Security Analysis of Dashlane

Paolo Gentili, Sarah Shader, Richard Yip, Brandon Zeng
May 2016

Abstract

We perform a security analysis of Dashlane, a password manager
and digital wallet with over 3 million users. Given the sensitive data
associated with such an app, including passwords, credit card num-
bers, and other personal information, any vulnerabilities in the app
could have significant consequences for its users. Throughout our at-
tacks, we find only minor vulnerabilities in Dashlane, which we present
in this paper along with recommendations and other future potential
avenues of attack.

1 Introduction

With the vast number of online accounts that most people have in the digital
age, many people have turned to password managers to help remember all
of their passwords. Our group has performed a security analysis of one such
app: the password manager Dashlane. Dashlane is a password manager and
digital wallet app available on Mac, PC, iOS and Android. First released in
2012, it has amassed over 3 million users and has quickly grown as a way
for users to not have to remember passwords for accounts on many different
websites, such as Facebook, Google, and PayPal.

Dashlane keeps a record of all the different passwords for a user protected
by the user’s “master password,” meaning that the user only needs to remem-
ber their master password in order to access their other passwords. Dashlane
also offers a premium feature which syncs passwords for a user across different
devices (i.e. from iOS to Mac) as well as the option to share passwords with
other Dashlane users, either with full access (the recipient sees the password)

or limited access (the recipient can use the password to log in, but does not
actually see the password). In addition, Dashlane has features which assess
the security of passwords, offering to automatically update the passwords if
they are insecure or out of date, as well as features which randomly generate
“strong” passwords.

Since Dashlane, as a password manager, is responsible for protecting a lot
of sensitive information, it is vital that Dashlane is very secure. There has
not been a comprehensive security analysis of Dashlane to date. However,
the 2014 paper The Emperors New Password Manager: Security Analysis of
Web-based Password Managers offers a security analysis of five different pass-
word managers: LastPass, RoboForm, Myllogin, PasswordBox, and Need-
MyPassword @ This paper reveals vulnerabilities in all of these password
managers with a variety of different root causes ranging from web vulnera-
bilities such as CSRF and XSS to authorization mistakes in features such as
password sharing. For these reasons, we chose to investigate the security of
Dashlane by applying some of these same attacks.

[N J
Name v A Cotapseat 212)

/}dashlane

bzeng@mit.edu ¥

| @ show

Forgot your password?

Create an account

Figure 1: The Dashlane log-in window and desktop app

2 Structure of Dashlane

When a user creates a Dashlane account, they use their email and choose a
“strong” password defined as having at least eight characters, one uppercase

letter, one lowercase letter, and one number. The user can now log in to
Dashlane from its web or desktop app from the user’s computer, or from the
user’s phone. Whenever the user attempts to log in to their account from a
new device, the user must enter a six-digit code sent by email in addition to
their master password, offering another layer of authentication.

With the help of a browser extension, Dashlane automatically detects
existing passwords that have been saved to the browser and adds them to
the user’s list of passwords. When a user logs into an account that has not
yet been saved, Dashlane (with the help of the extension) will offer to auto-
matically save that password to the user’s account. The Dashlane extension
also allows a user to automatically log in to any of their accounts that have
been saved. A user may also manually add a username and password to their
Dashlane account, and this account can then be used in the same manner as
any other saved account.

Dashlane uses AES-256 with CBC to encrypt user data, using a key
derived from the master password from using more than 10,000 rounds of
PBKDF2 with a random 32-byte salt. From examining the source code of
the Dashlane web app as well as the Dashlane Whitepaper [1], we verified
that the encrypted Dashlane data is formatted in the following way:

e The data is represented in Base64

e Once decoded to binary or hexadecimal, bytes 1 through 32 are the
salt

e Bytes 33 through 36 represent whether the data is compressed or not

— If these bytes represent ‘KWC3’ in ASCII, the data is compressed
— Otherwise, the data is uncompressed

— Based on the compression, there is a different protocol for selecting
the AES key and the initialization vector

Dashlane uses OpenSSL’s PKCS5_ PBKDF2_ HMACI function with 10204
iterations with the indicated salt to produce a derived key from the user’s
master password. Dashlane then uses OpenSSL’s EVP _BytesToKey function
taking the previously generated key and salt, using SHA and only 1 iteration.

