Implementing and Modifying
Desai's UFE

Matt Fox
Armand McQueen
Andre Mroz

Eugene Oh

6.857
May 11, 2015



Abstract

One of the most important questions in security and cryptography today is how to determine if
an encryption algorithm is strong enough to deter adversaries from learning the contents of
private messages. Although there are many different protocols for testing the strength of an
algorithm, one of the most stringent is IND-CCA (indistinguishability based on chosen cipher
attack).

In lecture, we learned about UFE (Unbalanced Feistel Encryption), a protocol designed by
Anand Desai that is IND-CCA secure. This protocol requires creation of a random bit string,
which is passed through a CTR (Counter Mode) block cipher, xor'ed with the message, and
then sent along with a CBC-MAC (Cipher Block Chaining - Message Authentication Code)
that is xor'ed with the original random bit string. The total sent message is thus the size of the
message plus the size of the random bit string. Our project proposal focuses on

implementation, augmentation, and evaluation of this UFE protocol.

IND-CCA2 Security

Indistinguishability under adaptive chosen ciphertext attack (IND-CCAZ2) is a property of an
encryption scheme. We can describe IND-CCA2 security as a game between and examiner
and an adversary. The encryption scheme is IND-CCAZ2 secure if the adversary has a

negligibly higher than 50% chance of winning the game. There are two phases to the game.
Stage | - “Find”

e The adversary may encrypt and decrypt anything they like

e The adversary creates two messages of the same length and sends it to the examiner.
Stage Il - “Guess”

e The examiner randomly chooses one of the two messages and encrypts it to create

the challenge message. The challenge message is given to the adversary.



e The adversary may encrypt and decrypt anything except for the challenge message
e The adversary computes for polynomial (in the length of the message) time
e The adversary guesses which of the two messages was encrypted to make the

challenge message

If the adversary guesses correctly, he wins the

game

UFE Refresher

<—
(H5=— VO-PRF '
Desai’s Unbalanced Feistel Encryption (UFE) is an
example of an encryption scheme that is ay —= /\
. VI-PRF =
IND-CCAZ2 secure. At the heart of the scheme is

the unbalanced Feistel structure, shown to the

right. C o

The input to the scheme is the message M. A
bitstring, r, is randomly generated for each message. The scheme is dependent on two
pseudorandom functions (PRFs):
e The variable-output pseudorandom function (VO-PRF)
o This outputs a pseudorandom bitstring that can be any size. The CTR mode of
operation with AES as the block cipher is an example of a VO-PRF
e The variable-input pseudorandom function (VI-PRF)
o This function takes in any size input and outputs a pseudorandom bitstring that
is a fixed size. CBC-MAC is an example of a VI-PRF

During encryption, UFE:
e Randomly creates bitstring r as the source of randomness.
e Uses the VO-PREF to create the ciphertext, C, from r and M
e Uses the VI-PRF to create an encrypted r, sigma, from the ciphertext

e Sends both the ciphertext and sigma to the recipient

During decryption, UFE:



e Uses the VI-PRF to find r from sigma and the ciphertext
e Uses the VO-PREF to find M from the ciphertext and r

While this encryption scheme is IND-CCAZ2 secure, it requires transmitting both the ciphertext
and sigma. In the standard implementation of UFE, the CTR mode of operation is the
VO-PRF and CBC-MAC is the VI-PRF. This means that r and therefore sigma must be the
size of the CBC-MAC which, with AES, is 16 bytes. For very short messages sigma can be

much longer than the ciphertext, making UFE inefficient.

Project Goals

In our project we had a number of goals:

Implement Desai’s UFE. We wanted to implement UFE using the CTR mode of operation as
our VO-PRF and CBC-MAC as our VI-PRF.

Increase Data Throughput. We wanted to experiment with different modifications of UFE in
order to send fewer bits while still maintaining IND-CCAZ2 security. If we were able to find a

suitable modification, we would implement it.

