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Abstract—Bitcoin has emerged as the most successful crypto-
graphic currency in history. Within two years of its quiet launch
in 2009, Bitcoin grew to comprise billions of dollars of economic
value, even while the body of published research and security
analysis justifying the system’s design was negligible. In the
ensuing years, a growing literature has identified hidden-but-
important properties of the system, discovered attacks, proposed
promising alternatives, and singled out difficult future challenges.
This interest has been complemented by a large and vibrant
community of open-source developers who steward the system,
while proposing and deploying numerous modifications and
extensions.

We provide the first systematic exposition of the second
generation of cryptocurrencies, including Bitcoin and the many
alternatives that have been implemented as alternate protocols
or “altcoins.” Drawing from a scattered body of knowledge, we
put forward three key components of Bitcoin’s design that can
be decoupled, enabling a more insightful analysis of Bitcoin’s
properties and its proposed modifications and extensions. We
contextualize the literature into five central properties capturing
blockchain stability. We map the design space for numerous
proposed modification, providing comparative analyses for alter-
native consensus mechanisms, currency allocation mechanisms,
computational puzzles, and key management tools. We focus on
anonymity issues in Bitcoin and provide an evaluation framework
for analyzing a variety of proposals for enhancing unlinkability.
Finally we provide new insights on a what we term disintermedi-
ation protocols, which absolve the need for trusted intermediaries
in an interesting set of applications. We identify three general
disintermediation strategies and provide a detailed comparative
cost analysis.

I. WHY BITCOIN IS WORTHY OF RESEARCH

Consider two opposing viewpoints on Bitcoin in straw-man
form. The first is that “Bitcoin works in practice, but not in
theory.” At times devoted members of the Bitcoin community
espouse this philosophy and criticize the security research
community for failing to discover Bitcoin, not immediately
recognizing its novelty, and still today dismissing its impor-
tance due to a lack of rigorous theoretical foundation.

A second viewpoint is that Bitcoin hopelessly relies on
an unknown combination of socio-economic factors for its
current stability which are intractable to model with sufficient
precision, failing to yield a convincing argument for the sys-
tem’s soundness. Given these difficulties, experienced security
researchers may avoid Bitcoin as a topic of study, considering
it prudent security engineering to only design systems with
precise threat models that admit formal security proofs.

We strongly dismiss both of these simplistic approaches
and show where each viewpoint fails, forwarding new insights
based on multiple examples of existing knowledge. To the first,

we contend that while Bitcoin has worked surprisingly well in
practice so far, there is an important role for research to play
in identifying precisely why this has been possible, moving
beyond a blind acceptance of the informal arguments presented
with the system’s initial proposal. Furthermore, it is crucial to
understand whether Bitcoin will still “work in practice” as
practices change. We expect external political and economic
factors to evolve, and the system must change if and when
transaction volume scales, and the nature of the monetary
rewards for Bitcoin miners will change over time as part of
the system design. It is not enough to argue that Bitcoin has
worked from 2009–2014 and will therefore continue likewise.
We do not yet have sufficient understanding to conclude with
confidence that Bitcoin will continue to work well in practice,
and that is a crucial research challenge that requires insight
from computer science theory.

To the second viewpoint, we contend that Bitcoin is filling
an important niche by providing a virtual currency system
without any trusted parties and without pre-assumed identities
among the participants. Within these constraints, the general
problem of consensus in a distributed system is impossible [6],
[89] without further assumptions like Bitcoin’s premise that ra-
tional (greedy) behavior can be modeled and incentives can be
aligned to ensure secure operation of the consensus algorithm.
Yet these constraints matter in practice, both philosophically
and technically, and Bitcoin’s approach to consensus within
this model is deeply surprising and a fundamental contribution.
Bitcoin’s core consensus protocol also has profound impli-
cations for many other computer security problems beyond
currency1 such as distributed naming, secure timestamping
and commitment, generation of public randomness, as well as
many financial problems such as self-enforcing (“smart”) con-
tracts, decentralized markets and order books, and distributed
autonomous agents. In short, even though Bitcoin is not easy
to model, it is worthy of considerable research attention as
it may form the basis for practical solutions to exceedingly
difficult and important problems.

