
6.857 Final Project

A Public-Key Authentication Scheme for

Controller Area Networks

Nicolas Bravo (nbravo@mit.edu)
Skanda Koppula (skoppula@mit.edu)
Matthew Chang (m chang@mit.edu)

May 2015

1 Abstract

Recent advances in in-vehicle technology have led to new systems being devel-
oped to control vehicles. The modern approach is to control the different systems
within a vehicle using tens of electronic control units (ECUs). These ECUs are
clustered into networks with gateways in between. A number of standards are
used for communication within these standards and between them, but the most
popular - and the standard we will explore in this paper - is the Controller Area
Network (CAN) bus standard. Most of these networks, including CAN, were
designed to prioritize reliability and safety over security. Security was not a
large concern mainly because there was never any clear evidence whether the
security of such a system could even be compromised. However, recent exper-
iments have demonstrated practical attacks on some of the different systems
within the car, including the ECUs controlling the engine, brakes, lighting, and
climate control lighting. This means an adversary could take control of some of
these systems and possibly harm the passengers inside the vehicle. Because of
this, security is now a large concern for these networks and will become even
greater as networked vehicles become more common. In this paper, we propose
and implement a mixed public-key/shared-key authentication scheme for CAN
and examine the advantages and disadvantages of implementing such a scheme.

2 Introduction

2.1 Networked Vehicles

For decades, cars were purely mechanical systems. Recent advances in electron-
ics have transformed the automotive industry, however, and now nearly every
new car manufactured contains dozens of electric control units (ECUs). These

1



ECUs were initially intended to manage car engines but have since expanded
to control various systems including brakes, transmission, airbags, climate con-
trol, and telematics. They generally consist of a set of electronic circuits that
are controlled using a microcontroller running hundreds of thousands of lines of
code.

2.2 The Rise of New Threats

When the first in-vehicle communication networks were being designed, it was
assumed that the car would be a closed system. This was not an unreason-
able assumption given that cars used to have limited interfaces with the outside
world. However, cars now contain wireless interfaces for many purposes. For
example, many cars come with tire pressure monitoring systems, smartphone
integration, web connectivity, and more. As a result, cars can no longer be con-
sidered closed systems and we must ensure the security of the internal network
from these new interfaces. The situation is analogous to the rise of personal com-
puters in the 90s. Before the internet, most computer viruses could only infect
computers via removable media. After the emergence of the internet, personal
computers were suddenly susceptible to new types of threats that could easily
operate on a global level. It took some time for security systems to adapt and
provide the appropriate protection against these new threats, and unfortunately
the automobile industry is now facing a similar problem.

2.3 Successful Attacks

The teams at both DefCon and BlackHat have published attacks on CAN bus
in cars [7]. Staggs in 2013 demonstrated how snooping the CAN bus allowed for
hackers to reverse engineer the manufacturer’s message encodings in CAN bus
messages, which in turn enabled them to convert the a Mini Cooper’s speedome-
ter and tachometer into a clock display. In addition, Miller et al. demonstrated
the ability to inject false braking commands into a 2010 Toyota Prius at Coun-
terMeasure 2013. Other automative OEMs (original equipment manufacturers)
have had their embedded system networks cracked, largely due to the trans-
parency of their messaging protocol [5].

3 Review of CAN

3.1 Specifications

CAN is a multimaster broadcast serial bus that connects the ECUs inside a
vehicle. There are four types of CAN frames:

1. Data frame that contains the data to be transmitted

2. Remote frame that requests transmissions from a specific node/identifier

3. Error frame that is used when an error is detected in the received frame

2



4. Overload frame to inject a delay between frames.

A CAN data frame can contain a data field of up to 8 bytes as shown in Fig. 1.
The base frame format allows an 11-bit identifier (ID), while the extended frame
format allows a 29-bit ID. Since it is a multimaster protocol, the order/priority
of transmission is determined through bus contention, called arbitration: a pro-
cess of broadcasting one bit at a time and comparing it with the bits broadcast
by other ECUs. The frame with the smallest ID wins the arbitration and gets
transmitted first. A 16-bit CRC field (with a 1-bit CRC delimiter) is provided
to check the integrity of each received frame.