Experiment with different VO-PRF. We wanted to examine and implement some other

modes of operations and analyze whether they maintain IND-CCAZ2 security.

Analyze Performance. We wanted to analyze the performance of our different

implementations to see what effect our changes had on data throughput.

Increasing data throughput by adding state to UFE.

We hoped to increase data throughput by decreasing the size of the sigma we needed to
send across. Our first approach was to try to use a shared state between the two parties
communicating. We then hoped to use this shared state to generate an r that both parties

shared while only sending the ciphertext. However maintaining this shared state requires that



we assume messages will be delivered in-order and with no lost messages. We decided that
this assumption was too strong and that we could make no assumptions about when and in

what order messages would be delivered. Due to this, we must send the state along with the
message and the state should be encoded — essentially sigma. Here using state gave us no

improvement over the standard UFE and we abandoned this approach.

In paper [2], the authors found a way to transmit the state linked to a message while only
sending the ciphertext and a small number of additional bits called the message number. The
approach they used was to have a window, which is a small amount that the two parties can
“fall out of synchronization”. The decryptor receives the message and the message number
and then uses his current state and the message number to find the state associated with the
message. We feel that the purpose of UFE is to be highly secure and robust so we prefer to

make no assumptions about how the states of the two parties may differ.

Revised Idea: Reduce Randomness

After deciding that a replacing the randomized value, R, with a state variable was infeasible
given our design constraints, we decided to evaluate how the security of UFE compared to
IND-CCA2 security. As stated in our first section, IND-CCA2 security is dependent on
requiring an adversary use a number of encryption or decryption attempts that is greater than
polynomial in the length of the message before having any advantage in guessing the correct
message. This is of key importance, because we know that the boundary of how many

attempts this requires is at the very least weakly increasing with the length of the message.

UFE, as described in the introduction of this report, has no change in the amount of security
used to encrypt messages of different length. It follows that there is a different level of
security provided for variable length messages when comparing to IND-CCA2 security. To
make this clear, in the described UFE protocol, R is the number of bits of a block size -
commonly about 16 bytes or so. If you have a message that is a single bit long, you still use
16 bytes worth of randomization to encode it. In the same vein, if the message is 1000 bytes

long, you will use 16 bytes of randomization for the encoding. Clearly, when it comes time to



ask if the adversary needed to use more than polynomial accesses in the size of the

message, you are asking very different questions with these two message lengths.

Now, it is important that we distinguish between absolute security and IND-CCA2 relative
security. UFE provides the same absolute security to all message lengths. This means that
any message encoded using UFE will be as secure as any other message regardless of the
length (at least relative to the randomization factor). In real world applications, this is likely to
be a much more important measure of security. Short messages and long messages alike

need to be secure from feasible computational attacks, not only theoretical bounds.

However, we propose that creating a protocol that maintains IND-CCA2 relative security is an
interesting and compelling problem. IND-CCAZ2 relative security means that if our protocol
can be shown to be IND-CCAZ2 secure at a single message length, that it can be shown to be

IND-CCAZ2 secure at all message lengths, and vice versa.

Now, let’s look at how UFE differs from the IND-CCAZ2 relative security measure that we are
using as our measuring stick. As shown in Desai’'s UFE paper, UFE is indeed IND-CCA2
secure up to some message size determined by the size of R used. Now, we have already
shown that the number of accesses required to block an adversary in the security game of
IND-CCA2 decreases with the message length. This means that UFE over-encrypts short

messages by providing the same security to short and long messages.

In UFE, the level of security is equivalent to the number of bits of randomization. An attack on
UFE would be to continue to encrypt the two test messages until you found a collision
between an encryption and the provided ciphertext. This would happen if the same R value
was chosen in an attacker’s encryption attempt and the provided ciphertext’s encryption.
While this wouldn’t allow the attacker to guess with 100% success rate (there theoretically
could be a collision between the two different messages), it will give a higher than 50%
success rate, beating the game. Now, the probability that a user gets the same R value as
the test case is directly related to the number of unique R values. If Ris b bits long, the
chance of any single encryption using the same R value is 2°. Therefore, to reduce the

expected number of accesses for the attacker, one would simply reduce the domain of R.