II. OVERVIEW OF BITCOIN

A. A Contextualized History

We refer the interested reader to existing surveys on the
“first wave” of cryptocurrency research [14], [91]. In short,
cryptographic currencies date back to Chaum’s proposal for

1As we shall see, it may not be possible to remove the currency functionality
and still have a working consensus system.



“untraceable payments” in 1983 [25], a system involving bank-
issued cash in the form of blindly signed coins. Unblinded
coins are transferred between users and merchants, and re-
deemable after the bank verifies they have not been previously
redeemed. Blind signatures prevent the bank from linking
users to coins, providing unlinkability akin to cash.

Throughout the 1990s, many variations and extensions of
this scheme were proposed. Significant contributions include:
removing the need for the bank to be online at purchase
time [26], allowing coins to be divided into smaller units [88]
and improving efficiency [24]. Several startup companies
including DigiCash [104] and Peppercoin [96] attempted to
bring electronic cash protocols into practice but ultimately
failed in the market. In fact, no schemes from this “first wave”
of cryptocurrency research achieved significant deployment.

Moderately hard “proof-of-work” puzzles were proposed in
the early 1990s for combatting email spam [38] (although
it was never widely deployed for this purpose [66]). Many
other applications followed, including proposals for a fair lot-
tery [47], minting coins for micropayments [97], and prevent-
ing various forms of denial-of-service and abuse in anonymous
networks [9]. The latter, Hashcash, was an alternative to using
digital micropayments (e.g., NetBill [107] and Karma [117]).
Proof of work was also used to detect sybil nodes in distributed
peer-to-peer consensus protocols [6], and is used in Bitcoin
consensus for a similar reason.

Another essential element of Bitcoin is the public ledger,
which makes double-spending detectable. In auditable e-
cash [102], [103], proposed in the late 1990s, the bank
maintains a public database to detect double-spending and
ensure the validity of coins, however the notion of publishing
the entire set of valid coins was dismissed as impractical (only
a Merkle root was published instead). B-money [33], proposed
in 1998, appears to be the first system where all transactions
are publicly (anonymously) broadcast and stored. Proposed
on the Cypherpunks mailing list, b-money received minimal
attention from the academic research community.

Smart contracts [111], proposed in the early 1990s, enable
parties to formally specify an enforceable agreement using
cryptography and scripts. This idea portends Bitcoin’s script-
ing capabilities.

In 2008, Bitcoin was announced and a white paper penned
under the pseudonym Satoshi Nakamoto was posted to the
Cypherpunks mailing list [85], followed quickly by the source
code of the original reference client. Bitcoin’s genesis block
was mined on or around January 3, 2009.2 The first use of
Bitcoin as a currency is thought to be a transaction in May
2010, where one user ordered pizza delivery for another in
exchange for 10 000 bitcoins. Since then, increasing number
of merchants and services have incorporated Bitcoin in some
way, and the price has generally risen, reaching a peak of
approximately US$1200 per bitcoin in late 2013.

Bitcoin’s history has also been colored by association with

2Famously, the first block contains the string “The Times 03/Jan/2009
Chancellor on brink of second bailout for banks.”

crime. Bitcoin was famously used in a black market website,
Silk Road [27], which operated from Feb. 2011 until Oct.
2013 when it was seized and shut down by the FBI. Botnets
have found Bitcoin mining to be a supplemental source of
income [52]. A current US federal court case involves a large
Bitcoin-based Ponzi scheme [106]. In 2014, a computer virus
called CryptoLocker extorted millions of dollars from victims
by encrypting their files and demanding a Bitcoin ransom to
release the decryption key [44]. Many users’ Bitcoins have
been lost due to theft [37] and collapsed exchanges [82].

