
Private Decentralized E-Voting

Pak Hay Chan∗, Heng Li†, Jordan Ugalde‡, Yoni Stoller§

May 13, 2015

Abstract

In this paper, we present a new electronic voting scheme that does

not rely on a trusted third party at any point. The cryptographic

primitives we use to implement our scheme include El Gamal encryp-

tion, Random Exponentiation, Pedersen Commitments, and Cramer’s

Witness Hiding Protocol.

1 Introduction

Electronic voting’s popularity is due, in part, to its high degree of efficiency,

ease of voting, and fraud prevention. Accordingly, the success of e-voting is

highly dependent on the performance of e-voting machines and software.

Most e-voting schemes require a trusted counting server as a third party.

Therefore, the security of the third party is extremely critical to the voting

system. By attacking this server, an external adversary or dishonest insider

could modify votes between decryption and tabulation, shifting results in

favor of the attacker’s preferred candidate[1]. In this paper, we present a

system that does not depend on a trusted third party server and thus avoids

∗pakhay@mit.edu
†hengli@mit.edu
‡jugalde@mit.edu
§ystoller@mit.edu

1



the aforementioned threats.

Our scheme has the following security properties:

• Correctness. Our scheme prevents cheating with very high probability.

• Privacy. The individual vote of a participant cannot be determined

by the other voters, or by any third party1.

• Verifiability. Every voter tallies the votes individually. This, combined

with the prevention of cheating provides voters with a way of verifying

the election’s outcome.

• Democracy. Every eligible voter has a single vote.

• Fairness. No voting information will be released before the tallying

stage.

We begin by giving a summary of the primitives used by our voting scheme

in Section 2. In Section 3 we describe in detail how our system’s voting

process works. Following that, we discuss ways of extending our system for

more general cases in Section 4. Finally, in Section 5 we summarize our

original and extended voting schemes.

2 Preliminaries

In this section we describe the cryptographic primitives used throughout our

scheme.

2.1 ElGamal Cryptosystem

ElGamal is an asymmetric encryption scheme built on top of the Diffie-

Hellman key exchange.

1Except for the extreme case where all the voters except for one collude against a single

voter

2



• Gen(1k): Given an input 1k, Gen provides (G, p, q, g), where p is a

safe prime (p = 2q+ 1), G is the group of quadratic residues modulo p

(the order of G is q), and g is a generator of G. Choosing any random

x ∈ Zq, followed by computing y = gx, yields the public key

(G, q, g, y), and the private key (G, q, g, x). The message space is G.

• Enc(m): Given a public key pk = (G, q, g, y), and a message m ∈ G, its

encryption is (c1, c2) = (gs, ysm), where s is a random, secret element

chosen from Zq.

• Dec(c): Given a private key sk = (G, q, g, x) and (c1, c2), the decryp-

tion is m = c2/c
x
1 = c2c

−x
1

In our scheme, votes are represented as one of two numbers from the

subset {1, v}, where v is a fixed generator of G. The tallied vote is simply

the product of all individual votes. Our scheme requires that the number of

voters does not exceed |G|.
Note that the homomorphic property of ElGamal guarantees that multiply-

ing Enc(v) by any element within G is equivalent to multiplying v by the

same element.

2.2 Random Exponentiation

Our scheme uses Random Exponentiation (explained in greater detail in [2])

to provide participants with a way of decrypting the result of the group’s

tallied votes, without risking the exposure of any participant’s individual

vote.

Given an encryption C, each participant i chooses a secret ri ∈ Zq (different

from the secret si of the participant’s message) and computes Cri .

The participants then exchange their respective Cri values and multiply

them to get CTOTAL =
∏
Cri = C

∑
ri , i.e., C raised to the power of the

sum of all the secret exponents.

3



Note that while
∑
ri is known to all participants, each individual partici-

pant only knows his/her own secret ri, thereby allowing us to raise C to an

unknown power.

In this manner, participants can release (ysiri , yri)2 to allow the decryp-

tion of CTOTAL
3. However, as stated above, since the underlying ri values

remain unknown, dishonest participants cannot use the information to com-

pute y−si , which would have allowed them to decrypt the vote of voter i

(i.e., in order to calculate mi, one must know ysi . Knowing ysiri does not

compromise the secrecy of ysi).