How large should the domain of R be?

This brings us to our central question - for a given message length, how large should the
domain of R be? We spent a very long time discussing different ways of determining this
boundary that would require just more than polynomial accesses given the length of the
message. In the end, we discussed the problem with teaching assistants for the class and

came to the conclusion that this was a P = NP type of problem.

The reason that this problem boils down to P = NP is that the key to IND-CCAZ2 security is
finding where the number of accesses switches from polynomial time to non-polynomial time.
This means that you have to find the number of accesses that is the last to be considered
polynomial time and the first to be considered non polynomial. Unfortunately, this problem

has yet to be solved in the realm of computer science, so we had to take another path.

As described before, we know that the function between message length and required size of
R’s domain must be, at the very least, weakly increasing. This is not formally proven here
because it is not central to any arguments for our encryption algorithm. However, this can be
seen easily by imagining a counterexample, where a smaller domain size is needed to protect
a larger message. If we could encrypt a larger message with fewer options for R, then we
could simple encrypt all smaller messages and use 0’s or some other constant factor to
encrypt it as a larger message. This would break the fact that you need a larger domain for a

smaller message length, showing that the function must be weakly increasing.

Now, it is fairly simple to see that we can use our shortening of the domain of R to our
advantage. A very simple way to reduce the domain of R would be to create a randomization
factor with fewer bits. The advantage to using a randomization factor with fewer bits is that
the associated information that is sent between the sender and the receiver of a message is

shorter as well. In UFE this value is called sigma and is the same number of bits as R.

The fact that we are decreasing the size of sigma is also integral to our design because this is
the main motivating factor to use our modified version of UFE instead of Desai’s version.

Sending fewer bits across for our sigma value will increase the message to total-data-sent



ratio, making this implementation more efficient. As you will see in the results section, this

also increases total throughput in our implementation.

Modified UFE

Although we have now made the argument for reducing the number of bits used in UFE’s
random variable, we must explain how this will factor into the VO-PRF’s functionality as well
as the creation of the sigma variable. This was the main area for design in our project, and

we went through many options before we found and decided upon a fairly simple end result.

Firstly, we realized that it is extremely important to keep the Feistel ladder form of UFE in
order to keep this as a modification of UFE and to maintain the possibility of IND-CCA2
security. This can be seen because we must have some way of securely encoding the bits of
randomization that can be both encoded and decoded, and the CBC-MAC worked perfectly

well as a VI-PRF in this function.

Next, we knew that we needed to keep the input to our VO-PRF and the output from our
VI-PRF as the same number of bits as the original R from UFE. This idea developed mainly
because the available libraries for the common modes of operations and MAC protocols take
very standard block sizes, but also because encrypting using a VO-PRF with a variable block
size significantly complicates the encoding step, which would reduce throughput and negate

the efficiency gains that our proposed system generates.

Therefore, we had to develop a mapping between the smaller bit size our new R, from here
on called R_modified, and the original R, from here on called R_original. Our first idea in this
space was to create and share a lookup table for the sender and the receiver. R_modified
could then be used to index into this table and define the R_original which was used for
encryption and which should be used for decryption. However, this would take a large
amount of memory on both sides of the transaction and would require a ton of overhead to set

up any secure connection.



Our next and final idea was to simply pad R_modified with enough zeros to get to the length
of R_original. This would allow us to have no shared memory or lookup table to communicate
while still maintaining a smaller bit footprint for sigma. To create sigma, we simply calculate
the CBC-MAC of the ciphertext and then cut off the lowest order bits until it had the same

number of bits as R_modified. This design can be seen in Figure 1 below.

?/\ 3 Short
A
Os

Clit-
G\
Nz
2"

Figure 1: A diagram of our modified UFE design.

