Theorem: If \(h \) is CR, then \(h \) is TCR.

proof sketch:
Assume \(h \) is not TCR, then given an \(x \), the adversary can find an \(x' \neq x \) such that \(h(x) = h(x') \).
But, then \(x, x' \) form a collision, which is a contradiction since the hypothesis says that \(h \) is CR.

Remark: If \(h \) is TCR, then \(h \) is not necessarily CR.

Example: \(h: \{0,1\}^n \rightarrow \{0,1\}^m \), if \(x = 0^n \)
\(h: \{0,1\}^n \rightarrow \{0,1\}^m \), if \(x = 1^n \)

Then \(h \) is TCR since given a uniformly random \(x \in \{0,1\}^n \), the probability that we can find an \(x' \) such that \(h(x) = h(x') \) and \(x = x' \) is \(\frac{2^n}{2^m} \) (for \(x = 0^n \) and \(x = 1^n \)).
But, \(h(0^n) = h(1^n) \), so \(h \) is not CR.

Theorem: \(h \) is OW \(

proof sketch:
If \(h(x) = x \), then \(h \) is CR, but \(h \) is not OW.
If \(h(x) = \begin{cases} \text{any } f \in \mathcal{F} & \text{if } x = 0^n \\ \text{any } f \in \mathcal{F} & \text{if } x = 1^n \\ f(x) \text{, otherwise} \end{cases} \)

Then \(h \) is OW, but \(h(0^n) = h(1^n) = 0^n \), so \(h \) is not CR.

Why \(h \) is OW?

If \(h \) was not OW, then it would be "feasible" given \(y \in \{0,1\}^m \) such that \(y = h(x) \) and \(x \in \{0,1\}^n \)
to find \(x' \) such that \(h(x) = h(x') \).

But, then \(f \) is not OW, since in most of the inputs we have that \(h(x) = f(x) \).
Exercise 8. Assume \(h: \{0,1\}^{n+1} \to \{0,1\}^n \) and there are exactly two \(x_1, x_2 \) such that \(h(x_1) = h(x_2) \).

If \(h \) is CR, then \(h \) is OW.

Proof Sketch:

Assume \(h \) is not OW, then given \(y \) such that \(y = h(x) \) and \(x \neq \{0,1\}^{n+1} \), it is "feasible" to find an \(x' \) such that \(h(x') = h(x) \).

If we prove that with non-negligible probability \(x \neq x' \), then it is "feasible" to find collisions, which is a contradiction (since we assume that \(h \) is CR).

So, \(h \) has to be OW.

What is the probability that \(x \neq x' \)?

From the hypothesis we know that there are exactly two \(x_1, x_2 \) such that \(h(x_1) = h(x_2) = y \). Since, \(x \subseteq \{0,1\}^{n+1} \),

\[
Pr(x = x_1) = Pr(x = x_2) = \frac{1}{2}
\]

So, \(Pr(x \neq x') = Pr(x \neq x'|x = x_1) \cdot Pr(x = x_1) + Pr(x \neq x'|x = x_2) \cdot Pr(x = x_2)
\]

\[
= Pr(x \neq x_1) \cdot \frac{1}{2} + Pr(x \neq x_2) \cdot \frac{1}{2}
\]

\[
= \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}
\]

(since \(x' \) is either \(x_1 \) or \(x_2 \).

Exercise 8. Let \(t \) be the number of leaves of a Merkle tree \(M \).

Can we find another Merkle tree with \(t/2 \) leaves that has the same root as \(M \)?

(ex. 5.13. Katzen Lintell)

Yes, let \((x_1, ..., x_t) \) be the leaves of \(M \), then

if \(h(x_{(i+1)}x_{(i+2)}) \), \(i = 1, ..., t-1 \) are the \(t/2 \) leaves of \(M' \) then \(M \) and \(M' \) have the same root.

Theorem 3.1. Let \(h \) be CR, then \(MTh \) is CR, where \(MTh \) is the root of the Merkle tree that uses \(h \), for a fixed \(t \).

Proof Sketch:

If \(MTh \) was not collision resistant, then \((x_1, ..., x_t) \) such that \((x_1, ..., x_t) \neq (x_1', ..., x_t') \) such that \(MTh(x_1, ..., x_t) = MTh(x_1', ..., x_t') \).

(ex. 5.13. Katzen Lintell)
So, there would be a level i such that the nodes of level i of the two trees will be equal, but the nodes of level $i+1$ will not be equal. Then this will give a collision for h, which is a contradiction.

Exercise: Assume h is OW, CR, TCR, PR, non-malleable,

Let H be the hash function that we get from the Merkle-Damgard construction using h. Is H non-malleable?

No, H is malleable, because given $H(m)$, we can find (without knowing m) $H(\text{pad}(m)||c)$, where pad(m) is the padded message m and c is a string of our choice.

These attacks are known as "extension attacks".

Exercise: Let h be a OW function, is $h(h(x)) = h(h(x))$ OW?

No. Let $f(x) = h(y) || 0^n$ where $|x| = |y| = n$.

Then, f is a length-preserving OW function, since if we could "invert", we could "invert" h as well. But, $f(f(x,y)) = f(h(y)||0^n) = h(0^n) || 0^n$, which is not OW.

Why is proving the contrapositive not possible?

Assume h' is not OW, then from $h(h(x))$ we can get x' such that $h(h(x)) = h(h(x'))$.

But to prove that h is not OW, we need to be able to recover an x' from $h(x)$ such that $h(x) = h(x')$.

If given $y = h(x)$, we apply h and "invert" $h(y) = h(h(x))$ then we will get an x' such that $h(h(x)) = h(h(x')) = h(y)$.

But, can we argue that $h(x) = y$? No.