Entropy Poisoning from the Hypervisor
6.857 Final Project

Matthew Alt
William Barto
Andrew Fasano

Andre King

May 13, 2015

Abstract

The increasing prevalence of virtualization increases the relevance of security for guest op-
erating systems. An important facet of system security is cryptography, which relies on secure
random number generation. Three approaches to compromising a guest operating system’s ran-
dom number generation from a hypervisor are presented. The first approach, directly modifying
generated random numbers in memory, has been successfully demonstrated with a proof-of-
concept. A backdoored architectural random number generator as it applies to recent version
of the Linux kernel is presented, with an additional proof-of-concept. Finally the possibility
of manipulating hardware timings and inputs to poison the guest operating systems random
number generation is analyzed.

1 Introduction

Modern cryptography relies on secure random numbers; however, computers are deterministic
and, therefore, predictable. Random numbers are used to generate cryptographic material to
prevent potential attackers from predicting private cryptographic keys. Insufficient randomness
has been shown to be a weak point for networked computers in the past [14, 6].

The use of cloud services and other virtualization technology is on the rise. Gartner estimates
that “at least 70% of 1386 server workloads are virtualized [15].” The virtualizer controls the
hardware for all virtualized guests. A malicious virtualizer, or hypervisor, could potentially
control the random numbers generated in a virtualized operating system. By doing so, malicious
hypervisors could compromise the cryptographic security of their guest operating systems.

This research demonstrates proof-of-concept attacks on a guest operating system’s random
number generation from within a hypervisor. While this should serve as a reminder of the im-
portance and implications of trusting one’s hardware (and cloud services), this research could
also be used to improve cyber security defenses. By implementing the techniques described here
within a malware sandbox, such as Fireeye’s[5], security researchers could reduce the crypto-
graphic complexity of malware samples, aiding their malware analysis.

2 Background

2.1 Hypervisors

Hypervisors are software that support emulation of systems, allowing a host system to run
a virtual machine. These virtual machines can range from small embedded systems to full
operating systems[7]. Hypervisors serve many purposes including running multiple operating
systems on a single machine, isolating processes for security reasons, and cloud computing|[7].
Xen[3], VMware[17], and QEMUJ[13] are all example hypervisors in use today.

QEMU was chosen for this research effort, because it is open source and the PANDA source
code provides some insight into how QEMU handles non-determinism[4]. QEMU supports cross
platform emulation, so multiple platforms can be emulated on a single host. QEMU handles cross
platform support by converting all emulated machine instructions to an intermediate language
called Tiny Code Generator (TCG). TCG can then be converted to the machine language used
by the host system. Sections of code that do not result in control flow changes are generated into
translation blocks and converted as a set. QEMU can be run with KVM[9] or Xen acceleration,
where QEMU does not perform the translations and simply allows the other virtualizer to handle
the instruction more quickly. Without hardware acceleration QEMU is emulating the guest’s
hardware in software that executes on the host system. Acceleration is not used for this project.

2.2 Randomness

Random numbers can be generated in many ways, from physical methods, such as coin flipping
and die rolling, to electronic methods, such as camera noise[18] and quantum noise[8]. Due to
the deterministic nature of software, when truly random numbers are needed, the randomness
is derived from interactions with hardware. Different Operating Systems (OS) handle ran-
dom number generation differently and some processors now contain hardware random number
generators[11].

The Linux kernel’s random number generation is centered around a variable called the en-
tropy pool. The specifics of kernel’s random number generation vary from kernel to kernel, but
generally a seed from the entropy pool is saved to disk when the system is shutdown and read
from disk to seed the entropy pool when the system is started. Various device identifiers, such
as MAC address, are also mixed into the entropy pool on boot. The process of “mixing” bytes

into the pool is described in Section 2.2.2. As the system is running other sources of presumably
unpredicatable data are mixed into the entropy pool. For the kernel inspected, the utilized
unpredictable data sources are: interrupt timings, thread reaps, network device timings, block
device timings, and input device timings. Figure 1 shows the general process by which the
entropy pool is updated. When random bytes are requested from the kernel, the entropy pool
is hashed using SHA and the results of the hash are returned. The one-wayness of the hashing
function prevents an attacker from determining the state of the entropy pool by requesting ran-
dom numbers. The output of this hash is also mixed back into the entropy pool. This prevents
an attacker who has discovered the contents of the entropy pool from computing previous states
of the entropy due to the one-wayness of the hashing function.