&

i

Now, these design decisions merit some discussion because, at first glance, they seem to
introduce some regularity into the system that could reduce security. The first instance where
this seems to occur is in padding R_modified with zeros at the end in all cases. One could
imagine that running values that all end in the same number of zeros will produce related
results. However, a key feature of a variable output pseudo-random function is that the input
to output mapping is not easily related. This means that we lose no security by mapping

numbers that end in zeros compared to the same amount of randomly generated numbers.

Furthermore, CBC-MAC is a variable input pseudo-random function. This means that the top
bits of the CBC-MAC are just as random as the bottom bits. Moreover, there is no way to

change the ciphertext in such a way that you change only the bottom bits of the CBC-MAC in
a predictable way. The pseudo-randomness for both CTR and CBC-MAC come from the use

of an ideal block cipher in the encryption step, which will be discussed more later.



We have skirted around the fact that our implementation must define and use some sort of
function between message length and bits of randomization used. As shown above, we
cannot define this function explicitly because it is, at its core, a P vs. NP problem. However,
given that we want to implement this protocol, we have to choose some function that could

hold some properties that are similar to the real boundary.

Our protocol allows the user to define the function between message length and R_modified
length. This will allow any application to prioritize security or higher data efficiency. In our
implementation described below, we have decided to define a constant ratio between
message length and R_modified length. This function is monotonically increasing which fits
the bill as at least weakly increasing. Furthermore, it was quite simple to implement and did

not significantly increase computation time.

Our version of the modified UFE protocol allows variable sized messages to be sent in the
same connection. This means that we must have a method for communicating how many bits
of randomization the decryption must use to correctly compute the decryption. Luckily, a
property of using a weakly increasing function is that you can uniquely identify message
length and R_maodified length from the ciphertext just by analyzing total length that was
computed by the user-defined function. In our implementation, we know that the total
ciphertext length (ciphertext plus sigma) will be equal to 1+ R/M times the original message
length, where R/M is the ratio between R_modified length and message length defined at the
outset of the protocol.

Now that our protocol is fully defined, we have also implemented an example in order to
compute performance testing against the original UFE. The next section is devoted towards

describing the details of this implementation.

UFE Implementation

As to the actual code implementation of UFE, we imported an existing Python library named

“pyaes” that has an implementation of the block cipher AES as well as several of the common



modes of operation. Using this library, we implemented our modified UFE as a class that was

initialized with several inputs as shown below in figure 2.

class UFE:
def __init_ (self, modeOfOperation, keyl, key2, key3, modifiedUFE=False, m2rRatio=16):
self.mode0fOperation = modeOfOperation
self.kl = keyl
self.k2 = key2

self.k3 = key3
self.modifiedUFE = modifiedUFE
self.m2rRatio = m2rRatio
self.blockSize = 128

Figure 2: A code snippet of how the UFE class is inifialized.

The input modeOfOperation is a string that specifies what mode of operation to use as the
VO-PRF in our modified UFE. The three keys are the keys of the user that will be used in the
encryption blocks of the VO-PRF and the VI-PRF, which in our case are a block cipher mode
of operation and the CBC-MAC. The boolean modfiedUFE specifies whether or not the class
should be initialized to use our modified version of UFE or to use the version of UFE that was
described in lecture. The final input, m2rRatio, is the bit ratio of the length of the message to
the length of R, which is the factor of randomization. Lastly, we set the default block size 128
bits (16 bytes).

Contained within the class are the functions encrypt and decrypt, which do the actual
encryption and decryption of a message using the settings the UFE is initialized with. The
encryption returns the ciphertext and sigma as a tuple of the form (ciphertext, sigma).
Meanwhile, the decryption takes the ciphertext and sigma as inputs. Additionally, the class
also contains several helper functions that are used by the encrypt and decrypt functions in
order to carry out the encryption and decryption. A couple of the more relevant ones include
the function ebc_mac (shown below), which calculates the CBC-MAC of the ciphertext that is

used in the UFE encryption scheme.

