
WhisperKey: Creating a User-Friendly URL Shortener

Eunice Lin, Flora Tan, Linda Wang

May 12, 2016

Abstract

URL shorteners convert long, unwieldy URLs into
shorter ones and redirect all requests to the short-
ened URL to the original website. In this project,
we investigate the security flaws of ShoutKey, an
easy-to-use temporary URL shortener that maps
simple dictionary words to a given URL of interest.

We first conduct a security analysis of the vulnera-
bilities encompassed by Shoutkey. Then, we conduct
a standard dictionary attack to access private URLs,
storing the successful dictionary words in a separate
database to conduct a second, more optimized dic-
tionary attack, and analyzing the successful redirects
to determine if there is any leakage of private user
data. Finally, we propose a more secure implementa-
tion of ShoutKey called WhisperKey and empirically
analyze how WhisperKey is designed to be less prone
to security attacks than ShoutKey is.

1 Introduction

1.1 URL Shorteners

A URL shortener accepts a URL as input and gener-
ates a short URL. The service maintains an internal
database mapping each short URL to its correspond-
ing original URL so that any online access using a
short URL can be resolved appropriately.

1.2 ShoutKey

ShoutKey is a temporary URL shortener that takes a
long URL and maps it to a shorter url to aid sharing

of links. Unlike other popular URL shorteners such
as Tinyurl or Bitly that map the original URL to a
random string of letters and numbers, ShoutKey was
designed to be user-friendly by using keys that are
standard English words that are easily pronounced
or spelled. This makes it easy for users to share
a link to those in close proximity, for example, by
verbally telling the key to a friend across the room
or writing it on a whiteboard at the front of class.
Anyone who goes to the ShoutKey link can access
the corresponding URL.

Figure 1: A ShoutKey with ”laugh” as its key. Going
to shoutkey.com/laugh will redirect the user to the
given website for since its creation, after which the
key may be reused to redirect to another site.

2 Background

A recently published paper by Georgieve &
Shmatikov (2016) analyzed the security of URL
shorteners such as Microsoft OneDrive and Google

1

Maps [1]. They demonstrated how short-URL
enumeration could be used to discover and read
shared content stored in the OneDrive cloud and find
information shared using Google Maps. The authors
found that 7% of the OneDrive accounts exposed
in this fashion allow anyone to write into them.
They also discovered that short-URL enumeration
for Google Maps revealed directions that users
shared with each other, enabling inference about
residential addresses, true identities, and sensitive
locations, such as abortion, mental-health, and
addiction-treatment clinics medical facilities, as well
as prisons and juvenile detention centers.

ShoutKey is a very familiar URL shortener in the
classroom. It has garnered a significant audience of
educators who can easily share links to class activities
by telling the class the simple word to the ShoutKey
link. At MIT, it has been used in courses includ-
ing 6.813 (User Interface and Design) and 6.005 (El-
ements of Software Construction). Given the recently
published papers regarding the security breaches of
these URL shortening services, we were motivated to
investigate any potential security flaws of ShoutKey
since it is widely used by educators and students alike
on campus.

3 Security / Attack Model

The use of the ShoutKey shortening service imposes
risks on users submitting URLS. These threats are
discussed in the following sections.

3.1 Privacy

In our project, we describe an experiment in which we
enumerate words in the English dictionary to search
for secret URLs that users have shortened using the
ShoutKey website. By implementing a simple dictio-
nary attack, a malicious third-party could easily view
and make edits to private documents that were in-
tended to be shared only with those who have knowl-
edge of the corresponding ShoutKey. If the third
party has malicious intent and had a target URL in
mind, he could easily enumerate through the dictio-

nary until he finds the right ShoutKey that redirects
to the URL of interest. We found several URLs that
led to private video conference calls, Google docu-
ments, Google forms, and even coding interview links
that we could access and edit. More information re-
garding the results of our attack can be found in Sec-
tion 4.1.2.