Figure 1: Linux Kernel Entropy Pool Management

2.2.1 Entropy Pools

The Linux Kernel uses three different entropy pools to manage random data. When an event
occurs that can be used to increase the entropy of the system, information about this event is
mixed into the input entropy pool. The other two entropy pools are known as the blocking and
nonblocking pools. The nonblocking pool will continue to provide output when the estimated
entropy is insufficient for cryptographic purposes. The blocking pool will wait to provide output
until sufficient entropy is available. These pools typically contain little entropy until an appli-
cation requests random data from one of them. When this occurs, the pool requests data of the
desired length from the input entropy pool. This data is extracted from the input entropy pool,
hashed using SHA and then mixed into the relevant pool using the mixing function described
below. The output of SHA is also mixed back into the input pool [10].

2.2.2 Mixing

When certain events occur, the kernel adds information about this event into the input entropy
pool using a mixing function. The mixing function uses the state of the entropy pool and b
bytes of new data to update b bytes in the entropy pool.

One of the main events used as a source of entropy are system interrupts. When interrupts
are fired, the kernel uses the system time plus data from the interrupt itself to mix the entropy
pool. When this happens, a structure containing a long and two unsigned integers is populated
with information about the interrupt: jiffies, cycles, and num. Where num is a number specific
to the interrupt. For example, when an interrupt is triggered by a keyboard event, this value
is populated with the key code exclusive-or’ed with a constant value representing the keyboard
model and manufacturer.

The bytes contained in this structure are mixed into the input entropy pool one at a time.
The mixing function, shown in Figure 2, uses the values in the entropy pool (shown at the top
of the figure), the input byte, and a twist table populated with constant values to generate a
new value for the entropy pool. The entropy pool structure maintains an index pointing to the
location that should next be updated.

multiplication

I
:
0 ' in GF(2%)
:
1

Figure 2: The mixing function in the Linux kernel. From [10]

3 Approaches

For this project three potential approaches are evaluated for manipulating the entropy pool
of a guest operating system from the hypervior. The first method, which is referred to as
“Intercept on Access,” involves setting breakpoints in the guest operating system using the
modified hypervisor. These breakpoints are set to trigger on functions that are critical to the
random number generator in the Linux kernel—such as get_random_bytes and random_read in

drivers/char/random.c. With this approach, the hypervisor breaks on functions of interest
within the guest and modifies the return values to acheive the desired effect within the guest.

The second approach involves emulating a backdoored architectural random number genera-
tor (ARNG), in the case of the i386 architecture this would control the output from the assembly
instruction rdrand. Instead of providing a legitimate ARNG, the hypervisor can provide a ma-
licious random number generator by modifying the code which handles instruction parsing and
TCG generation. With this malicious ARNG, the hypervisor would have complete control over
the output of the rdrand instruction on i386, allowing corruption of the guest random number
generation.

The third approach involves directly modifying the emulated hardware interrupts used as
input to the guest entropy pool. If the hypervisor is sufficiently intelligent, it could produce
hardware timings that compromise the guest entropy pool.

3.1 Intercept on Access

The first approach implemented involves the use of breakpoints for inspecting and modifying
various functions within the Linux kernel. Breakpoints on i386 are implemented by the in-
struction int 3. When this instruction is executed on a Linux system it sends a “SIGTRAP”
signal to the current process. In order to trigger this instruction, a debugger will inject an
int & instruction. This will cause the kernel to send a “SIGTRAP” signal to the process that is
being debugged. Once the signal has been sent, the debugger receives the signal that the child
process was stopped. From this point the user can use the debugger to inspect the process being
debugged. For initial testing the GNU Debugger (GDB) was used to debug the target operating
system running in QEMU and to set breakpoints at various points of interest. QEMU supports
using GDB to debug the guest operating system by passing the flag “-S”. In addition to pro-
viding basic debugging primitives, GDB has the ability to import debugging symbols. During
initial testing the target Linux kernel was built with debug symbols providing more debugging
capability.

During the initial testing GDB was used to modify the values returned by the functions
read-random and extract_buf in the kernel. This granted the ability to directly manipulate the
values that were output by the random number generator located at /dev/random. GDB was
required to make this approach work. QEMU was modified to remove the GDB dependency,
because the goal was to modify the guest operating system using only the hypervisor and no
additional programs.

When breakpoints are reached in the modified hypervisor, a callback function is executed.
This allows the hypervisor to examine it’s current state (current program counter, register
values, etc.) and determine what modifications need to be made. This callback function is used
to modify the return values for the functions that were originally inspected with GDB.

3.2 Backdoored Architectural Random Number Generator

The affects of backdooring the Architectural Random Number Generator (ARNG) differ de-
pending on the version of the guest operating system. Three versions of the Linux kernel
are considered here. The three snippets of code referenced in this section are included in the
Appendix|[16], note the function arch_get_random_long places the output of the ARNG into a
buffer, v.