Figure 1: Structure of a data message frame in the CAN protocol [1]

Every electric vehicle sold in the United States requires an outward-facing port
on which listeners should be able to receive CAN messages conveying important
diagnostic information about car malfunctions. Furthermore, most cars use a
CAN bus internally to coordinate the activities of battery discharging, motor
speed, dashboard updating, anti-lock braking management, and more. Interest-
ingly, outside the automative sector, because of CAN’s fault-tolerance, low cost,
and lenient hardware requirements, CAN is used to link embedded systems in
avionics, medicine, and military-grade weapon systems.

Both essential and non-essential vehicle components communicate over a public
CAN bus; this simplifies the complexity involved with having dedicated cross-
component signal lines. An example network architecture is shown in Fig. 2.

3.2 Security Issues

As previously described, there are a number of known CAN exploits. These
stem from the following characteristics of the CAN protocol:

• A CAN frame has no authentication field, enabling malicious nodes to
send spurious commands to the motor controller and the like.

• The data field in a CAN frame is only 8 bytes long, making it difficult to
add large-key security measures.

• ECUs do not always have the computational power necessary to perform
cryptographic functions

3



Figure 2: Example intra-vehicular network architecture. Two separate CAN
bus’s handle different classes of behaviors. Messages sent on each bus are broad-
cast to every listening peripheral on that bus. The dash board listens in on both
networks. [3]

• There is no authentication performed on the sender and receiver of a
particular frame.

These flaws do not necessarily mean that CAN is poorly designed; again, it was
intended to be a simple protocol that would work in isolation. They do mean,
however, that it will be difficult to add authentication while still keeping within
the parameters of the protocol.

4 Threat Model

A CAN network is susceptible to attacks that prevent transmission of authentic
messages or forge disingenuous messages. In our design we aim to mitigate two
major types of attack: replay attacks and brute force attacks. To more
precisely define the capabilities and attack modes of our adversary, we define
the following two CAN-based adversarial games:

Bus-Frame Unforgeability Experiment
On a bus-based network with N nodes n1, n2, ...nN , we define our scheme
to be bus unforgeable if for all PPT adversaries A, that A succeeds after
the following steps is negligible:

1. We choose i key-pairs according to our key generation algorithm:
(SKi, V Ki) ← KeyGen. Limit i ≤ n. Every node is assigned one SKi.
We provide every V Ki and N to A. All N nodes on the network also get

4



every V Ki.

2. A is given access to an authentication oracle Sign(SK,m, j) and a
verification oracle V er(σ,m, j) for any message m and any authentic
signing agent j ≤ N .

3. A submits a challenge (m′, σ′) to every ni with the restriction that
(m′, σ′) was queried with the verification oracle.

4. A succeeds if for any j, V er(σ,m, j) returns True.

The message-priority based arbitration of the CAN protocol allows for malicious
nodes to continuously spam the network with high priority messages. Conse-
quently, denial-of-service attacks are an unavoidable vulnerability of the CAN
arbitration system. However, we will discuss an extension to our scheme that
will allow users to more effectively respond to DOS attacks. Namely, this exten-
sion attempts to shutdown non-essential communication, offload communication
to a back-up network, and identify the position of the malicious node within the
compromised network 1.

5 Additional System Requirements

For applicability reasons, we further constrained our design to fit an additional
set of requirements:

• Backwards compatibility: Our system should ideally overlay across the
current CAN structure. It is possible, for example, to extend the CAN
message frame to have over 128 bits, allowing direct application of tradi-
tional authentication schemes, without dealing with the issues associated
with small key sizes. However, fundamentally changing the structure of
the CAN frame would prohibit our scheme from being applied to existing
systems. Rather, we intend our system to fit within the existing standard
CAN frame (not the extended CAN 2.0B frame), so that existing systems
can easily apply our band-aid solution and achieve higher levels of security.

• Small number of shared keys: There is no theoretical limit on the
number of nodes connected to a CAN bus. In practice, we see anywhere
from 1 to 127 nodes [1]. Storing a flexible list of over one hundred 32-byte
public keys is not insignificant for lightweight controllers, and we shall
try to minimize this constant memory cost by grouping node keys (when
appropriate and without compromising security).