B. A Technical Overview

We present Bitcoin’s current operation through its three
main technical components: transactions (including scripts),
the consensus protocol, and the communication network.
Bitcoin is exceedingly complex—our goal is to present the
system with sufficient technical depth, so the extant literature
on Bitcoin, reviewed and evaluated in later sections of this
paper, becomes understandable. In particular, a key benefit of
our three-component breakdown is that it makes evaluating
and systematizing proposed changes (Sections V & VIII)
insightful by “decoupling” concepts that may be changed
independently.

Sources of information on Bitcoin. Bitcoin can be difficult
to define as there is no formal specification. The original
Bitcoin white paper [85] provides a good overview of Bit-
coin’s design philosophy but many important technical de-
tails are omitted or out-dated. The reference implementation
bitcoind is considered a de facto specification, with further
knowledge scattered across a series of “Bitcoin Improvement
Proposals” (BIPs), forum postings, online wiki articles, the
developer mailing list, and logged IRC discussions.3 We
systemize these sources into a precise technical introduction,
putting forward the components of the system we consider to
be independent design decisions.

1) Transactions & Scripts: The state of the world in Bitcoin
is represented by a series of messages called transactions.
Among other possibilities, transactions are foremost published
to transfer quantities of currency from one user to another.
It is important to note that the large (and growing) list of
transactions is the only state in Bitcoin. There is no built-in
notion of higher-level concepts such as users, account balances
or identities—these all exist only to the extent that they can
be imputed by analyzing the list of all published transactions.

Transaction format. A transaction is an array of inputs
and an array of outputs. The entire transaction is hashed
using SHA256 and this hash serves as its globally unique
transaction ID. Transactions are represented using an ad hoc
binary format; this is an early example of an important detail
for which bitcoind is the de facto specification.

Each output contains an integer value representing a quan-
tity of the Bitcoin currency. The precision of this value

3Which can be found, respectively, at: https://github.com/bitcoin/
bitcoin/bips, https://bitcointalk.org/, https://bitcoin.it/, bitcoin-development@
lists.sourceforge.net, irc://freenode.net/#bitcoin-dev, and irc://freenode.net/
#bitcoin-wizards
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immediately limits the extent to which units of the currency
can be sub-divided; the smallest unit is called a satoshi. By
convention, 108 satoshis is considered the primary unit of
currency, called one “bitcoin”4 and denoted XBT, BTC or B.

Each output also has a short code snippet (in a special
scripting language) called the scriptPubKey representing the
conditions under which that transaction output can be re-
deemed, that is, included as an input in a later transaction.

Transaction scripts. Typically, the scriptPubKey specifies
the hash of an ECDSA public key and a signature validation
routine. This script can be redeemed by signing the entire
redeeeming transaction using the specified key and is called
a “pay-to-pub-key-hash” transaction. The vast majority of
Bitcoin transactions are pay-to-pub-key-hash and the system is
often described with this being the only possibility, although
other transaction types are possible. The scripting language is
an ad hoc, non-Turing-complete stack language with fewer
than 200 commands called opcodes. They include support
for cryptographic operations—e.g., hashing data and verifying
signatures. Like the transaction format, the scripting language
is only specified by its implementation in bitcoind.

Transaction inputs refer to previous transactions by their
transaction hash and the index of the output within that
transaction’s output array. They must also contain a code
snippet which “redeems” that transaction output called the
scriptSig. To successfully redeem a previous transaction, the
concatenated scriptSig and scriptPubKey must form a program
which executes successfully. For pay-to-pub-key-hash transac-
tions, the scriptSig is simply a public key and a signature.

Conservation of value. In addition to the requirements that
each input of a transaction matches a previous transaction
output, and each concatenated script successfully redeems
the claimed inputs, transactions are only valid if they satisfy
the fundamental constraint that the sum of the values of all
transaction outputs is less than or equal to the sum of the
values of all inputs. We discuss in Section II-B2 the one
exception: the coinbase transaction used to create new units
of currency.