In the first case, Kernel Version 3.12—and any prior kernel version that supported an
ARNG—, the output of the extract_buf function is directly controlled by the output of that
ARNG. As the code shows, the entropy pool is hashed, then the output of the hash is directly
exclusive-or’ed with the ARNG output. The result of that exclusive-or is then returned. If the

ARNG is backdoored, it could be modified to return the contents of the entropy pool exclusive-
or’ed with the desired output of extract_buf. This would result in the backdoored ARNG having
direct control on the output of extract_buf, and by the transitive property, /dev/random.

In the second case, Kernel Versions 3.13 and 3.14, the entropy pool is exclusive-or’ed with
the ARNG before it is output. This does not give an attacker arbitrary control on the output of
extract_buf, because SHA is one-way. However, it does allow an attacker to produce predictable
values, since SHA is deterministic and an attacker knows the input to the hash function.

In the third case, the current Kernel Version, the ARNG output is used as the initialization
vector for the hash function. The pool is then hashed and the output of that hash is used as
the output. In this case a backdoored ARNG only allows an attacker to control a subset of the
input to the hash function. This means an attacker does not have direct control over the input
or output of the hash function. The approach described in Section 3.1 could be used to directly
control the input or output of the hash function, but if that approach is utilized controlling the
output of extract_buf directly is simpler.

3.3 Control Entropy Sources

For the purposes of analysis, the add_timer_randomness function is used as it encapsulates the is-
sues that occur across most entropy sources. Also, if the guest is a server, add_timer_randomness
is the primary source of entropy. This function effectively has three input values: jiffies, cycles,
and interrupt numbers. Jiffies are a Linux kernel internal timekeeping value, they effectively
track the number of CPU timer interrupts that have occurred. Cycles is simply a measure of
the number of clock ticks that have occurred, in the case of the i386 kernel, this is read using
the rdtsc instruction. The final input value is an encoding of the interrupt that generated the
event.

There are many possible techniques to control the sources of these inputs. As the number of
cycles is measured using the rdtsc instruction, this could be controlled by editing a hypervisor’s
handler for rdtsc such that it returns augmented values while executing add_timer_entropy. The
observability of this modification depends largely on how intelligent the modified rdtsc handler
is—if it never returns the correct value, unrelated programs are likely to break. Controlling the
other two input sources proves more challenging. Control over jiffies requires augmenting when
CPU timer interrupts are delivered, which has far-reaching effects in the kernel’s timing and
scheduling. Possibly even more difficult, controlling the interrupt numbers (without repeating
the “Interrupt on Access” solution) requires editing the interrupts delivered by the hypervisor’s
virtual CPU which, while possible, completely changes the semantics of the guest operation.
Worse, CPU timer interrupts are one type of interrupt, and as previously discussed, editing the
timing of these particular interrupts has far-reaching effects.

Supposing direct control over these sources was obtained, the values are run through a
twisting function before being put into the entropy pool. Because of this, a method for inverting
the miz_pool_bytes function was also created, which provides target values for the three inputs
discussed earlier to produce a desired entropy pool. In cases where complete control over the
inputs is obtained, this function could potentially be used to leverage complete control over the
entropy pool.

4 Methodology

4.1 Testing Environment

For initial testing, a minimal Linux kernel with a small number of userspace applications was
desired. In order to accomodate this, a custom Linux image was built then stripped of unnec-
essary userspace applications and utilities. Initial testing was primarily based on kernel level

components, reducing build time. In order to test and boot a Linux kernel in QEMU, the
following components must be present:

A kernel compiled for the target architecture.
A filesystem that can be mounted by the kernel on boot.

The filesystem that is mounted by the kernel must provide the tools necessary to probe and
test the various kernel components. In order to provide necessary utilities to the guest operating
system the BusyBox[2] toolkit was used. BusyBox is a set of tools that provides lightweight
replacements for standard UNIX utilities such as cat, dd, and hexdump[2]. In addition to
BusyBox, the ability to run standard C programs was also desired for testing purposes. This
capability was added by modifying the BusyBox build process to include standard GCC (GNU
Compiler Collection) tools when building the BusyBox environment. This allowed for one to
cross compile programs on the host operating system and run them on the guest OS within
QEMU. The resulting filesystem could also be mounted in the host OS to allow for copying files
to and from the guest OS while the guest was offline, i.e. not running in QEMU.