• Accommodate passive and active 3rd party devices: It is unreal-
istic to assume a static network in a vehicle’s CAN bus; peripherals may

1discussed in further detail in the paper’s Analysis section

5



be added or removed from the network as time goes on. Diagnostic mon-
itors, for example, might plug into a car’s OBD2 port and passively read
and authenticate messages from the motor controller. On the other hand,
an added temperature sensor from a trusted manufacturer should be able
to write authenticated messages to the bus without having reflash every
CAN node.

• Low initialization, latency, and throughput overhead: by adding
our authentication scheme, the existing network should not see significant
jumps in message latency or decreases in data throughput. The total
amount of traffic in the network should increase by at most some constant
factor.

6 Previous Work

A handful of symmetric key authentication and encryption schemes have been
proposed in the past few years for in-vehicular networks. Few of them ad-
dress all the requirements put forth in the aforementioned section. Two very
powerful schemes developed by Verbauwhede et al., CanAuth and its successor
LiBrA-CAN, rely solely on shared-key authentication, and accordingly, adding
3rd party passive listeners is not a supported operation2. CanAuth does not
support single source node authentication, but rather authenticates that the
message is from some trusted source. LiBrA-CAN, as a progressive authentica-
tion scheme, requires

(
n
s

)
keys, s some constant bounded by n. Practically, the

number of keys required for this scheme could be quite large.

TESLA, another broadcast network alternative, is also a strong symmetric ap-
proach that uses delayed key disclosure. The protocol has been highly criti-
cized for its need to store unauthenticated messages until their verifying key
is disclosed [6]; the potential backup of messages makes TESLA susceptible to
DOS attacks [6]. Later versions of TESLA have tried to address this but the
attempted solutions have come with a significant increase in message latency [6].

Our literature search found two systems that apply AES-based encryption to
a broadcast network, but neither are specific to vehicular CAN, nor do they
achieve any sort of source authentication.

2CANAuth and LiBrA-CAN were discovered in our literature search after substantial work
had been done on developing the current scheme. Most the focus and goals of Verbauwhede
et al.’s work and our work diverge significantly

6



7 Proposed Authentication Scheme

7.1 Assumptions

Our algorithm, as will be described, assumes characteristics of the underlying
CAN bus:

• There are three general variants of the CAN protocol:

1. the original fault-tolerant, low-speed protocol (CAN 2.0A)

2. the high-speed protocol (CAN 2.0B)

3. the flexible data-rate protocol (CAN FD).

We will choose to overlay our authentication scheme on CAN 2.0A and
safely assume lossless transmission over our CAN bus.

• One master exists with knowledge of the initial network topology and with
a larger memory and computational capacity. This is a safe assumption
since the most common electric vehicle designs includes at least one large
ECU to manage motor movement and battery discharge dynamics.

We will discuss these assumptions (and how to generalize them) in our Analysis
section.

7.2 Big Picture

Our system is comprised of a public key and shared key authentication scheme.
Despite its added computational cost, this choice to first apply a public-key
scheme provides flexibility in our network architecture that pure shared-key
does not. Specifically, third party peripherals added to the network are able to
read and send authenticated messages by receiving and sending public key(s)
over the bus. For example, added dashboard devices or OBD2 listener devices
might be added over the course of a vehicle’s lifetime. We do all authentication
of messages through the shared key channel, set up by the public key infras-
tructure. We choose a shared-key authentication system to do the heavy lifting
in real time to minimize the overhead of public key authentication during time-
critical messaging.

There are two high-level steps for producing and verifying signatures in our
scheme:

1. Initialization3: Every node is assigned exactly one (not necessarily unique4)
secret-key, public-key pair with which it will sign messages that it broad-
casts. A sufficiently powerful ECU designated as a trusted master must

3Likely to take place during the initial assembly of the system at the OEM plant
4See our section on Shortening the Public-Key Directory

7



receive a unique key pair. Furthermore, every node is given a unique
ID. Every node is responsible for storing and maintaining a directory of
public-keys to the extent that its memory has capacity (more on this in
future sections).

2. During Runtime: Any node that decides to broadcast in an authenticated
fashion will set up an authenticated send channel. Recipient nodes that
are interested in listening to that sender node listen in on this channel.
As we will describe later, the basis for each channel is an HMAC chain.
(see section 7.3). All messages sent across this send channel are source
authenticated and there are O(n) channels running simultaneously.