Figure 3:

def cbc_mac(self, ciphertext):
aesl = pyaes.AESModeOfOperationCBC(self.k2)

Implementation of the
generation of the

blocks = self.split_ciphertext_into_blocks(self.string_to_bits(ciphertext))
CBC-MAC

n = len(blocks)
i range(n-1):
nxt=aesl.encrypt(blocks[il)
aes2 = pyaes.AESModeOfOperationCBC(self.k3,iv = nxt)

nxt-self.bits_to_bytes(self.string_to_bits(aes2.encrypt(blocks[n-1])))
nxt

10



In the above function, we first find the CBC-MAC of the ciphertext using the second key that is
provided with the initialization of the class. Then, we encrypt the output of the CBC-MAC
using our block cipher with the third key provided by the user.

Another important function in the UFE class is generate_r which generates an R for the UFE
based on the m2rRatio given when the class is initialized. The function returns the shortened
R and also a padded R to match the block size that is then passed to the encryption blocks.

The function generate_r is shown below in figure 4.

def generate_r(self, message):
result = []
messageBitArray = self.string_to_bits(message)
self.modifiedUFE:
lengthOfR = int(math.ceil(len(messageBitArray)/self.m2rRatio))
lengthOfR > 128:
lengthOfR = 128
lengthOfR = 128
rand = random.getrandbits(lengthOfR)
rand = self.int_to_bitlist(rand)
item rand:
result.append(item)
len(result) < self.blockSize:

result.append(d)
result, rand

Figure 4: Implementation of the function that generates R and padded R

Due to some of the functions that we imported, such as the generation of random bitstrings,
we also had to implement several helper functions within the UFE class that converted
between different representations of bits. These helper functions convert between a Python

list of bits, integers, and a Python list of bytes.

UFE with Different Modes of Operation

Not only did we want to test the performance of our modified UFE, we also wanted to test the
UFE described in lecture while trying different block cipher modes of operation. The three
main modes of operation we tested were CTR, CBC, and CFB. We wanted to compare the

performance of each of these modes as well as show that each still preserved the IND-CCA2

11



property of the UFE encryption scheme. The following arguments are all under the

assumption that the AES block cipher we are using is pseudorandom.

M R
(D= voprr [
- EN
VI-PRF =
C o

Figure 5: The UFE Scheme

We decided to keep the VI-PRF as a two-key variant of CBC-MAC for every UFE we
implemented with the different modes of operation due to time constraints. In this variant of
CBC-MAC, we compute the CBC-MAC of the ciphertext. Then we take the output and apply
another block cipher to it using a second private key. Petrank and Rackof have already

analyzed this variant of the CBC-MAC and shown it to be secure on variable length inputs.

Looking at the scheme of UFE in figure 5 above, we can see that the scheme will remain
IND-CCAZ2 as long as R is a randomly generated initial bitstring. An adversary will not be able
to generate an R’ that is related to the original R by changing the ciphertext in any way due to
the nature of the VO-PRF and VI-PRF. Additionally, the scheme is only invertible to retrieve

R given a ciphertext and sigma if the secret key (a,) is known.

Because of the security of the scheme, the only thing left to show in order to prove that UFE
remains IND-CCA2 secure using any of CTR, CBC, and CFB is that those three modes are
VO-PRFs. CTR gives variable length outputs because the number of blocks can vary

depending on the size of the message and an implementation can add more blocks simply by

12



incrementing the counter. Given that the initial counter, in this case R, is a randomly
generated bitstring, the output of CTR will be pseudorandom because of the
pseudorandomness of the underlying block cipher, AES. The output of CBC and CFB can
also vary in length based on message size because more blocks can simply be chained
together as message size grows. CBC and CFB are also both initialized using a randomly
generated IV and so the pseudorandomness of the underlying block cipher, AES, will also

make the output of these two modes pseudorandom.