Initially each of these components was built seperately and then combined in order to test
within QEMU. After the Buildroot toolchain was discovered, it was used for all further testing.
Buildroot is a set of tools that can be used to build entire Linux images for target systems [1].
Buildroot will compile and build all necessary tools for the guest operating system as well as
the kernel of the guest operating system itself and outputs both a kernel and filesystem image.
The resulting filesystem and image can be run in QEMU.

After using the Buildroot toolchain to build the image and filesystem, QEMU is invoked
with the following command:

#!/bin/bash

gemu—system—i1386 —kernel buildroot/output/images/bzlmage \
—append "root=/dev/sda" \

—hda buildroot/output/images/rootfs.ext2 \

—monitor stdio \

—s \

-S

The arguments can be broken down as follows:

—kernel: Points to target kernel

—append: Tells QEMU which initialization arguments to provide
the kernel, this tells it to append a root device

—hda: Add a drive to the hypervisor, which will be mounted by
the kernel upon boot

—monitor: Provides access to the QEMU monitor, aiding introspection
—s: Open a GDB server on localhost:1234

—S: Pause the guest on startup

4.2 Intercept on Access

For the “Intercept on Access” approach, QEMU was modified to add first-class support of
breakpoints without the use of GDB. This added functionality was then used to place breakpoints
in the entry and exit points of the extract_buf function found in drivers/char/random.c in the
Linux kernel source code. When this function is executed, the callback checks to see if the
value returned should be poisoned. At present, in the proof-of-concept, the value is modified

if a custom “poison” command was previously run to provide a new set of bytes to return.
However, this check could easily be made more elaborate to check things such as which processes
are currently running, which process made the request, or any other set of selectors. To perform
the entropy poisoning inside the breakpoint callbacks, QEMU modifies the memory of the guest
to overwrite the buffer that contains the guest-computed random bytes with values selected by
the hypervisor. Again, in the proof-of-concept, the bytes will be whatever argument was passed
to the “poison” command, but could easily be selected by a more complex method left to the
reader’s imagination.

This method of poisoning guest entropy has some great advantages and some unfortunate
artifacts. The random bytes are modified by directly editing the guest’s memory, so the hyper-
visor has arbitrary targeted control over the guest’s kernel random number generation. This
is more useful than just recording the random numbers generated if, say, there is some com-
plicated multi-stage analysis framework which can be greatly optimized if the guest generates
a particular random number. In addition, if some analysis is being performed on a program
with behavior dependant on sampling the entropy pool, forcing these samples to desired values
can make the analysis much easier (i.e. if encryption key is some function of random bytes and
host-keyed data the random bytes may be poisoned to induce a fixed encryption key). Using
this technique, poisoning entropy only for a specific user or specific applications is also trivial —
whereas other, more passive, techniques modify the entropy pool for the entire system making
such targeting impossible.

4.3 Backdoored Architectural Random Number Generator

The proof-of-concept for the backdoored ARNG was implemented by adding support for the
associated 1386 assembly instruction, rdrand, to QEMU. Previously, QEMU returned CPU status
bits indicating an ARNG was not available and would fail to execute the command with an
invalid instruction exception if an attempt was made to execute the opcode. The 30th bit of
the register FCX returned by CPUID is used to indicate the presence of rdrand in the 1386
Instruction Set Architecture (ISA). By modifying QEMU to set this bit in FCX when CPUID is
called, the guest OS will believe that an ARNG is present and rdrand is an available instruction.
Further modifying the TCG generator in QEMU to parse the rdrand opcode and arguments, set
the specified return register to an arbitrary value, and set the appropriate status flags, allows the
hypervisor to arbitrarily control the output of the ARNG presented to the guest. Intel’s supplied
ARNG library, librand[11], was used for verifying compliance of the emulated instruction with
the 1386 standard. Modifications to Intel’s ARNG are tested using using an Arch Linux live
CD booted in QEMU. Arch was chosen instead of the minimal Linux kernel used elsewhere,
because Arch supports rdrand and quick installation of the build tools necessary to compile and
run Intel’s librand library. The QEMU modifications described in this section will only work
for the 1386 ISA, but similar modifications should be possible for other ISAs with ARNGs.

4.4 Control Entropy Sources

A method to compute the required inputs to miz_pool_bytes to produce desired output bytes
into the kernel’s input entropy pool was developed and is included in the Appendix. As the
inputs to the miz_pool_bytes function are controlled by hardware, it was originally hypothesized
that an attacker would be able to arbitrarily set these inputs and directly control the state of
the entropy pool. The values mixed into the entropy pool are the current jiffies, the current
number of cpu cycles, and an integer whose value encodes the type of interrupt which occurred.