Figure 3: Example of a secure channel from the sender (leftmost node with
unique ID X) to the bus. The broadcast message IDs associated with this
channel is some integer n where n ≡ X (mod total number of nodes)

7.3 Basis of Channels

7.3.1 Authentication by HMAC Channels

Each channel is a method to produce authentication tags for the set of n mes-
sages that a sender wishes to broadcast. To produce these authentication tags,
we use an HMAC chain:

Specifically, the sender chooses a random (secret) seed and 256-bit channel key
K and computes tagi = HMAC(K, tagi−1) for all 0 < i ≤ n. The sender sends
a message onto the bus with tagn, K, and his RSA signature for the previous
two values. The receiver verifies that the initial chain value tagn and K have
not been tampered with. The authentication tag ti for every message mi is
mi ⊕ tagi. Every receiver verifies that a message ti,mi is from the claimed
source by retrieving its saved K and ti+1,mi+1 (the previous tag, message pair)

8



Figure 4: HMAC chain used for verification of a message

by verifying:
HMAC(K, ti ⊕mi) = ti+1 ⊕mi+1

We choose to use an HMAC authentication scheme rather than merely using a
one-way hash in the hash chain to prevent replay attacks. It may be common
for a node to transmit the same message multiple times. Because our tag size
must be less than 4 bytes, tags must necessarily repeat after a small number of
messages. With high probability, the same message-tag pair will be sent across
the network in two different channels. Using a static hash function means that
an adversary could memoize each transmitted chain and replay the chain once
he finds a repeat message-tag pair. Keyed hash functions offered by HMAC
allow every chain to be unique.

After consuming the entire chain, a new chain must be created in the same
manner. The security properties of hash chains have been explored thoroughly
in other works [4].

7.3.2 Scheme Frame Structure

Unfortunately, direct application of the authentication scheme described in this
paper is not possible with the CAN protocol. The protocol is intended to be
implemented as a layer on top of the CAN protocol, meaning that we need to fit
the data into CAN data frames. Here we describe a way of allocating the frame
payload structure to accommodate the scheme. We put the authentication tag
in the same frame as the message (instead of designating separate authentica-
tion frames and message frames) to avoid the possibility of building up queues
of message frames waiting for their authentication frames.

For the channel setup messages, we designate a specific message ID requirement:
the first bit in the message ID must be 0. Each channel setup message must
transmit part of the channel HMAC key, the initial value tagn, the channel
source node ID, and a signature for the aforementioned values:

After interested receivers receive the complete set of channel setup messages,
the node is able to verify the authenticity of the aggregate data by validating the
signature 5. If authentic, it saves channel key and first tag for use in validating

5The authors recognize that a denial of service attack may be possible in this stage by

9



Figure 5: Diagram outlining the general message frame structure for messages
devoted to setting up a channel. Given our 256-bit HMAC key size, we expect
128 messages to be devoted to setting up each channel upon vehicle startup.

data transmission messages.

For the data transmission messages on an already setup channel, we designate
a different message ID requirement: the first bit in the message ID must be 1.
Each data message must transmit part of the source ID, the data segment, and
its corresponding tag:

Figure 6: Diagram outlining the general message frame structure for messages
devoted to transmitting data on a channel.

7.3.3 Other Scheme Details and Addendums

Linking Message IDs with Channel Identities

Nodes on a CAN bus are generally interested in listening to a subset of other
nodes (e.g. the motor is interested in listening to the motor controller, not the
dashboard). As such, it makes sense to use the existing CAN message ID filter-
ing to achieve this sort of selective listening of the bus. To integrate our notion
of channel listening with this idea, we need to think carefully about how to as-
sign each message ID. We are constrained by the fact that lower message IDs get
priority on a CAN bus, and to ensure fair sending characteristics between nodes,
we need to integrate some degree of randomness to each message ID assignment.