3.2 Sensitive Information

Often, users are not aware of the fact that once
URLs are submitted to a URL shortening service,
the URLs are no longer private. At the very
least, the administrators of the service will have
access to the URLs. Submitting secret URLs
using ShoutKey therefore compromises the privacy
of the data contained in the URLs. From the
results of our dictionary attack as described in
Section 4.1.2, we found several ShoutKeys that
redirected to unlisted YouTube videos, or videos
that are not searchable using YouTube’s search
interface. This therefore breaks YouTube’s privacy
models for users. We also found Google documents
that appeared to be feature more private data,
including unpublished research and dissertations,
that should have been disclosed only to the authors
but was accessible to anyone with the ShoutKey link.

ShoutKey currently has no published Privacy Pol-
icy on its website that assures the privacy of submit-
ted URLs. Clearly, however, given the results of our
attack, there exists a significant portion of users who
did not heed the lack of privacy settings and went on
to share very sensitive information using ShoutKey.
This suggests a clear need for more secure measures
to address the vulnerabilities of ShoutKey.

4 ShoutKey Security Analysis

4.1 Dictionary Attack

Since ShoutKey only uses dictionary words,
we conducted a dictionary attack that tested
http://shoutkey.com/[key] for every English word as
the key to see if any of the URLs redirected, taking

2

special note of whether any of these redirected URLs
led us to private data.

4.1.1 Enumeration

The dictionary we used was the built-in words
standard file on all Unix operating systems, which
contains 235,886 English words. We wrote a
Python script that makes HTTP requests to
http://shoutkey.com[key] using each word as
the key, and then check the URL to see if it is
different from the original URL. If it is different,
that means the ShoutKey has successfully redirected.

Users can choose to set their ShoutKey links to
expire after a period of time between 5 minutes and
12 hours. In order to save these redirect links to be
visited later, we store data for each HTTP request
into a MySQL database that includes the key, the
redirected URL (or NULL if it did not redirect), and
the time the request was made in a MySQL database.
From this, we can then revisit these URLs even if the
ShoutKey has already expired. We can also easily re-
trieve the number of redirected links and their URLs,
or the total amount of time it took to make all the
requests.

4.1.2 Results

In our security analysis, we made a total of 1,745,650
ShoutKey HTTP requests. This was approximately
6 full passes through the dictionary, plus some
incomplete passes due to loss of internet connection,
closing laptop, etc. Of these HTTP requests, 340
ShoutKey links successfully redirected. The most
common types of websites that ShoutKey redirected
to were Google Documents, download links, and
education material.

We were interested in determining if any of the
data that we found contained private information.
We define private data as any data that is not
intended to be shared publicly. Some examples
include Google Documents with restricted sharing
privileges, Google Forms or Doodles for private
groups, and any personal information, such as names

Figure 2: The types of URLs that redirects from
ShoutKey.

Figure 3: Approximately one third of the URLs we
found redirected to private data.

or photos of individuals.

We found several 36 ShoutKeys that redirected
to Google Documents that allow any user with the
link to view and edit the document. By finding
the correct ShoutKey that redirects to the Google
Document, we were able to potentially view and edit
these documents, share the documents, and view the
full names and default photos of all collaborators
of the document. We were also able to view the
revision history of the documents, which allowed
us to see the full names and default photos of all
users who have ever contributed to the document,
including when and what they changed.

3

Figure 4: We found a Google Document of a disser-
tation, where we can view and edit the document as
well as see the full names, pictures, and comments of
all collaborators of the document.

We also found several Google Documents and
Google Slides that had view permissions for anyone
with the URL. For some of these view-only docu-
ments, even though we were unable to edit them, we
were able to share the documents with others. For
these cases, a malicious user could easily access these
view-only documents or slides and then share it to
himself or herself with edit permissions, giving the
attacker edit permissions to modify the document.

In addition to Google Documents, we also found
Google Forms and Doodles that allowed anyone with
the link to submit answers to the form. This allows
anyone with the URL to view the form questions
and malicious users to potentially spam the form
or submit bad input. Some of these forms and
Doodles also included information regarding logistics
for running an event, which people outside of the
organization should not have access to. We also
found many download links, and anyone who goes to
the URL are able to download the file.

There were also ShoutKeys that linked to unlisted
Youtube videos. Unlisted Youtube videos cannot be
found through search on Youtube, and can only be
accessed by people who have the URL. Therefore,
by conducting a dictionary attack on ShoutKey,

attackers can get access to these URLs and thus
access to these videos that are meant to be private.