Performance Analysis

Ouir first objective with this project was to attempt to substitute in other modes of
operation than CTR into the “VO-PRF” portion of Desai’'s UFE protocol and compare them. As
discussed above, we successfully substituted CBC and CFB while maintaining security. To
determine how quickly each mode could perform encryption and decryption, we created a trial
test where we put a randomly generated 160-byte message through an instance of UFE with
each of the three modes. We repeated this trial 5000 times. All of the modes performed
similarly over many trials, though CBC and CFB were shown to be ever so slightly faster than
CTR. However, when the length of the message increased, the amount of time the encryption
phase of CBC and CFB took increased dramatically because they cannot be run in parallel,
unlike that of CTR.

Lo -

I Encrpobion
I ooyl

0.0a5

o

nees -

noa

me in seconds

(B

[HEALE o

WrL-21H urL-Cpc ure-erg

Figure &: Encryption and Decryption times for the modas of operation.

13



After testing each of the modes, we needed to test the effect our modified UFE would
have compared to UFE at different values of the message bits to r ratio. We predicted that
due to needing fewer bits of unpadded r, for a larger ratio there would be fewer xor operations
and the total amount of time would decrease. In our implementation, the function that
generates r is standardized between the different types of UFE, meaning that there should be
a negligible time differential in this step due to having almost the same number of operations.
Our test, which was similar to the test we used for the different modes of operation except that
only 500 trials were used, was able to confirm our hypothesis, and larger values of the ratio

could reduce time in both the encryption and decryption steps by a fairly noticeable amount.

EEncryption
] IO ccryplion

0.085
0.0
oms
0.0
0.0 -
o
0 ] 20 23 an 35 40

M 1o R Ratio

R

Time in Seconcs

=

Figure 7: The effect of changing our message bits to r ratio.

In addition to shortening the amount of time it takes to encrypt and decrypt a message,
when used in a protocol that transfers encrypted data between two entities, fewer data bits
are sent in all, and faster, which causes the throughput of the protocol to increase. This
improvement can be scaled with the size of the message itself by varying the ratio. The user
sets a personal level of security in relation to the message length that should still ensure that
it is secure under IND-CCA2. While we are varying the absolute defined level of security
(being the ratio between the length of the message and the length of r), we maintain that it

would take more than a polynomial number of encryptions to break the security. This means

14



that, throughput-wise, our modified UFE can never perform worse than regular UFE. This idea

can be shown in Figure 8 below.

40

-

b=

&}

s LIFE Mo

]

| I} F

=

ToTal Bytes Sent
H

] . 4 B 2 10 12 14 1= ] in 21

Bytes of M

Figure &: Comparing the total number of bytes sent in each UFE.

Conclusion

Desai’'s UFE is a widely accepted IND-CCAZ2 encryption algorithm that has been used
frequently in both academic and commercial implementations. We believe that the modified
forms of UFE that we have discussed throughout this paper are both interesting and
informative in the light of IND-CCAZ2 security. Although the modified form of UFE which we
implemented can theoretically maintain IND-CCAZ2 security, we would not recommend a
commercial system use this as security for short messages as the real world has a bound of
reasonable computational power, not a strict limit on adversary accesses. Despite this
drawback of our algorithm, the modified UFE provides an interesting look into maintaining a

tight bound on IND-CCAZ2 security while maximizing data efficiency.

15



Bibliography

[1] Desai, Anand. "New Paradigms for Constructing Symmetric Encryption Schemes
Secure against Chosen-Ciphertext Attack." Advances in Cryptology — CRYPTO 2000
Lecture Notes in Computer Science (2000): 394-412. Web.

[2] Trostel, Jonathan. "CMCC: Misuse Resistant Authenticated Encryption with Minimal
Ciphertext Expansion." (n.d.): n. pag. Web.

[3] E. Petrank and C. Rackoff, “CBC MAC for Real-Time Data Sources,” Dimacs
Technical Report, 97-26, 1997.

16