Our proposed solution first assigns each node n in the original network a unique
ID. For simplicity, if there are N nodes total in the initial network, assume that
every node is assigned a distinct integer i in 0 ≤ i < N . There are 10 bits
to encode the message ID 6, so our message ID is in the range [0, 210). For
every channel, there is exactly one sender on that channel, and one node ID.

indiscriminate sending of incorrect-signature channel setup messages (which the receiver goes
through and verifies). We discuss more in the paper’s Analysis section

6There are eleven bits in practice, but we occupied the first bit to distinguish channel setup
messages

10



The last ten bits of the message ID for node i’s sending channel is any random
R where R ≡ i mod N . This setup ensures that channels don’t interfere and
that there is roughly similar probability that any channel has precedence over
another channel.

Changes to the Bus & Public-Key Directory

New nodes added after initial network setup are able to authenticate messages
found on the bus after a channel refresh. We assume that such ’3rd party’ nodes
have access to the directory of network public keys, perhaps available by the
OEM 7 of the original network. Alternatively, messages may be sent to a des-
ignated master to query for specific entries in the public key directory. In the
next section, we will briefly discuss how this may be useful.

A refresh of the public-key directory (for whatever reason, perhaps the network
has sufficiently changed, or certain private-public key pairs have been compro-
mised), may be arbitrated by the master. Changes to the directory should not
be allowed without prior authentication (a malicious node may spoof an authen-
tic one), but it is possible to encode a scheme whereby the master arbitrates
authenticates change requests to the directory and broadcasts those messages in
an authenticated fashion. We do not implement this protocol addendum in our
testing framework, but we do note that our scheme allows for such an extension.

Compressing the Public-Key Directory

Memory limitations are discussed in more detail in Analysis, but it is worth
noting that should the O(n) storage of public keys per keys become a bottle-
neck, it is possible to compress the PK directory. Specifically, notice that two
or more trusted nodes may share a channel (if their set of recipients is the same,
and exact source verification between the two is not needed). Furthermore, only
sending nodes need to possess public-private key pairs. In a generic car model,
passive listeners comprise a large quantity of the nodes on the network: the
dashboard, motor, light systems, and more.

In super lightweight nodes, it may be that only storage of O(1) keys is possible.
In this case, it is possible to offload authentication work to a trusted master,
redirect traffic to the master, and receive and authenticate messages only from
the master. In our testing framework, we assume that each node’s memory
capacity exceeds the requirements for PK directory storage, so we leave this
addendum unimplemented.

The authors note that it takes a few steps to modify the proposed scheme to
conceal P2P-channel traffic. Using the public key of the recipient, it is possible
to send and transmit an AES-256 CBC encryption similar to how we establish

7original equipment manufacture

11



and transmit channel keys. From there, we encrypt and send data over the
channel.

8 Analysis

To determine if our protocol met our design goals we performed analysis both
theoretically and practically using a homebrew CAN software simulation. In our
analysis, we endeavoured to characterize the security that our protocol affords
the users and the additional costs that must be incurred to achieve said security.

8.1 Theoretical Analysis

8.1.1 Brute Force Attacks

Using the scheme described in this paper, an adversary has a space of 32 bits to
brute force potential tags for a certain message. Due to the nature of HMAC
authentication, the tag necessary to validate any particular message will not
be constant, so attempting to validate all possible tags for a certain message is
not guaranteed to get a fraudulent message accepted. However, if an adversary
guesses a random tag for some message, there is a 2−32 chance of that message
being accepted. Thus the expected number of message transmissions from an
adversary until a fraudulent message is accepted is 232. CAN buses can run
at a variety of bit rates, most typically 250kbs. With the message size being
108 bits this gives 250,000

108 messages per second. We assume our adversary is
able to transmit on the order of one message per one hundred message cycles;
faster than this would congest the bus and would be considered a DOS attack,
addressed above. With these assumptions we have that the expected time to

successful brute force is 232∗108∗100
250000 seconds or approximately six years.

8.1.2 Memory

Due to the nature of our public key system, each node must maintain the val-
ues of its private key and the public keys of all trusted nodes in the network.
Additionally, for each active channel, each node must maintain the hash value
at the current head of the chain for validation along with the hash key. In
the worst case this gives us O(n) memory overhead per node, O(n2) across the
entire network. Many common modern car architectures use approximately 70
CAN nodes. With 256-bit public and private key pairs, 32-bit authentication
tags, and 256-bit HMAC keys, the memory overhead incurred by each node in
a network with n nodes is (256 + 32 + 256)n = 544 bits = 68 bytes in the worst
case. Thus, in a typical network of 70 nodes, our protocol requires each node
to store an additional 4760 bytes of information. A common specification for
micro-controllers deployed on CAN networks provides 12MB of random access
memory [2]; supporting the memory requirements for our protocol.