These values can now be used to decrypt the Dashlane data. If the data is
compressed, we use the first key we generated with the EVP_BytesToKey
initialization vector. Otherwise, we use both the key and initialization vector
generated by EVP_BytesToKey. Once decrypted, the data is in XML form
and the various data types are summarized in [7].

3 Responsible Disclosure

The research in this paper was performed with the permission of the company
under a responsible disclosure policy. Our analysis audits Dashlane’s web
application, https://www.dashlane.com/app/, and its desktop app, version
4.1.1. Some of the security issues discussed below may affect Dashlane’s
service, so we are currently contacting Dashlane and will delay the public
posting of this paper by four weeks while waiting for a response. We will
further delay its posting upon request by Dashlane.

4 Attack Model

We mainly consider attackers who are normal users of Dashlane as opposed
to insiders, such as Dashlane employees, since it is very hard to reason about
the resources and permissions that insiders would have, other than that they
should be unable to access user information. We focus on attacks that reveal a
user’s private information instead of attacks such as denial of service attacks.
We assume that attackers only have access to what is publicly available from
Dashlane, such as their web app and Chrome extension source code as well
as any other public encryption software such as OpenSSL. We also assume
that the attacker potentially has access to a lot of computing power, which
can be easily obtained from resources such as Amazon Web Services, as well
as a lot of time and patience.

5 Vulnerabilities

5.1 Web

We began by considering the public code Dashlane has available, using
Google Chrome’s Developer Tools to identify scripts and monitor local stor-

age, as well as examining the Chrome extension’s code. We were unable to
find hardcoded values or unencrypted information that would make Dashlane
vulnerable.

We then proceed to use OWASP’s Zed Attack Proxy, a penetration testing
tool, which revealed minor vulnerabilities but nothing that would compro-
mise user accounts. This was further confirmed when we attempted to use
a XSS attack by entering Javascript into forms on the web app, but Dash-
lane sanitized our inputs and the redirected URL had all Javascript escaped.
Similarly, attempting a CSRF attack was unsuccessful as Dashlane appears
to use secure random tokens in its HT'TP requests.

Finally, we used the MITMProxy tool for analyzing network traffic be-
tween the mobile app and Dashlane servers. To use this man-in-the-middle
approach, we installed a malicious root certificate on our phone, which al-
lowed us to encrypt and decrypt traffic to and from the device. Using MITM-
Proxy, we were able to log API calls and view the transmitted content, which
notably included an encrypted record of the account’s passwords. Based on
[7] and given the user’s password, we would theoretically be able to decrypt
the record and view that user’s stored passwords.

5.2 Features Testing

We decided to test Dashlane’s password sharing feature, in particular the
claims regarding passwords shared with limited rights. If one chooses to
share a password with full rights, the recipient can view the password, edit
the password, share it with others, and even revoke access from the original
owner. Instead, if a password is shared with limited rights, the recipient
should still be able to log in to the account through the help of a browser
extension, but he or she should not be able to view the password, edit it, or
share it with others.

Even with a password shared with limited rights, we realized that the
Dashlane browser extension would eventually have to handle unencrypted
password data in order to log in to a website. Thus, we felt that there might
be an opportunity for an attack for the recipient with limited rights to a
password to obtain the password’s plaintext.

This intuition turned out to be true. We first went to the log-in page
corresponding to the shared password and used Google Chrome’s “inspect
element” on the password field. Here, we changed the field from a “pass-
word” type to a “text” type, so any text entered into that field would show
up in plain text rather than as password bullets (see Figure 2). At this point,
we used the Dashlane web extension to automatically log in to the account
and were able to view the plaintext of the password that had originally been
shared with limited rights (Figure 3).

@ Developer Tools - htpy//www.neopets.com/index.phtml - o x @ Developer Tools - hitp:/www.neopets.com/index phtml - o x

[x ﬂ Elements Console Sources » 03 (w ﬂ Elements Console Sources » 93

¥ <td valign="top ¥ <td valign="top

input |type="[EE]g " Iname input typa:"ia-:"!name
password size @ style passwor size style

background-color: rgb(255, 255, background-color: rgb(255, 255,
284);"> == %0 204);"> == %@

br br

a href="/account/ a href="/account/
passwordreset.phtml” style passwordreset.phtml” style

Lant ~fma Omd TN Camaad ~ Lamd_mdmas Qmds L Cammak -

Figure 2: We change the password field to a text field using Chrome Devel-
oper Tools

I
(Log|In'to/Neopets] [Log InitoNeopets

Username: 257rox 7 Username: 857rox

Password: ” P Password: h3lloworld
o Forgot Password?