From transactions to ownership. By themselves, this
format of transaction implies several interesting properties.
There is no inherent notion of identities or individual accounts
which “own” bitcoins. Ownership simply means knowing a
private key which is able to make a signature that redeems
certain outputs—an individual owns as many bitcoins as they
can redeem. Public key hashes, as specified in pay-to-pub-
key-hash transactions, effectively function as pseudonymous
identities within the system and are referred to as addresses.
No linking is required to a user’s real-world name or identi-
fying information.

Arguably, there is little that is deeply innovative about
Bitcoin’s transaction format. However, the use of a scripting
language to specify redemption criteria and the realization that
transactions can specify the entire state of the system are non-

4When capitalized “Bitcoin” refers to the entire system whereas lowercase
“bitcoin” refers to one unit of currency.

obvious design choices given prior cryptocurrency systems,
and both have been standard in essentially all subsequent
designs. Some proposals extend the semantics of Bitcoin trans-
actions (often by enhancing the scripting language) without
changes to any other components.

2) Consensus and Mining: The need for consensus. A
transaction-based currency system would be insecure if cur-
rency were transferred by sending transactions between users.
While the signatures would limit only the valid recipient of
a previous transaction from referencing it in valid follow-up
transactions, there is nothing in the transactions themselves to
limit Alice from redeeming some transaction input twice in
separate transactions sent to Bob and Carol, both of which
would appear valid to Bob and Carol. Bitcoin takes a simple
approach to solving this double spending attack: all transac-
tions must be published in a global, permanent transaction log
and any individual transaction output may only be redeemed
in one subsequent transaction. Verifying a transaction now
requires verifying the transaction’s scripts as well as ensuring
that it is successfully published to the log. In Bitcoin, the
log is implemented as a series of blocks of transactions, each
containing the hash of the previous block, committing this
block as its sole antecedent. It is referred to as the blockchain.

Note that this design requires global consensus on the
contents of the blockchain. If Bob and Carol see two divergent
blockchains, they will still be vulnerable to double-spending
attacks. One solution is to use a trusted central authority to col-
lect transactions and publish them in signed blocks. However,
this is undesirable as this authority might refuse to publish an
individual user’s transactions (effectively freezing their assets),
might go offline completely, or might intentionally fork the
blockchain to double-spend coins.

Nakamoto consensus. Bitcoin instead establishes consen-
sus on the blockchain through a decentralized, pseudonymous
protocol dubbed Nakamoto consensus. This can be considered
Bitcoin’s core innovation and perhaps the most crucial ingredi-
ent to its success. Any party can attempt to add to the chain by
collecting a set of valid pending transactions and forming them
into a block. The core ingredient is the use of a challenging
computational puzzle (usually given the slight misnomer proof
of work5) to determine which party’s block will be considered
the next block in the chain.

The process for choosing a new block is simple: the first
announced valid block containing a solution to the compu-
tational puzzle is considered correct. Upon hearing it, other
participants are meant to turn to finding a followup block. If
the found block contains invalid transactions or is otherwise
malformed, all other participants are meant to reject this
proposed block and continue working until they have found a
solution for a valid block. At any given time, the consensus
blockchain is the “longest” version. Typically this is simply the
branch with the most blocks, but because the mining difficulty

5Bitcoin’s mining puzzle is not a true proof-of-work scheme but a proba-
bilistic one. Finding a solution is computationally challenging on expectation,
but it is possible to get lucky and find a solution with very little work.



can vary between long forks the longest chain must be defined
as the one with the greatest expected difficulty to produce.6

It is also possible for two valid solutions to be found at
approximately the same time (depending on network latency),
which leads to a temporary fork during which there are two
equal-length chains. Miners can choose either fork in this
scenario, and due to the random nature of the computational
puzzle, one blockchain will eventually be extended further than
the other, at which point the miners will shift to it.

While the original Bitcoin specification provided only an
informal argument that eventual consensus would emerge [85],
followup work has proved that, assuming an effective and
timely broadcast channel and that miners controlling a ma-
jority of computational power follow the protocol faithfully,
the protocol is robust and the network gradually reaches
consensus [43], [80].