Other examples of private data that we found
includes the source code of Scratch projects and
coding pad where users can collaborate and code
together. These platform allows us to view and
modify the source code, although we would have to
sign in to our own accounts in order to save any
changes.

Figure 5: An example of a Scratch project that we
found with view and edit access to any user with the
URL.

Our script takes approximately 10 hours and 38
minutes to make one pass through our dictionary.
This could be further optimized by removing the
logging statements. This means that, on average, we
can expect to find one successful redirect every 1.876
minutes.

4.2 Optimized Dictionary Attack

During our security analysis of ShoutKey, we discov-
ered that ShoutKey prioritizes simple English words,
in order to make it more user-friendly. According to
the creator of ShoutKey, ShoutKey stores a dictio-
nary of 596 ”preferred” words, and once it uses up
all the words in the preferred dictionary, then it uses
a modified version of the standard Unix dictionary,
which contains 13,569 words. During our dictionary

4

attack, we found that at a given time, there are usu-
ally only around 40 active ShoutKeys. Therefore, we
can be fairly certain that the keys would be coming
from the preferred dictionary.

4.2.1 Enumeration

For the optimized dictionary attack, we ran the
same script used in the dictionary attack described
previously, but using only the 340 words that
successfully redirected during the first attack. Since
we are certain that these words are in the ShoutKey
dictionary, the probability that these successfully
redirect is much higher. If we continue to run our
dictionary attack, we can eventually reconstruct
the entire ShoutKey dictionary and just run the
dictionary attack using the ShoutKey dictionary.

4.2.2 Results

We found that the optimized dictionary attack
was significantly faster than our original dictionary
attack. Using our script, running the optimized
dictionary attack with 340 simple English words in
the ShoutKey dictionary takes only approximately
208.74 seconds to pass through the dictionary once,
and we found approximately 42.5 words per pass.
This means that, on average, we were able to find
one successful redirect every a word every 0.2036
seconds, which is 9.2 times more efficient than the
regular dictionary attack. Even if we do not have
the full ShoutKey dictionary, we can find keys that
redirect with a lot higher probability.

4.3 DOS Attacks

4.3.1 Too many requests

ShoutKey is vulnerable to a few types of Denial of
Service (DoS) attacks. Our script is single-threaded
and only runs one request at a time. We tried to
speed up our script by multithreading it using the Go
language, which simplifies multi-threading through
the use of goroutines, and were able to traverse the
entire dictionary in about 15 minutes. However,

when we upped our script to 500 requests per sec-
ond, we accidentally DOS’d the server. We emailed
the website’s creator, explaining what happened and
promised not to run this new script again. Shoutkey
was down for about a day, but after restarting the
server and the database, it was once again functional.

Figure 6: We accidentall8 took down the Shoutkey
server when we sent 500 requests/s.

4.3.2 Limited Possibility Space

Since ShoutKey uses a dictionary of 14,165 words,
ShoutKey risks running out of words if all words in
its dictionary all redirect to another url at the same
point in time. Therefore, if an attacker wants to take
down the ShoutKey service, he or she could write
a script to rapidly create a lot of ShoutKeys, and
thus take up all the available words ShoutKey uses.
This is not a problem right now since the number
of ShoutKeys active at a time is much smaller than
the number of available keys. However, it could
potentially become a problem if ShoutKey becomes
popular and gains a large user base.

We did not conduct this attack, as we didn’t
want to purposefully take down Shoutkey’s server,
and instead emailed the creator of ShoutKey. He
informed that this is indeed a problem that he has
considered, and if this happens, the user will just
be denied a Shoutkey. In fact, he noticed that there
were people who were creating a lot of ShoutKeys in
order to spam on forums. To prevent this, he added
a CAPTCHA, which requires users to check a box
that says ”I am not a robot,” in order to distinguish
between human users and bots. If a user creates five
ShoutKey links in rapid succession, they are faced
with a picture CAPTCHA that asks the user to

5

select images containing a certain randomized object.

Figure 7: Users who create 5 ShoutKeys in rapid
succession are tasked with one of these CAPTCHAs
to show that they ”are not a robot.”