2.3 Pedersen Commitments

We use Pedersen commitments [3] as a way of making all participants com-

mit to the (ysiri , yri) values that they publish (see the explanation regarding

Random Exponentiation) before viewing the values published by other par-

ticipants. If we were to instead allow participants to reveal the information

sequentially, the final participant could release a forged (ysiri , yri), such that

when multiplied with the other values, it would produce any element of the

participant’s choice in G, thus compromising the validity of the voting sys-

tem.

2.4 Cramer’s Witness Hiding Protocol

Witness hiding (WH) is a weaker requirement than Zero-knowledge. Gen-

erally speaking, an interactive proof protocol is WH if the verifier cannot

compute any new witness after engaging in the protocol [4]. Cramer et al.

[5] constructed a simplified and efficient design of the WH protocol given

that there exists a proof of knowledge protocol P that satisfies some basic

requirements.

An extension of Cramer’s protocol is verification of a ciphertext. We can

2Contrast with (gsi , ysimi), the original message
3This is a slight simplification, as this only represents the first stage of the decryption.

Random Exponentiation requires a total of n + 1 steps, where n is the number of voters

4



use the extended version of Cramer’s protocol to prove that a ciphertext c

encrypts one of the possible values {m1,m2, . . . }, without revealing which

message c corresponds to.

Consider the case where the message space consists of two possible values.

Then we have a simple protocol in which the prover commits to two pairs

of ciphertexts. He claims that the two pairs are encryptions of the two

permitted values. The verifier chooses one to open and the prover claims

the other pair is valid. This protocol has soundness error of 1/2, but by the

extension of Cramer’s work, we have a protocol with soundness error of 2−t

where t is the number of pairs of ciphertexts used in the protocol.

We will use this extension to verify that voters can only vote for one of

the options within the message space.

3 Our Scheme

Our voting scheme has been designed to provide complete privacy to its

voters. Although our design can be extended to larger parties, it is ideally

suited for smaller groups. As such, voting is performed under the following

circumstances:

• Every voter posts his/her vote on a website they all have access to.

The website does not need to be trusted - it serves merely for conve-

nience, as will be seen. The method for registering voters is not part

of our design (assuming the group is small enough, such as a board

committee, the voters can manually verify the identities of the voters).

• Every voter performs the tallying individually after all the required

information is publicized. This allows each user to verify the outcome

of the election.

Applying these conditions provides voters with a way of verifying that their

votes were not discarded, and it also eliminates the need for a trusted third

party.

5



3.1 Voting

Our scheme supports voting for one of two options. Let n be the number of

voters. The voting stage consists of two parts: Encryption and Verification.

3.1.1 Encryption

First, the voters agree on a finite field G and a generator g of G. Let q be

the order of G.

Every voter i then generates a public-private key pair by randomly chos-

ing an xi ∈ G. Then (G, q, g, yi) and (G, q, g, xi), where yi = gxi , is a

public-private key pair of ElGamal encryption, as described in section 2.1.

A voter will use his private key to encrypt his vote.

The message space M is comprised of the two possible voting choices.

Let M = {1, v}, where v is a generator of G. Consider a message m ∈M , if

m = 1 represents the first voting option, and m = v represents the second

option.

Every voter i = 1, 2, . . . n has a vote mi ∈ M and encrypts the vote as

follows:

Enci(mi) = (gsi ,mi · ysii )

where si is a random number chosen uniformly at random in G by each

voter.

Thus, every encrypted vote has the form (αi,mi ·βi) where αi = gsi and

βi = ysii .

3.1.2 Verification

In order to guarantee that encrypted votes are valid, i.e., that the messages

encrypted by the voters belong to the message space, we need to verify the

votes.

This problem can be described as follows: Given the ciphertext of a vote,

voters need to prove to all other voters that the ciphertext is an encryption

6



of either m = 1 or m = v. Cramer’s Witness Hiding Protocol, described

in section 2.4 solves this problem. Thus we have a public procedure that

guarantees that the probability of an individual voter cheating successfully

(i.e, encrypts a messages not belonging to the message space without being

discovered) is exponentially small.

After the votes are verified, the voters can start tallying.

3.2 Tallying

To tally the votes, we take advantage of the multiplicative homomorphic

property of the ElGamal encryption.

Recall that each encrypted vote has the form (αi,mi ·βi), where we mul-

tiply the second half(miβi) of all the encrypted votes.