Block confirmation. The gradual nature of this consensus
mechanism procedure implies that users must wait for blocks
to be found in order to gain high confidence that a transaction
is permanently included in the blockchain. During a fork, one
of the branches will eventually be orphaned when miners
converge on the other. Typically, both branches will include
largely the same set of transactions, but if conflicting trans-
actions are included in competing branches then one may be
apparently included in the longest branch but then effectively
revoked if the other chain branch surpasses it. In the worst
case, this will enable the equivalent of a double spending
attack [11], [55]. To protect against this risk, users should
not consider a transaction to be included until it is in a block
which has been “confirmed” by multiple followup blocks.

In theory, users can never be completely sure that a
transaction won’t eventually be removed by a very deep
fork [12]. However when a majority of miners follow the
default protocol, users can infer that a transaction is exponen-
tially increasingly likely (see Section III-A) to end up on the
eventual longest chain as more confirming blocks are found.
In practice, most Bitcoin clients require 6 confirmation blocks
before accepting a transaction as “confirmed.”

Arbitrary-length forks are also prevented in an ad-hoc man-
ner by including hard-coded blockchain prefixes (checkpoints)
with the default Bitcoin client before which clients will not
accept a fork. Laurie [65] argues that the existence of these
checkpoints means Bitcoin is not in fact a distributed consen-
sus protocol, and without them eventual consensus would not
exist because a future majority miner could always re-write
history from the genesis block.

Incentivizing correct behavior. A critical component of
this protocol is that a participant who finds a block is allowed
to insert a coinbase transaction minting a specified amount of
currency and transferring it to an address of their choosing.
Because participants to the consensus protocol are working
(indeed, racing) to solve this computational puzzle in exchange

6Specifically, this prevents an attacker from forking the blockchain, mod-
ifying timestamps on their fork to produce a lower difficulty, and using this
lower difficulty to more easily overtake the previous longest chain.

for monetary rewards, they are called miners. The new cur-
rency incentivizes miners to only work towards finding valid
blocks, as invalid ones will be rejected by the network and
their mining rewards will then not exist in the eventually-
longest blockchain. Note that “valid” blocks, from the point
of view of miners, are simply blocks which they believe the
majority of other miners will accept and build upon, trumping
any formal specification of validity (for which there is none
beyond the bitcoind implementation).

Also note that this consensus algorithm relies on monetary
rewards for miners and hence cannot easily be used in systems
with no notion of transferable value. In Bitcoin, miners receive
all new currency initially and there is no other allowed
mechanism for money creation. This is not strictly essential,
but the consensus protocol does require some monetary reward
is issued to miners or else they have no incentive to find valid
blocks and compute the difficult proof-of-work puzzle.

Mining details. The computational puzzle itself requires
finding a partial pre-image for SHA-256, a cryptographic hash
function. Specifically, the puzzle is to find a block (consisting
of a list of transactions, the hash of the previous block, plus
an arbitrary nonce value) whose SHA-256 hash is less than a
target value. The puzzle is often formulated by the following
approximation: finding a hash that starts with d consecutive
zero bits.7 In so far as the hash output is statistically random,
miners can do no better than an exhaustive search over the
space of possible nonces for a desired block [9]. The random
aspect of this puzzle is important; with a non-randomized
proof-of-work function the most powerful individual miner
could be expected to find every block first but with a ran-
domized function any miner will have a probability of finding
the next block proportional to their share of the competing
computational power.

The difficulty of the puzzle is calibrated so that a new block
is found, on average, once every 10 minutes. To maintain
this, the difficulty is adjusted once every 2016 blocks, or
approximately every two weeks, by a deterministic function of
the timestamps included in each of the previous 2016 blocks.

Mining rewards and fees. The amount of currency miners
may create in each block through a coinbase transaction (the
block reward) is determined by a fixed schedule. Initially, each
block created 50 new bitcoins. This has since halved to B25,
and is scheduled to halve roughly every four years until 2140
at which point no new bitcoins will be created.