Controlling the number of CPU cycles reported by QEMU has been implemented and
tested—requiring modifications to include/qemu/timer.h. It is possible to exert some control
over the jiffies value by augmenting the manner in which CPU timer interrupts are delivered.

This approach has not yet been tested as it introduces even larger artifacts for slightly increased
control surface — since the CPU interrupt timers must still fire for the kernel to work there will
always be less-controlled interrupts tainting the poisoned pool.

The mixing function used to add unpredictable data into the input entropy pool is an invert-
ible function. A proof-of-concept was developed that will invert this function assuming arbitrary
control of the inputs. In practice, only the number of CPU cycles can reasonably be controlled.
Controlling this provides partial control over the kernel’s input entropy pool. However, the
output of this function is later passed through a one-way function based on SHA before it is
used to populate the blocking or nonblocking pools [10]. Since finding targeted collisions with
SHA is computationally infeasible, the attack described above appears to be infeasible [12].

5 Results

The “Intercept on Access” approach was successfully implemented as described in Section 4.2,
and tested with the simplified kernel derscribed in Section 4.1. The QEMU command used for
testing the proof-of-concept is shown in Figure 3. Figure 4 shows the output of /dev/random
before the poisoning is initiated. The modified QEMU hypervisor can be set to intercept the
output of /dev/random with arbitrary input. Figure 5 shows the command being used with two
different values. Figure 6 shows the output of reading from /dev/random before and after the
“poison” command is invoked.

In practice, the poisoning could be done to return data that seems random to the guest. One
such function could return the output of a pseudo random number generator with a known seed
every time /dev/random is accessed. This would easily allow an attacker to efficiently compute
all outcomes of /dev/random in sequence, while the guest’s random number generator would
appear random.

$./gemu/i386-softmmu/qemu-system-i386 -kernel buildroot/output/images/bzImage
-append root=/dev/sda -drive file=buildroot/output/images/rootfs.ext2,format=ra

w -monitor stdiofj

Figure 3: QEMU Command

Figure 4: Output of /dev/random Before Poisoning

(qemu) poison "Is this random??"
Configured poison breakpoints
(qemu) poison "no, it isn't!"

Configured poison breakpoints

Figure 5: Issuing the Poison Command in QEMU

18 6f 58 ca c? a3 6 af 1 ed

[root@Pbuildroot I dd if devsrandom bs=16 count=1 | hex
D+l 1 in

J+1 records oot

WHREEREE 91 &5 36 95 17 47 ci@ 46 74 a Za 14
PR AR

t@huildroot I dd if devsrandom =1 count=1 | hex;

28 74 68 69 73 28 72 64 6f 6d 3IF 3f ;: this random?7!

[rootPbuildroot It dd if devs/random bs=16 count=1 |hexdump
D+1 re rd in

B+1 record ou t

HHOEEOEE Ge b

WIREEEEA

[root@buildroot

Figure 6: Output of /dev/random After Poisoning

The modifications described in Section 4.3 to backdoor QEMU’s i386 ARNG have been suc-
cessfully implemented. Figure 7 shows the output of calling a modified version of Intel’s ARNG
test, included in their librand library, to print the output of the rdrand instruction. As the
figure shows, the ARNG consistently returns 0x503D4E50, which is the ASCII representation
of “P=NP”. The changes to QEMU support returning any arbitrary value from the rdrand in-
struction. In practice, an attacker could use the current state of the entropy pool to compute
the return values of rdrand in such a way that /dev/random outputs any desired value. The
required additional step of finding and reading the state of the entropy pool from the hypervisor
was not tested with the ARNG but was demonstrated in the previous proof-of-concept.

10

“~librand # x

"P=NPP=NPP=NPP=NPP >=NPP "P=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP
>=NPP=NPP=NPP=NPP PP *P=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP
>=NPP =NPP =NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP
>=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP
>=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP=NPP

*=NPI *=NPP=NP *=NPP=NPF »=NPP=NP *=NPP=NP *=NPP=NPF

*=NP} *=NPP=NP >=NPP=NFF »=MPP=NP *=NPP=NP *=NPP=NFPF

*=NPE >=NPP=NPP=NPP=NPP=NPF >=NPP=NP *=NPP=NP >=NPP=NFF

>=NPP PP =NPP=NPP=NPP=NPP=NPP=NPP=NP *=NPP=NPP=NPP=NPP=NPP

*=NPP "P=NPP=NPP=NPP=NPP=NPP=NPP=NPP=-NPP=NPP=NPP=-NPP=-NPP=NPP

.oprint_rc I hexdump —

Tolololololo o] S C > S 3d 4e S0 IP=NPP=NP |
TolololoTotots]

