Admin:
Pset #1 due today
Pset #2 out today

Today:
Cryptographic Hash Functions II ("Merkle Damgård")
 • Merkle trees
 • Puzzles & brute-force search
 • PH crypto based on puzzles (Merkle puzzles)
 • Hash function construction methods
 • Merkle-Damgård
 • Keccak

Readings:
Katz/Lindell: Chapter 5
Paar/Peltz: Chapter 11
Ferguson: Chapter 5

News:
Lenovo "Superfish"
Citizenfour wins Oscar for best documentary (HBO tonight at 9 pm)

Project idea:
Do security analysis of "OpenWrt" router software
5. To authenticate a collection of n objects:

Build a tree with n leaves x_1, x_2, \ldots, x_n and compute authenticator node as fn of values at children... This is a "Merkle tree":

Root is authenticator for all n values x_1, x_2, \ldots, x_n

To authenticate x_i, give sibling of x_i & sibling of all his ancestors up to root

Apply to: time-stamping data

authenticating whole file system

Needs: CR

Used in bitcoin...
Puzzles & Brute-Force Search

\[h : \{0,1\}^* \rightarrow \{0,1\} \]

If \(h \) is well-modeled as a random oracle, inverting \(h \) requires \(2^d \) steps on average:

Given \(y \in \{0,1\}^d \), adversary can do no better than trying \(x_1, x_2, \ldots, \) until he finds \(x_i \) s.t. \(h(x) = y \). Probability that \(h(x_i) = y \) is \(2^{-d} \) (by ROM), so expected trials needed is \(2^d \). Brute-Force

To make a "puzzle," choose \(d \) to be "not too large."

E.g. \(h(x) = \text{sha256}(x) \mod 2^d \)

where \(d = 40 \)

Takes \(2^{40} \) steps to solve, on average.

Note: special-purpose chips & boards can do \(\approx 2^{40} \) hashes/second, so this is maybe a "one-second puzzle" for such a device.

Puzzle difficulty is controllable (by choosing \(d \))

Easy to create many puzzles: \(h_k(x) = h(k || x) \)

so one puzzle for each parameter \(k \).

Puzzle spec = \((k, d, y)\) want \(x \) s.t. \(h_k(x) = y \)

Puzzle creator knows solution (computes \(y \), given \(x \))
Hash cash (Adam Back, 1997)

- Anti-spam measure
- Requires sender to provide "proof of work" ("stemp")
- Email without POW or from sender on whitelist is discarded.

POW:

solve puzzle $h(k, r)$ ends in 20 zeros
where $k = \text{sender} || \text{receiver} || \text{date} || \text{time}$

$r = \text{variable to be solved for}$

- Include r in header as POW
- Easy for receiver to verify payment (POW)
- Takes $x 2^{20}$ trials to solve
- Doesn't work well against botnets 😞
Merkle Puzzles (1974)

- First "public key" system. (Really: key agreement)

Alice <--- Eve <--- Bob

How can Alice & Bob agree on a key k over channel, while Eve is eavesdropping?

Parameters:
- \(n \) = # of puzzles
- \(D = 2^d \) = puzzle difficulty

1. Bob makes \(n \) puzzles of difficulty \(D \)

\[P_1, P_2, \ldots, P_n \]

& sends them all to Alice (& Eve)

2. Alice picks random \(i \) (\(1 \leq i \leq n \)) & solves \(P_i \)

(saves D for Alice)

3. Alice lets Bob know (but not Eve) which one she has solved, e.g., by sending \(h(K_i) \)

4. Further communication protected with session key \(K_i \).

Time for good guys = \(O(n) + O(D) \)

Bob

Alice

Time for Eve = \(O(n \cdot D) \)

For \(n = D = 10^9 \), "almost practical"!
Hash function construction ("Merkle-Damgard" style)

- Choose output size d (e.g. $d=256$ bits)
- Choose "chaining variable" size c (e.g. $c=512$ bits)
 [Must have $c>d$; better if $c>2d$...]
- Choose "message block size" b (e.g. $b=512$ bits)
- Design "compression function" f
 $$ f : \{0,1\}^c \times \{0,1\}^b \rightarrow \{0,1\}^c $$
 [If should be OW, CR, PR, NM, TCR, ...]
- Merkle-Damgard is essentially a "mode of operation"
 allowing for variable-length inputs:
 * Choose a c-bit initialization vector IV, c_0
 [Note that c_0 is fixed & public.]
 * [Padding] Given message, append
 - 10^* bits
 - fixed-length representation of length of input
 so result is a multiple of b bits in length:
 $$ M = M_1 \, M_2 \, \ldots \, M_n \quad (n \, b\text{-bit blocks}) $$
Then: $h \{ \begin{array}{c}
I \leftrightarrow f \leftrightarrow c_1 \\
M_1 \leftrightarrow f \leftrightarrow c_2 \\
M_2 \leftrightarrow f \leftrightarrow c_3 \\
M_3 \leftrightarrow f \leftrightarrow \ldots \\
M_n \leftrightarrow f \leftrightarrow \text{c}\text{n}
\end{array} \}

h(m) = c_n \text{ truncated to } d \text{ bits}

Theorem: IF F is CR, then so is h.

Proof: Given collision for h, can find one for f by working backwards through chain. \(\Box \)

Thm: Similarly for OW.

Common design pattern for f:

$$f(c_{i-1}, M_i) = c_{i-1} \oplus E(M_i, c_{i-1})$$

where $E(K, M)$ is an encryption function (block cipher) with b-bit key and c-bit input/output blocks.

(Davies-Meyer construction)
Typical compression function (MD5):

- Chaining variable & output are 128 bits = 4 x 32
- IV = fixed value
- 64 rounds; each modifies state (in reversible way) based on selected message word
- Message block b = 512 bits considered as 16 32-bit words
- Uses end-around XOR too around entire compression fn (as above)

\[g(x, y, z) = \begin{cases}
 x, & \text{if round is even} \\
 x \oplus y \oplus z, & \text{if round is odd}
\end{cases} \]

Xiaoyun Wang discovered how to make collision for MD4, MD5... ("Differential Cryptanalysis")
Keccak = SHA-3

d = 256
c = 512
r = 1088
w = 64

Keccak Sponge Construction

C = \text{output hash size in bits} \in \{224, 256, 384, 512\}

r = \text{state size in bits} = 25w

C + r \geq d \text{ (so hash can be first d bits of E0)}

f \text{ has 24 rounds (for w = 64), not quite identical (round constant)}

f \text{ is public, efficient, invertible function from } \{0, 1\}^{25} \text{ to } \{0, 1\}^{25}