While the CAPTCHAs prevent users from writing
a script to spam the website, ShoutKey can still be
DoS’d if a persistent attacker decides to create many
links by hand, or if the website just becomes very
popular and has a large user base. As long as there
are more requested keys than available words at any
point in time, the user trying use ShoutKey will be
denied a key.

4.3.3 ShoutKey Expiration

Another type of DoS attack would be to create im-
mortal ShoutKey links. Upon creation, users can
choose the lifespan of their ShoutKey up to a maxi-
mum of 12 hours. Inspecting the source, we can see
that we can easily edit the value for these choices to
be something very high, essentially creating an ”im-
mortal” link. However, when we tried to do this,
ShoutKey did not create a link and instead refreshed
the page. ShoutKey only accepted these changed val-
ues if they were another option, e.g. changing the
value of 300 for the 5-minute option to be 3600, which
is the value for the 1 hour option. It seems that
ShoutKey has an extra check to only accept one of

these four valid values, preventing anyone from cre-
ating immortal ShoutKey links.

Figure 8: Users have four options for how long their
link will last. To the right is the source code.

5 WhisperKey Design

After analyzing the design of Shoutkey and running
our attack against it, we came up with some designs
to improve the security of the URL shortening site
without compromising the original goal of having an
easily share-able URL. We named our app Whis-
perKey, because instead of ”shouting” one’s URL
for everyone to hear, we are taking extra measures
to limit access to only the people who were meant to
hear the key.

We designed WhisperKey to be more secure than
Shoutkey by (1) increasing the length of an dictio-
nary attack, and (2) decreasing the probability of a
successful attack. We describe ways to approach to
these ideas in the remainder of this section.

5.1 Increasing Time of Attack

5.1.1 Expanding the Dictionary

As mentioned in Section 4.1, ShoutKey has a pri-
mary dictionary of about 596 words and then draws
random words from the standard Unix dictionary if
these primary words are all taken in a single point
in time. From our dictionary attacks in section 4.1,
we discovered only about 40 active links at a time.
This guarantees that any active ShoutKey key is from
the set of the primary 596 words. The Unix dictio-
nary has about 60,000 words after filtering for proper
nouns and apostrophes, so we can greatly expand the
space of possible keys for WhisperKey.

6

5.2 Requiring Two Keys

If ShoutKey’s dictionary is of size n, it takes O(n) to
run a dictionary attack against Shoutkey by check-
ing each possible word. By requiring two keys, we
can increase the space of possibilities and subse-
quently the time it takes to attack to O(n2). In this
example, instead of shoutkey.com/[key], the short-
ened WhisperKey URL will be of the form whis-
perkey.com/[key1][key2]. This does not compromise
the user-friendliness of the site, as the words being
used are still common English words.

5.3 Decreasing Probability of Success

Another approach is to require a password upon try-
ing to visit a WhisperKey. This is essentially the
same concept as having two keys, with the second
key as a ”password”, but this also allows us to intro-
duce restrictions and penalties for incorrect guesses
and therefore limit the number of guesses the attacker
can make.

5.3.1 Limiting Attempts

One additional security measure to passwords would
be limiting the number of attempts that a user can
try to guess for each key. After m attempts, the user
is no longer allowed to try anymore for that key, and
will not be able to access the redirect URL. Since the
attacker can not run an unlimited dictionary attack
against this URL, we can calculate the probability
that he can randomly guess the password for a given
key in a dictionary of size n:

1
n + (n−1)(1)

n2 + (n−1)(n−2)(1)
n3 =

3n2 − 4n + 2

n3

For a dictionary of size 596, this translates to a
0.3% probability of guessing the password for a given
key, which is significantly smaller than the 100%
chance of finding the password after trying every
word in the dictionary.

5.3.2 Adding Exponential Delays to Pass-
word Attempts

While a user who knows the password types it
correctly with a high probability, people frequently
make errors because they are human. For example,
many students mistyped the password for this year’s
6.857 student’s portal because it was very similar to
a real dictionary word, but was not an actual word,
and students attempted with the same dictionary
word multiple times. If someone thinks they know
the password but in actuality does not know how to
spell it correctly, they could very likely mistype the
password several times even if the word is right in
front of them.