Rarc

hiso “~librand

Figure 7: Screenshot Displaying Backdoored ARNG

While an inverter to the mixing twister used for the input pool in the Linux kernel was
successfully implemented, an end-to-end proof-of-concept was not successfully implemented for
the approach described in Section 4.4. Each time the mixing function was called three values
were mixed into the entropy pool. One of the three values was backdoored, cycles, but no
practical method was found for the other two values. Additionally, no inverter was found to
undo the operators used to move data from the input entropy pool to either of the output pools.
Since the “Intercept on Access” approach was implemented, it could be used to control the
inputs for the other two values, but inverting the one-way hash function is still not feasible.
This is impractical, especially since the “Intercept on Access” approach can be used by itself to
arbitrarily control the output of the guest random number generator.

6 Conclusions

When targeting Linux kernel versions 3.12 or before, using a backdoored ARNG will quickly and
easily provide complete control over random numbers generated by the kernel. When targeting
Linux Kernels 3.13 or 3.14 using a backdoored ARNG will allow an attacker to control the input
to a one-way hash that outputs the random numbers generated by the kernel. If the Linux kernel
is a more recent version, the “intercept on access” technique will be best approach to arbitrarily
control the output of the kernel’s random number generation. While initial research was unable
to demonstrate a technique for using the entropy sources in hardware to take complete control
of the kernel’s entropy pool, two thirds of the entropy pool was compromised, reducing the
state space in the entropy pool from 25628 bits to 256%*. Future work may reveal additional
techniques to further reduce the state space of this pool.

7 Future Work

Poisoning guest entropy sources from the hypervisor has thus far proven largely unfruitful in
the Linux kernel, but it may be the case that the issues encountered in recent versions of the
Linux kernel do not show up in other operating systems or previous versions of the Linux
kernel. Investigating other operating systems to identify entropy gathering techniques that can
be reasonably controlled by hypervisor modifications without pervasive effects on the guest is a
potential avenue for future research. As taining guest entropy by augmenting the sources seems
infeasible without considerable artifacts, future work would likely focus mostly on breakpoint-
based solutions. With breakpoint-based solutions considering all sources of entropy, even those
not generally available to virtualized servers, becomes much easier as no particular set of inputs
should be any more difficult to interpose on.

Adding a framework for generating seemingly random output with minimal state storage
is also a goal of future work, this would allow an external analysis framework to perfectly
duplicate the guest’s entropy pool (or compute future values) with minimal state storage. Using

11

a psuedo-random function and recording a per-guest seed is a candidate solution — ideally a
psuedo-random function which can generate portions of it’s output out-of-sequence.

Making the system resillient to guest operating system updates and supporting more guest
operating systems is another area of future work. At present, the breakpoint system depends
on debug symbols generated as a side-effect of the Linux kernel’s build process to obtain the
locations of symbols to place breakpoints, meaning a kernel patch or other source of symbol
relocation would break the system. For most targets this is an acceptable dependence as debug
symbols for popular Linux distributions are readily available and similarly kernel debugging
symbols for other operating systems, such as Microsoft Windows, are also readilly available.
Investigating other techniques to locate the code of interest could add patch resilliance to the
system. In addition to adding resillience into the system, teaching it to recognize when the
guest is unknown would prevent the system for injecting stray breakpoints into unknown guests
which would be a highly observable artifact in a cloud hosting system.

8 Summary

Three methods for controlling the entropy of a guest system from a malicious hypervisor were
investigated. The first method, “Intercept on Access” uses a customized version of QEMU
to set breakpoints and modify the system memory whenever the read_random kernel function
is called. This method gives the hypervisor complete control of the kernel’s random number
generation, but could be detected by the guest. A second method investigated focused on using
the hypervisor to emulate an architectural random number generator and control the values it
presents to the guest operating system. Until recent patches to the Linux kernel, this would
have allowed for arbitrary control over the output from the kernel’s random number generator.
A final method of directly controlling entropy sources was investigated as well. This method
was hypothesized to be feasible since the Linux kernel adds new bytes to its entropy pool
using a function that can be inverted. A function was created to invert the kernel’s mixing
function, miz_pool_bytes, but initial research suggests that using modified hardware alone to
directly control the input to this mixing function may be infeasible.

12

References

1]

BUILDROOT. Documentation http://buildroot.uclibc.org/docs.html. [Ounline; ac-
cessed 2-April-2015].

BusyBox. About busybox http://www.busybox.net/about.html. [Online; accessed 2-
April-2015].