B loginas 857rox > Log In!

Figure 3: Logging in with the Dashlane extension reveals the password in
plaintext

This vulnerability compromises several of Dashlane’s promises regard-
ing passwords shared with limited rights. Obviously, this violates the claim
that passwords shared with limited rights cannot be viewed by the recipient.
Once the recipient has access to the password in plaintext, he or she can
now also share access to the corresponding account with other unintended
recipients. Additionally, since many users use the same passwords across

different accounts (despite the efforts of password managers to combat this),
this vulnerability may compromise other accounts of the user that were not
shared but have the same password.

5.3 Brute Force

The Dashlane website and desktop app both require an email and password
for login. During testing, we discovered that neither login forms limit pass-
word retries. Furthermore, we were able to determine emails linked with
dashlane accounts (the email address is the username for Dashlane accounts)
as the UI displays “Incorrect login” for nonexistent usernames but “Incor-
rect password” for existing ones. This means an adversary could potentially
brute force usernames and passwords.

However, this threat is mitigated since Dashlane uses Two-Factor au-
thentication to authenticate new devices. If an attacker tried a brute force
attack on a specific account, the attacker would first have to authenticate
the account on the specific device. As mentioned earlier, whenever a Dash-
lane account is accessed on a new device, the user is sent a six-digit security
code which expires after three hours. Therefore, an attacker would have to
brute force both the security code and the password. Additionally, the se-
curity code resets after five incorrect attempts. While this makes a brute
force attack on the password much harder, it is not completely infeasible,
and we should note that six digits is abnormally small. Furthermore, if the
attacker knows the password, brute-forcing a six-digit security code—even one
that changes every five attempts-will take about 70,000 attempts to get a
50% probability of succeeding. While large, that number of attempts is not
infeasible.

5.4 Device Authentication

As mentioned in the introduction, Dashlane offers device authentication as
an additional layer of security. To prevent a foreign adversary from brute-
forcing a user’s password, Dashlane requires that all computers and browsers
first be registered with the user’s account before logging in. This entails send-
ing an email containing a six-digit security code that the user must enter in
addition to the master password. Once the device or browser is registered,

the user is free to log in without the security code.

Our group focused on trying to bypass this device registration require-
ment. We found out how Dashlane authenticates devices and what is neces-
sary in order to forge device registration.

We first considered the possibility that Dashlane used MAC addresses
to authenticate computers. We created and authenticated an account on
one computer and then spoofed that machine’s MAC address on another.
However, when we attempted to log in to the same account on the second
computer, we were still prompted to enter a security code, meaning that
Dashlane did not (solely) use MAC addresses for device authentication.

Since this approach did not work, we attempted to determine where au-
thorization occurred on an already registered device in order to see if we
could forge this authorization and bypass the device registration phase. We
were eventually able to determine where the device authorization took place.
Since login for registered devices can occur offline, the authorization could
not happen on Dashlane servers. After some hard drive searching, we found
a folder containing folders that corresponded with every account registered
with the computer: the name of each folder matched the emails of all the
computer’s registered accounts.

In the folders contained AES-encrypted files that contained passwords
and login info, sharing rights details, purchase histories, and more. These
files are synced with Dashlane servers upon login (provided there is internet
access). In particular, we found that the file localSettings.aes contains the
device authentication. Note that this device authentication is NOT tied to
the computer itself; for example, if this folder was copied onto another com-
puter, that computer could log into the account without prior verification.