One approach to penalize multiple password
attempts without entirely locking out the user would
be to add an exponential delay before verifying the
user’s credentials. For example, on the first attempt,
the website would wait 1 ms before responding, on
the second attempt: 10 ms... on the nth attempt:
10(n− 1) ms. A human’s perceptual processor has a
cycle time of about 100 ms [2], meaning that for up
to 3 attempts, the response will seem instantaneous.
After about 1 second (4th attempt), the user will
notice the delay, and after 10 seconds (5th attempt),
the average user will lose patience and look for
another task to work on while waiting.
The time the user is expected to wait on the mth
attempt for a dictionary of size n is

(n− 1)!

(n−m)!nm

m∑
1

[10m−1]

By the 9th attempt, the user would need to wait
over a day for the server to respond. Since ShoutKeys
(and therefore WhisperKeys) expire after a maximum
of 12 hours, this essentially limits a user to only 8
guesses.

5.3.3 Two-Factor Authentication

Two-Factor Authentication adds an extra layer of
security to an application by requiring two of three
types of credentials: 1) something a user knows
(e.g. a password), 2) something a user has (e.g.

7

a hardware token), or 3) something a user is (e.g.
fingerprint). We can further increase the security
of WhisperKey by requiring the user to provide the
first two.

Recent startups such as SoundPays[3] and Slick-
Login[4] use sound as a medium for something a user
has. Based on this idea, we could allow the creator of
the WhisperKey to emit a high frequency sound from
their computer (outside the range of human hearing),
and have everyone else in the room enable the micro-
phones on their computer. The WhisperKey link will
not redirect until the microphone on the computer
registers the sound being emitted by the creator of
the link. This ensures that only those who are within
the same room as the creator can access the link. Be-
cause ShoutKey was originally designed for people to
share links verbally or on a board with those in the
same room, this idea fits in very well with the original
intended use case of the URL shortening site.

5.4 Concept Page

We implemented a concept page where one can play
an attacker who is searching for a secret page that
they know is linked to on ShoutKey. For the pur-
poses of the concept, we limited the dictionary to
just 5 words, and demonstrate the original ShoutKey
page, WhisperKey with two keys, WhisperKey with
a password, and WhisperKey with limited pass-
word attempts. We created a proof-of-concept Whis-
perKey with exponential-delay password attempts
at whipserkey.herokuapp.com, detailed in the next
section. The concept page can be accessed at
http://web.mit.edu/lindaw16/www/857/concept/

5.5 WhisperKey Implementation

We created a limited-attempt password-protected
version of ShoutKey as a proof-of-concept of Whis-
perKey, deployed at whisperkey.herokuapp.com.
Upon entering a private link, users are given two
words: a key that is the redirect link; and a pass-
word that is the password required for the redirect
link to work. We modeled our site to look like the

Figure 9: A concept page to allow users to try out the
approaches we detailed in this section, and compare
them to the original ShoutKey.

original ShoutKey page, and it uses simple dictionary
words just as ShoutKey does.

Figure 10: A WhisperKey with ”pea” as its key
and ”apple” as its password. Going to whis-
perkey.herokuapp.com/whisperkey/go?word=pea
will require the user to correctly enter ”apple” before
redirecting the user to the given website.

5.6 Future Work

Currently we are checking the password on the client
side, so if a user examines the page source, they can
see the correct password. In the future, this will be
moved to the server side so that the user cannot see
the password in the page source.

We are also keeping track of the number of

8

password attempts on the client side, so that the
number of attempts can be reset by refreshing the
page. We will also move this to the server side so
that the user cannot reset the number of attempts
in order to reduce their delay time. If we move the
counter to the server side, this becomes a counter
per WhisperKey instead of a counter per user.
Therefore, if a malicious user attempts the password
multiple times, this will cause everyone to be subject
to the exponential delay. We plan to limit these at-
tempts according to IP addresses or by using cookies.

6 Conclusion

Our findings from this project show that the
ShoutKey URL shortening service turns out to have
serious consequences for the security and privacy
of users. We exploit a key vulnerability with the
ShoutKey website by conducting a simple dictionary
attack. The resulting URLs that we found demon-
strate how easily a third party could access private
URLs and view sensitive information.