12



8.1.3 DOS Attacks

Denial-of-Service attacks are a inherent weakness of CAN-based networks. The
message arbitration scheme on the CAN bus permits nodes to pull the differ-
ential pair of CAN bus wires continuously high (writing an infinite logical 0).
A malicious node may drive the bus to a static state by continuously transmit-
ting high priority messages in this way, shutting down communication between
non-malicious nodes. No network algorithm can circumvent this, and the bus
is compromised. We imagine that dealing with such an attack would require
some sort of overlay logic. The aforementioned attack is simple to detect by any
node, so it is possible to have an overlay network that connects every pair of
nodes in a small, predetermined set of trusted nodes. In case of a bus hijacking,
the network falls back to the overlay network and maintains only vehicle critical
processes. Alternatively, it may be possible to design hardware additions along
the bus that are able to (1) monitor transmissions and small voltage gradients
along the bus and (2) cut off subsets of nodes along the bus. This allows for
fast detection when a node is attempting to push a malicious amount of traffic
to the bus, and rapid disconnection of the malicious node. The implementation
of such an arbitration scheme is beyond the scope of this paper.

We imagine that an alternative denial-of-service attack may occur during trans-
mission of channel setup messages. A malicious node may inject a false signa-
tures message and invalidate the entire set of channel setup messages. Again,
detection of such an attack is straightforward; nodes experiencing such a DOS
experience many failed channel setup attempts. Elimination of this issue might
require a less secure small authentication tag for the data segment in every
single channel setup frame (as opposed to our sender’s RSA signature spread
across multiple frames).

8.2 Simulation

In order to analyze how our protocol would affect traffic on an active CAN
implementation, we chose to develop a CAN simulator in software 8 which could
support an implementation of our protocol.

8.2.1 Implementation and Preliminary Results

The system was designed with the contents of the message fields in each CAN
frame as the smallest atomic unit. We chose to abstract out bus voltages and
similar hardware reliant components as such details would be subject to change
given any specific CAN implementation. Each virtual CAN node operates on a
synchronized clock which ensures that for every clock cycle, each node on the
network has both read and write access to the shared bus once and only once.
This guarantee allows us to model a lossless CAN protocol by specifying that

8Our software can be downloaded from our GitHub repository at https://github.com/

MatthewChang/CANSim

13

https://github.com/MatthewChang/CANSim
https://github.com/MatthewChang/CANSim


during its access time on the bus, each node obey standard CAN arbitration
rules based on message identification.

With a working simulation of the underlying CAN network, we were able to
implement our proposed secure protocol as an abstracted message passing sys-
tem. For generating public and private keys we used a third party library
Python-RSA [8]. We used the in-built Python hmac and hashlib libraries for
our implementation of SHA-256 and other necessary cryptographic primitives.

8.2.2 Traffic Overhead

To model traffic we created a virtual CAN network with nodes to simulate stan-
dard car components (e.g. steering wheel, motor controller, brakes, dashboard,
etc...). We modeled communication channels and traffic patterns 9 that we
would expect in a running car model:

Figure 7: Diagram outlining the general traffic directions in our protocol im-
plementation tests. The red node indicate our test malicious node, sending
unauthenticated data into the network. We checked our system logs to ensure
that we witnessed message rejection.

During each clock cycle, nodes had a random chance to queue up messages to
be broadcast on the bus. Running our simulation using both the (unauthenti-
cated) standard CAN-A protocol and the authenticated CAN protocol described
in this paper, we found the following on a series of tests run for 100 simulated
clock cycles. We logged the throughput as the total number of messages suc-
cessfully transmitted across the bus and logged the latency as the number of
clock cycles between the time a message was queued, and the time it was ac-
knowledged/verified by all nodes in the network. Due to the restricted length

9Messages were sent across the channel with a predefined probability

14

https://docs.python.org/3/library/hmac.html
https://docs.python.org/3/library/hashlib.html##module-hashlib