To confirm this, we created two Dashlane accounts with usernames dash-
lanel@mit.edu (which we will call account A) and dashlane2@mit.edu (ac-
count B) and gave them the same password (see Figure 4). Next, we logged
into account A on one computer (called computer a) and account B on an-
other (computer b). Finally, we created a folder called dashlanel@mit.edu
in computer b—which did not have registered access to that account—and
inserted the encrypted .aes data from account B’s folder. Finally, we took

8

Computer a Computer b

i i

...\Dashlane\profiles\dashlanel @mit.edu ..\Dashlane\profiles\dashlane2 @mit.edu
- passwordData.aes - passwordData.aes
- localSettings.aes - localSettings.aes
otherStuff.aes - otherStuff.aes

l

...\Dashlane\profiles\dashlanel @mit.edu

- passwordData.aes
localSettings.aes

- otherStuff.aes

Figure 4: By combining the contents of two account’s folders on two different
computers, we were able to forge device authentication.

the localSettings.aes from account B’s folder and replaced the existing file in
this new folder.

We found that we were able to log into account A on computer b. How-
ever, it displayed all the password data from account B since all the .aes
password data was copied over from account B and unencrypted with ac-
count B’s password (which is the same as account A’s password). We were
able to sync account A with the Dashlane servers, though, which resulted in
access to all of account A’s password data.

Thus, with access to account A’s password and localSettings.aes file,
we were able to bypass the device registration requirement (see Figure 4).
It turns out that, with limited reproducibility, we were able to get the
localSettings.aes file by creating an empty dashlanel@mit.edu folder, log-
ging into the account, and letting Dashlane sync. Because of this, Dashlane’s
device authentication feature is suspect at best.

6 Recommendations

Most of our recommendations revolve around the potential vulnerabilities
found.

First of all, we recommend that Dashlane provide accounts with a user-
name other than the user’s email address. That way, it prevents adversaries
from finding out whether certain email addresses have Dashlane accounts.
We also recommend that Dashlane implement a maximum number of unsuc-
cessful login tries to discourage brute-forcing passwords. In the same vein,
the device authentication security code should be longer than six digits.

The limited rights password sharing idea is nice, but practically impos-
sible to implement correctly in its current state. The reason for this is that
Dashlane is at the mercy of the web browsers: if a web browser (e.g. Chrome)
allows users to inspect and edit the HTML and CSS on webpages, it becomes
very difficult to give a user access to an account without revealing the pass-
word itself. Thus, we recommend that Dashlane remove the limited rights
password sharing feature.

Finally, the device authentication feature should not solely rely on a file
appearing in a folder. Instead, it should require that a computer’s MAC
address also match up. While spoofing a MAC address is not impossible,
companies like Intel are making chips that do not allow users to change
their MAC addresses. This would make it more difficult to forge the device
authentication file.

7 Future Work

Due to limited time and Dashlane’s numerous features, we did not have
the opportunity to fully test Dashlane for security vulnerabilities. For future
work, we would like to pursue some of the leads found with brute force attacks
and fake device authentication. In addition, we would like to investigate
the other features of Dashlane. In particular, we believe that the in case
of emergency sharing and the password generating features hold potential
vulnerabilities. Additionally, for future work we want to investigate potential
ways to improve Dashlane such as adding the option for master password

10

recovery.

7.1 In Case of Emergency Sharing

Dashlane offers a feature to share your data with an emergency contact in
the case of an emergency. If user A grants user B access in case of emergency,
user B can request access to user A’s data, and if user A does not respond
within a certain amount of time (predetermined by user A), user B receives
access to all of user A’s data. Depending on how this is implemented, this
may indicate that Dashlane servers have access to unencrypted data, or more
likely user A’s data encrypted using a derivation of user B’s master password.
This would mean that user A may temporarily have access to a derivation of
user B’s master password, which could potentially decrypt some of user B’s
data. Conversely, the Dashlane server may have user A’s data, which could
potentially be decrypted by user B without the permission of user A.

7.2 Password Generator

Like many password managers, Dashlane offers a password generator which
claims to generate “strong” and “random” passwords. The user can specify
the length of the password as well as various other features such as whether
the password should contain numbers, symbols, or be pronounceable. We
were unable to find details about how Dashlane implements this “random”
password generator, but in future work, details about the implementation of
this password generator could potentially lead to more efficient brute force
attacks on these generated passwords of Dashlane users.