Denote the product of all the encrypted votes as C:

C = Πn
i=1miΠ

n
i=1βi

= v# votes for the second option Πn
i=1βi

since for those i for which mi = 1, the term is dissolved in the product.

Let M denote
∏
mi = v# votes for second option, and B denote

∏
βi, so C =

MB.

To determine how many votes were cast for each option, it is sufficient

to calculate how many votes were given to the second option. Our goal

is thus to determine the value of M . The straightforward way of doing

this would be to multiply C by the inverse of B, to reveal M . That is,

CB−1 = MBB−1 = M . After discovering the value of M, the users could

check for which value of 0 < k < #voters, M = vk, where the k for which

this is true represents the amount of voters for the second option.

The problem with this approach is that it requires the voters to release ysi ,

which would effectively allow participants to decrypt each others votes.

Instead, we will use Random Exponentiation to discover the result of the

7



election. First, note that the number of votes cast for the second option

can be any integer value between 0 and the total number of voters. Let k

represent a possible value. Since M = v#votes for second option, if k= #votes

for the second option, then M times the inverse of vk = 1.

However, if k 6= #votes for second option, then M times the inverse of vk 6= 1.

Let P = v−kC = v−kMB .

As explained above, Random Exponentiation allows a group of participants

to raise a commonly known value to an unknown power, R. Given the value

P , the group of voters can use Random Exponentiation to compute PR,

which is equal to (v−kM)
R
BR. Likewise, the group of voters can jointly

compute (BR)
−1

.

Thus, having calculated PR and (BR)
−1

, the participants can compute

PR(BR)
−1

= (v−kM)
R
BR(BR)

−1
= (v−kM)

R
.

Based on the value of (v−kM)
R

, the participants can conclude whether or

not k = # votes for second option:

1. If (v−kM)
R

= 1, this implies v−k = M−1, and that k = # votes for

the second option.

2. If (v−kM)
R 6= 1, this implies v−k 6= M−1, and that k 6= # voter for

the second option.

Using this procedure, the voters can examine each possible value of k

until finding one that gives (v−kM)
R

= 1, upon which the users will know

that the number of votes cast for the second option was k.

The algorithm for doing this would look as follows:

foreach k from 0 to #voters:

Compute P = v−kMB

Using Random Exponentiation, compute PR, (BR)
−1

if PR · (BR)
−1

== 1:

return k

8



Note that each participant runs this algorithm separately (while exchanging

values for Random Exponentiation), allowing them to verify that the result

of the election is valid.

3.2.1 Simultaneous release of information

While Random Exponentiation provides us with a way of calculating (BR)
−1

by having the participants release (ysiri , yri), it does not specify the order

in which they do so.

If a voter were to delay the release until after seeing all other values, he could

privately compute the result of the election, and then release a tweaked value

that would alter the result of the election. For example, if at the k = 4 round

of the tallying PR · (BR)
−1

= 1, which implies that four voters voted for

the second option, the voter could tweak his value before releasing it (e.g.,

by multiplying it by some random number larger than 1), and thus fool

the other voters into thinking that the number of voters was not k, since

PR · (BR)
−1

would no longer equal 1.

In order to prevent this, we require all voters to release a Pedersen Commit-

ment of their (ysiri , yri) values. The values are only revealed after all voters

have released their committed values.

3.2.2 Malicious voters and mathematical flukes

Although PR · (BR)
−1

will always equal 1 for v−k = M−1, it will also equal

1 when R = p− 1. The probability of this happening is 1
p−1 , so this is not a

major concern, since p must be very large in order to guarantee the security

of ElGamal to begin with (it is also possible to simply require that the voters

calculate PR · (BR)
−1

for all possible values of k, and if PR · (BR)
−1

= 1 for

more than one value of k, they repeat the election).

Likewise, there is always a chance that a dishonest voter will attempt to

release a tweaked (ysiri , yri), to cause PR · (BR)
−1

= 1. However, since the

voter has no knowledge about the values that have been released (until after

9



he has committed), he is forced to guess, and as such, the probability of his

success is also 1
p−1 .

That being said, a malicious voter who merely wishes to prevent the other

voters from determining the result of the election may still do so by releasing

a tweaked (ysiri , yri) at every round (i.e., multiplying it by any value greater

than 1). This will prevent PR · (BR)
−1

from equaling 1 even for the correct

value of k.