Msg. Throughput Data Throughput Avg. Latency
CAN-A 78 78 10.2

Authenticated CAN 88 33 32.7

Figure 8: Message throughput, data throughput, and average message latency
results from software simulation

data field in our authenticated protocol, the message throughput does not reflect
the true data throughput. To find the relative throughput of our scheme for
comparison, we must scale the logged message throughput by a factor of 3

8 . The
results from our simulation aligned well with our expectation. In the cases we
tested on, we found that the throughput of the system decreased proportionally
to the restriction of the data field. We found that our authentication scheme
caused the the average message latency to increase by a factor of 3. With each
message sending 3

8 the data, we would expect that the latency to increase by
a minimum factor of 8

3 . Considering the additional latency overhead of estab-
lishing the HMAC channels, a factor of 3 increase in average message latency is
within an acceptable range for our implementation.

To aid our analysis of how authenticated and unauthenticated messages passed
through our protocol, we also developed a small layer on top of our application
to visualize messages passed across the bus and display ongoing statistics.

Figure 9: The display layer on top of our CAN software simulation.

15



8.3 Concerns

Our proposed authentication scheme has a handful of issues that we see as areas
of future work. First, we aim to reduce the time it takes for a message to reach
the bus and be read by bus nodes (our ‘message latency’). Directly related,
is the high amount of additional traffic (that any authentication scheme) that
is added to the network. Transmitting any sort of authentication information
increases the total amount of traffic on the bus, and increases the time that
messages must wait before they are able to occupy the bus.

One important aspect of our scheme that we still need to fully work out the
details of is transmission of acknowledgement of channel setup. In the cur-
rent implementation, the senders assume that channel setup is successful after
all setup messages have been sent, but as noted, this is susceptible to injec-
tion attacks. Ideally, we’d have an authenticated acknowledgement, or self-
authenticating channel setup message. We can achieve the former by initially
setting up of all possible two way channels and relying this to acknowledge any
new channels that replace old channels. The downside to this solution is that
this largely invalidates our suggested optimizations and would add a fair bit of
computational overhead. Alternatively, we could sign every message frame with
our public-private key pair and truncate to fit into the frame. We’d need to
ensure that brute force attacks are still infeasible.

Finally, as mentioned before, our scheme, as implemented, does not address
DOS attacks. We have suggested workarounds, but these are neither complete
nor tested.

9 Conclusion

Our results were promising and showed that it would be possible to add an au-
thentication scheme based on public keys and shared keys to the CAN protocol.
Our implementation suffers from a few limitations and we had to make tradeoffs
in order to meet all of the requirements we set out for ourselves. Future work
would involve testing our implementation on actual hardware and measuring
the effects of our changes on latency and overall traffic in real life situations.

References

[1] Can and canopen faq. http://www.canopen.us/faq/.

[2] A. Devices. 28-Lead Flash Memory DSP Motor Controller with Current
Sense. Analog Devices, 2002.

[3] EngineersGarage. Can system in car. http://www.engineersgarage.com/.

16

http://www.canopen.us/faq/


[4] K. et al. HMAC: Keyed-Hashing for Message Authentication. IBM, UCSD,
1997.

[5] C. Miller and C. Valasek. Adventures in automotive networks and control
units. Last Accessed from h ttp://illmatics. com/car hacking. pdf on, 13,
2013.

[6] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The tesla broadcast au-
thentication protocol. RSA CryptoBytes, 5, 2005.

[7] J. Staggs. How to hack your mini cooper: Reverse engineering can messages
on passenger automobiles. Institute for Information Security.

[8] S. Stuvel. Rsa module for python. Online, 2012. http://stuvel.eu/rsa.

17


	Abstract
	Introduction
	Networked Vehicles
	The Rise of New Threats
	Successful Attacks

	Review of CAN
	Specifications
	Security Issues

	Threat Model
	Additional System Requirements
	Previous Work
	Proposed Authentication Scheme
	Assumptions
	Big Picture
	Basis of Channels
	Authentication by HMAC Channels
	Scheme Frame Structure
	Other Scheme Details and Addendums


	Analysis
	Theoretical Analysis
	Brute Force Attacks
	Memory
	DOS Attacks

	Simulation
	Implementation and Preliminary Results
	Traffic Overhead

	Concerns

	Conclusion