As we probed the ShoutKey website, we found
no Privacy Policy statement making any guarantees
about the privacy of the URLs submitted to the ser-
vice. Given that nearly a third of the links we found
led to private data, we conclude that users place too
much trust in the website; they should be more aware
of the type of data that they are sharing, as it is quite
vulnerable to being viewed by prying eyes. More gen-
erally, users should pay close attention to the Privacy
Policies (or lack thereof) listed on URL shortening
websites before they share any sensitive data.

9

References

[1] Georgiev, M. and Shmatikov, V. Gone in Six
Characters: Short URLs Considered Harmful for
Cloud Services. April 2016.

[2] https://www.nngroup.com/articles/response-
times-3-important-limits/

[3] http://www.soundpays.com/solutions2

[4] http://tech.firstpost.com/news-analysis/google-
acquires-slicklogin-sound-based-passwords-
become-mainstream-218342.html

10

7 Dictionary Attack Script

import mysql.connector

import urllib2

import datetime

USE THIS FOR REGULAR DICTIONARY ATTACK

#wl = open(’/usr/share/dict/words ’, ’r’)

USE THIS FOR SHOUTKEY DICTIONARY ATTACK

wl = open(’/Users/eunice/Dropbox (MIT)/MIT/Year4/Spring /6.857/ elf/shoutkey_dictionary.txt’, ’r’)

wordlist = wl.readlines ()

wl.close ()

def get_redirected_url(url):

try:

opener = urllib2.build_opener(urllib2.HTTPRedirectHandler)

request = opener.open(url)

return request.url

except:

print "ERROR OCCURRED"

set up a database to store the redirect urls

url_data = mysql.connector.connect(host=’localhost ’,

user=’root’,

password=’’,

db=’urls’) # The name of the database we are using is urls

cursor = url_data.cursor ()

#drop_stmt = (

’DROP TABLE IF EXISTS urls’

#)

#cursor.execute(drop_stmt)

USE THIS FOR REGULAR DICTIONARY ATTACK

#create_stmt = (

’CREATE TABLE IF NOT EXISTS urls’

’ (WORD CHAR (30), REDIRECT_URL CHAR (255) , TIMESTAMP CHAR (30))’

#)

USE THIS FOR SHOUTKEY DICTIONARY ATTACK

create_stmt = (

’CREATE TABLE IF NOT EXISTS shoutkey_attack ’

’ (WORD CHAR (30), REDIRECT_URL CHAR (255), TIMESTAMP CHAR (30)) ’

)

cursor.execute(create_stmt)

USE THIS FOR REGULAR DICTIONARY ATTACK

#insert_stmt = ’INSERT IGNORE INTO urls (WORD , REDIRECT_URL , TIMESTAMP) VALUES (%s, %s, %s)’

11

USE THIS FOR SHOUTKEY DICTIONARY ATTACK

insert_stmt = ’INSERT IGNORE INTO shoutkey_attack (WORD , REDIRECT_URL , TIMESTAMP) VALUES (%s, %s, %s)’

starttime = datetime.datetime.now()

num_redirected = 0

for word in wordlist:

word = word [0: len(word)-1] # strips off newline at the end

original_url = "http :// shoutkey.com/" + word

redirected_url = get_redirected_url(original_url)

if redirected_url == original_url or redirected_url == "http :// shoutkey.com/" or redirected_url == "http :// shoutkey.com/system/" or redirected_url == "http :// shoutkey.com/application/":

did not redirect

print word , " did not redirect"

cursor.execute(insert_stmt , (word , None , datetime.datetime.now ()))

url_data.commit ()

else:

redirected

print word , " redirected to ", redirected_url

num_redirected += 1

cursor.execute(insert_stmt , (word , redirected_url , datetime.datetime.now ()))

url_data.commit ()

totaltime = datetime.datetime.now() - starttime

print totaltime

print "TOTAL NUMBER OF WORDS = ", len(wordlist)

print "NUMBER OF REDIRECTS = ", num_redirected

url_data.close ()

12

