicolas Gailly, and Bryan Ford. Keeping authorities “honest or bust” with
decentralized witness cosigning. In 37th IEEE Symposium on Security and
Privacy, 2016.

[8] Paul Syverson, R Dingledine, and N Mathewson. Tor: the second-
generation onion router. In Usenix Security, 2004.

[9] Agnidipto Tarafder and Arindrajit Basu. A small battle for fbi, a gigantic
war for privacy rights. Economic & Political Weekly, 51(17):13, 2016.

[10] Dacheng Zhang, Daniel Kahn Gillmor, Ana Hedanping, and
Behcet Sarikaya. Rfc 6962: Certificate transparency, 2016.
https://datatracker.ietf.org/doc/draft-zhang-trans-ct-binary-codes/.

15