CHISNALL, D. The definitive guide to the zen hypervisor. Pearson Education, 2008.

DoOLAN-GAVITT, B., LEEK, T., HopOsH, J., AND LEE, W. Tappan zee (north) bridge:
mining memory accesses for introspection. In Proceedings of the 2013 ACM SIGSAC con-
ference on Computer € communications security (2013), ACM, pp. 839-850.

FIREEYE. Debunking the myth of sanbox security https://www2.fireeye.com/
debunking-the-myth.html. [Online; accessed 19-March-2015].

HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A. Mining your
ps and gs: Detection of widespread weak keys in network devices. In USENIX Security
Symposium (2012), pp. 205-220.

HENNESSY, J. L., AND PATTERSON, D. A. Computer architecture: a quantitative ap-
proach. Elsevier, 2012.

JENNEWEIN, T., ACHLEITNER, U., WEIHS, G., WEINFURTER, H., AND ZEILINGER, A.
A fast and compact quantum random number generator. Review of Scientific Instruments

71, 4 (2000), 1675-1680.

KVM. Kernel based virtual machine http://www.linux-kvm.org/page/Main_Page. [On-
line; accessed 6-May-2015].

LACHARME, PATRICK, E. A. The linux pseudorandom number generator revisited. In
International Association for Cryptologic Research (2012).

MECHALAS, J. Intel digital random number generator (drng) soft-
ware implementation guide https://software.intel.com/en-us/articles/
intel-digital-random—number-generator-drng-software-implementation-guide.
Online; accessed 3-May-2015.

NIST. Secure hash standard (shs). FIPS PUB 180 - 4, 2012. [Online; accessed 21-May-
2015].

QEMU. Qemu open source processor emulator http://wiki.qemu.org/Main_Page. [On-
line; accessed 19-March-2015].

RISTENPART, T., AND YILEK, S. When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography. In NDSS (2010).

THOMAS BITTMAN, MARK MARGEVICIUS, P. D. Magic quadrant for x86 server virtualiza-
tion infrastructure https://www.gartner.com/doc/27880247srcId=1-2819006590. On-
line; accessed 3-May-2015.

TorvALDS, L. linux/drivers/char/random.c https://github.com/torvalds/linux/
blob/4£671fe2f9523alea206f63fe60a7c7b3ab6d5¢7/drivers/char/random. c. [Online;
accessed 6-May-2015].

VMWARE. Virtualization http://www.vmware.com/virtualization/. [Online; accessed
6-MAy-2015].

ZHANG, X., QI, L., TANG, Z., AND ZHANG, Y. Portable true random number generator

for personal encryption application based on smartphone camera. FElectronics Letters 50,
24 (2014), 1841-1843.

13

Appendix A Linux Kernel Source: extract_buf [16]
A.1 Kernel Version 3.12

sha_init (hash.w);

spin_lock_irgsave(&r—>lock , flags);

for (i = 0; i < r—=>poolinfo—>poolwords; i += 16)
sha_transform (hash.w, (__u8 x)(r—>pool + i), workspace);

~
*

We mix the hash back into the pool to prevent backtracking
attacks (where the attacker knows the state of the pool
plus the current outputs, and attempts to find previous
ouputs), unless the hash function can be inverted. By
mixing at least a SHA1l worth of hash data back, we make
brute-forcing the feedback as hard as brute-forcing the
hash.

/

__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
spin_unlock_irqrestore (&r—>lock , flags);

EE R R I

/ *

* To avoid duplicates, we atomically extract a portion of the
* pool while mixing, and hash one final time.

*/

sha_transform (hash.w, extract, workspace);
memset (extract , 0, sizeof(extract));
memset (workspace, 0, sizeof (workspace));

/ *
* In case the hash function has some recognizable output
* pattern, we fold it in half. Thus, we always feed back
* twice as much data as we output.

*/

hash.w[0] "= hash.w[3];

hash.w[1] "= hash.w[4];

hash.w[2] "= rol32(hash.w[2], 16);
/*

* If we have a architectural hardware random number
* generator, mix that in, too.
*/
for (i = 0; i < LONGS(EXTRACTSIZE): i++) {
unsigned long v,
if (larch_get_-random_long(&v))
break;
hash.1[i] "= v;

}
memcpy (out , &hash, EXTRACT.SIZE);

14

Kernel Versions 3.13 and 3.14

sha_init (hash.w);

spin_lock_irgsave(&r—>lock , flags);

for (i = 0; i < r—>poolinfo—>poolwords; i += 16)
sha_transform (hash.w, (__u8 x)(r—>pool + i), workspace);

/%
* If we have a architectural hardware random number
* generator, mix that in, too.
*/
for (i = 0; 1 < LONGS(20); i++) {

unsigned long v;

if (larch_get_random_long(&v))

break;

hash.1[i] "= v;

/*

We mix the hash back into the pool to prevent backtracking
attacks (where the attacker knows the state of the pool
plus the current outputs, and attempts to find previous
ouputs), unless the hash function can be inverted. By
mixing at least a SHA1l worth of hash data back, we make
brute-forcing the feedback as hard as brute-forcing the
hash.