This aspect of the election prevents it from being suitable for certain appli-

cations. However, in the context of a smaller group, such as a committee

board, we consider the cooperation of the participants to be a reasonable

assumption.

4 Possible Extension

As presented thus far our voting system’s primary limitations are the fact

that there can only be two options to choose from and the fact that the

voting scheme is a two stage process, so the absence of one voter in the

second stage can make tallying impossible, requiring the whole process to

start over.

4.1 Voting for Multiple Candidates

Referring back to Sections 2.1 and 3.2, any vote that is not a 1 must be a

generator. However, if we allow multiple generators as votes, then it becomes

ambiguous as to what value the result is a power of. For example, if we have

Z*
7 then 2 and 4 are both generators of the group of quadratic residues mod

7, but since 4 is both 22 and 41 in Z*
7 it would be impossible to differentiate

whether a value of 4 resulted from a single vote for 4 or two votes for 2. To

address this limitation, we modify the voting system such that, rather than

casting a single vote, the entire voting process is repeated for each candidate.

That is, for each candidate, one either votes for the candidate or against

the candidate. This sacrifices none of the security properties of our original

scheme, but enables voting for multiple candidates. Furthermore, since the

10



vote count for every candidate is known, we have the ability to choose the

top k candidates who received the most votes. The primary issue with this

extension is that it allows voters to vote for more than one candidate, so

in situations where that is not desirable this extension should not be used.

Since all votes for different candidates can be contained in one message to

the server, there is no added complexity in terms of the number of messages

that need to be passed. However, the Random Exponentiation phase still

must happen for every candidate, so the time to process votes grows linearly

with the number of candidates.

4.2 Allowing for Disappearing Voters

If the entire process must be restarted whenever a voter leaves during the

election, then this system as stated would not be scalable. Our solution

to this issue is, in large elections, to split the voters into subgroups of a

predefined size, where each subgroup runs the election in parallel (after

which the results of the subgroups’ tallies would be combined). Then, if

one voter leaves in the middle of the election, only the subgroup with the

absent voter would have to restart the voting process, which drastically

reduces the number of people that have to recompute the tallying phase4.

Additionally, since Random Exponentiation has n+ 1 steps, using a smaller

group size is far more efficient. This still has the undesirable quality that a

single participant can stop the vote, by sending an invalid key in the second

phase of the voting process. However, the stalling is encapsulated to just

the subgroup containing the obstructing participant.

5 Conclusion

In this paper, we presented a scheme for voting between two possible options,

which shares the security guarantees of other voting systems while also not

4It is worth noting that technically, user involvement is only required for the actual

voting at the beginning of the election. Everything else can be automated.

11



requiring a trusted third party. Additionally, if one wishes to extend the

system to allow for additional candidates, then a simple extension exists as

long as one does not mind allowing voters to vote for multiple candidates.

Finally, scaling this system to a large number of voters is accomplished by

breaking down the voters into smaller subgroups such that if a vote needs

to be recast, only the subgroup in question has to recompute the tallying.

References

[1] Ben Adida and Ronald L. Rivest. ”Scratch & vote: self-contained paper-

based cryptographic voting.” WPES ’06 (Alexandria, Virginia, 2006) pp.

29–39.

[2] Brandt, Felix. ”Efficient cryptographic protocol design based on dis-

tributed El Gamal encryption.” In Information Security and Cryptology-

ICISC 2005, pp. 32-47. Springer Berlin Heidelberg, 2006.

[3] Pedersen, Torben Pryds. ”Non-interactive and information-theoretic se-

cure verifiable secret sharing.” In Advances in CryptologyCRYPTO91,

pp. 129-140. Springer Berlin Heidelberg, 1992.

[4] U. Feige and A. Shamir. . ”Witness Indistinguishable and Witness Hiding

Protocols, Proc. of STOC 90.”

[5] Ronald Cramer, Ivan Damgard, and Berry Schoenmakers.”Proofs of Par-

tial Knowledge and Simplified Design of Witness Hiding Protocols.” In

Yvo Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in Com-

puter Science, pages 174187. Springer, 1994.

[6] Fouard, Laure, Mathilde Duclos, and Pascal Lafourcade. ”Survey on elec-

tronic voting schemes.” Supported by the ANR Project AVOT (2007).

12