Another notable feature is that Dashlane claims to store all previously
generated passwords created by an account. This is intended for a user to
potentially recover a previously generated password if they forgot to initially
store it as a password in Dashlane. However, if these passwords are incor-
rectly stored, for instance if they are cached (unencrypted) somewhere, it
would make it easy for an attacker to hack any recently created accounts
made by Dashlane users. Clearly, if the password generator had some vul-
nerability, it could have major consequences for Dashlane users who rely on
this feature.

11

7.3 Master Password Recovery

Out of the many features that Dashlane offers, it does not offer an option for
master password recovery (which we unfortunately discovered in our early
testing of the application). Most websites offer password recovery or pass-
word reset through email. However, since Dashlane in many cases actually
stores the user’s email password, this may not be a feasible option. In fact,
such a password recovery scheme might even be detrimental in situations
where the user’s email password was compromised. Nonetheless, a password
recovery option would make Dashlane more user friendly, so it would be
worth investigating the possibility of creating a password recovery option.

8 Conclusion

Overall, we found Dashlane to be quite secure against all of the attacks that
we carried out. All essential user data is encrypted using AES-256 with a
key that derives from the user’s master password, and neither the master
password nor the key is stored locally or on Dashlane’s servers. As a result,
the security of AES ensures that it is infeasible to obtain a user’s sensi-
tive information without knowledge of their master password. Furthermore,
even with the knowledge of a user’s master password, it is difficult—though
not impossible—to bypass Dashlane’s device authentication to gain access to
their account.

We ultimately found a vulnerability regarding Dashlane’s limited rights
sharing feature, which we recommend be removed to avoid giving users a
sense of security that does not exist. We also discovered several practices
that could be adjusted to ensure greater security, specifically against brute
force attacks. While we have some ideas for future approaches to attack
Dashlane, we did not discover any major vulnerabilities, which is a good sign
for a security-based app like Dashlane.

9 Acknowledgements

We would like to think Professor Rivest and the rest of the 6.857 staff for
their support and guidance. We would also like to thank Dashlane for giving
us permission to research their product.

12

References

[1] “Dashlane Security Whitepaper” (2016). URL: https://www.dashlane.
com/download/Dashlane-Security-Whitepaper-V2.8.pdfl

2] Dashlane Website. URL: https://www.dashlane.com/security (vis-
ited on 04/05/2016).

[3] Nikolay Derkach. “A Tutorial for Reverse Engineering Your Software’s
Private APIL: Hacking Your Couch” (2015). URL: https://www.toptal.
com/back-end/reverse-engineering-the-private-api-hacking-
your-couch (visited on 05/02/2016).

[4] Geoffrey A. Fowler. “A Quick Fix for Poor Passwords” (2014). URL:
http://www.wsj.com/articles/a-quick-fix-for-poor-passwords-
1418126603 (visited on 04/05/2016).

[5] Paolo Gasti and Kasper B. Rasmussen. “On The Security of Password
Manager Database Formats” (2012).

[6] Zhiwei Li et al. “The Emperors New Password Manager: Security Anal-
ysis of Web-based Password Managers” (2014).

[7] Notes about Dashlane. 2014. URL: https://gist.github.com/roblable/
4a43d0ab5fc3769c815ab (visited on 04/16/2016).

13

https://www.dashlane.com/download/Dashlane-Security-Whitepaper-V2.8.pdf
https://www.dashlane.com/download/Dashlane-Security-Whitepaper-V2.8.pdf
https://www.dashlane.com/security
https://www.toptal.com/back-end/reverse-engineering-the-private-api-hacking-your-couch
https://www.toptal.com/back-end/reverse-engineering-the-private-api-hacking-your-couch
https://www.toptal.com/back-end/reverse-engineering-the-private-api-hacking-your-couch
http://www.wsj.com/articles/a-quick-fix-for-poor-passwords-1418126603
http://www.wsj.com/articles/a-quick-fix-for-poor-passwords-1418126603
https://gist.github.com/roblabla/4a43d0a5fc3769c815ab
https://gist.github.com/roblabla/4a43d0a5fc3769c815ab

	Introduction
	Structure of Dashlane
	Responsible Disclosure
	Attack Model
	Vulnerabilities
	Web
	Features Testing
	Brute Force
	Device Authentication

	Recommendations
	Future Work
	In Case of Emergency Sharing
	Password Generator
	Master Password Recovery

	Conclusion
	Acknowledgements