* ¥ X X X ¥ ¥

*/
__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
spin_unlock_irqrestore(&r—>lock , flags);

/ *

* To avoid duplicates, we atomically extract a portion of the
* pool while mixing, and hash one final time.

*/

sha_transform (hash.w, extract, workspace);
memset (extract , 0, sizeof (extract));
memset (workspace, 0, sizeof (workspace));

/*

* In case the hash function has some recognizable output
* pattern, we fold it in half. Thus, we always feed back
* twice as much data as we output.

*/

hash.w[0] "= hash.w[3];

hash.w[1] "= hash.w[4];

hash.w[2] "= rol32(hash.w[2], 16);

memcepy (out , &hash , EXTRACT_SIZE);

15

A.3

Kernel Version 3.15

sha_init (hash.w);
for (i = 0; 1 < LONGS(20); i++) {
unsigned long v,
if (larch_get_-random_long(&v))
break;
hash.1[i] = v;
}

/* Generate a hash across the pool, 16 words (512 bits) at a time
spin_lock_irgsave(&r—>lock , flags);
for (i = 0; i < r—>poolinfo—>poolwords; i += 16)

sha_transform (hash.w, (__u8 x)(r—>pool + i), workspace);

/*

We mix the hash back into the pool to prevent backtracking
attacks (where the attacker knows the state of the pool
plus the current outputs, and attempts to find previous
ouputs), unless the hash function can be inverted. By
mixing at least a SHA1l worth of hash data back, we make
brute-forcing the feedback as hard as brute-forcing the
hash.

* X X ¥ X ¥ ¥

*/
—-mix_pool_bytes(r, hash.w, sizeof (hash.w));
spin_unlock_irqrestore(&r—>lock, flags);

memzero_explicit (workspace, sizeof (workspace))

/*

* In case the hash function has some recognizable output
* pattern, we fold it in half. Thus, we always feed back
* twice as much data as we output.

*/

hash.w[0] "= hash.w[3];

hash.w[1] "= hash.w[4];

hash.w[2] "= rol32(hash.w[2], 16);

memcpy (out , &hash, EXTRACT.SIZE);

*/

16

Appendix B Inverse Mix

uint32 un_twist(uint32 desired_out) {
unsigned short twist_index = 0; // Could use any index 0-8
uint32 twist = twist_table[twist_index];
uint32 undo-twist = ((desired.out "~ twist) << 3) + twist-index;
return undo_twist;

}

int compute_byte(uint32 xpool_cpy, unsigned long taps[5], int wordmask,
uint32 desired-out) {
uint32 i, undo_xors, this_xor_index , this_xor ,val;
undo_xors = un_twist (desired_out);

for(i=0; i < 5; i++) {

this_xor_index = (next_index + taps[i]) & wordmask;
undo_xors = undo_xors ~ pool_cpy[this_xor_index];
}
uint32 nxt = pool_cpy[next_index |;
uint32 undo.rotate = (undo_xors ~ nxt) >> current_input.rotate;
if (next_index==0) current_input_rotate += 7;
current_input_rotate = (current_input_rotate+7) & 31;
pool_cpy [next_index] = desired_out;
next_index = (next_index —1) & wordmask;

return undo_rotate;

}

int untwist_wrapper (struct entropy_store xr, uint32 xdesired_vals) {
uint32 i, input_vals|[sizeof(desired_vals)];
unsigned long taps|[5];
taps [0] = r—>poolinfo—>tapl;

taps [1] = r—>poolinfo—>tap2;
taps [2] = r—>poolinfo—>tap3;
taps [3] = r—>poolinfo—>tap4;
taps [4] = r—>poolinfo—>taph;

uint32 xpool_cpy = malloc(sizeof(uint32) * r—>poolinfo—>poolbytes);

int wordmask = r—>poolinfo—>poolwords — 1;
next_index = r—>add_ptr;
current_input_rotate = r—>input_rotate;

for (i = 0; i < sizeof(desired_vals); i++) {
input_vals[i] = compute_byte(pool_cpy, taps, wordmask,
desired_vals[i]);

17