To enable this wind-down of currency creation, miners do
not only profit from block rewards: they are also allowed to
claim the net difference in value between all input and all out-
put transactions in this block. For users, a block with greater
input value than output value thus includes a transaction fee
paid to the miners in exchange for publishing their transaction.

To date, transaction fees have primarily been used to
discourage overuse of the network and have never provided
more than about 1–2% of mining revenue [83]. Fee values
have primarily been determined by defaults configured in the

7At the time of this writing d ≈ 68.



reference client [83], with a small number of users opting
to pay higher fees in an attempt to have their transactions
published more quickly.

Mining pools. In practice, miners often collaborate in
mining pools [99], although these were not described in the
original protocol design and may have been unanticipated.
Mining pools are typically administered by a manager who
pays miners to mine blocks on their behalf (allocating mining
rewards to a key controlled by the pool manager). When blocks
are found, the pool manager shares the profits among pool
members proportional to the amount of work performed. for
example. Participating miners can easily prove (proabilisiti-
cally) the amount of work they have performed by sending
“near-blocks” whose hash starts with a large number of zeros
(say d′ = 40) but not enough to make them valid Bitcoin
blocks. Pools allow miners to significantly lower the variance
in their mining payout, at the cost of a small fee that is paid
to the pool manager which lowers their expected total reward.
Since 2013, the majority of mining power has been organized
into pools. There are several standard protocols for low-latency
communication from pool operators to members [90] and
between the operators of different pools [30], [68]. While the
most popular pools are centrally administered, many miners
form ad hoc pools using the p2pool protocol [118].

3) Peer-to-Peer Communication Network: The final core
component of Bitcoin is its communication network. Essen-
tially, it is a decentralized, ad hoc peer-to-peer broadcast
network used to propose new transactions and announced
newly-mined blocks. Generally, this is the least innovative of
the three components and few alternative proposals have made
substantial changes.

The performance and stability of the network has an impor-
tant impact on the consensus protocol for two reasons. First,
any latency between the discovery of a block and its receipt by
all other nodes increases the possibility of a temporary fork.
Fear of frequent forks motivated the choice of 10 minutes
as the block creation time in the original design. Second, a
malicious miner who is able to control a substantial portion
of the network may attempt to favor the broadcast of their own
blocks, increasing the likelihood of their blocks “winning”
a fork and thus increasing their expected mining rewards.
Similarly, any party able to censor the network can selectively
block transmissions and freeze assets. Thus it is important for
Bitcoin to have a broadcast network which is decentralized
(fitting with its overall design), low latency, and where it is
difficult to censor or delay messages.

Network topology and discovery. Any node can join the
network by connecting to a random sample of other nodes. By
default, each node attempts to make 8 outgoing connections,
and is prepared to receive up to 125 incoming connections.
Nodes behind a NAT, such as mobile clients, are unable to
receive incoming connections. Peers who join the network
initially need a way to find out about other peers. Like many
other peer-to-peer networks, Bitcoin achieves this through
the use of dedicated directory servers or “seed nodes,” the
identities of whom are hard coded into the reference client;

thereafter, each node maintains a list of peer addresses it
knows about. Peers also propagate information about each
other through two other mechanisms: when a node establishes
a new outgoing connection, it triggers a cascade of relay
messages containing its connection information; second, upon
receiving an incoming connection, a node asks its peer for
a sample from its list of known-about addresses. Overall,
the effect of this mechanism is to establish a well-connected
random network, with low degree yet low diameter, suitable
for rapid broadcast of information through diffusion [35], [56].

Communication protocol. New blocks and pending trans-
actions are broadcast to the entire network by flooding. Nodes
send INV messages to all of their peers containing the hashes
of new blocks or pending transactions whenever they first hear
of them. Peers can respond by requesting the full contents of
these blocks or transactions if they have not yet seen them
(via a GETDATA message). Nodes will: only forward new data
once, preventing infinite propagation; only relay transactions
and blocks that are valid; only relay the first block they hear
of when two blocks are found in a temporary fork; and will
not broadcast pending transactions which conflict (double-
spend) with pending transactions they have sent. These limits
are performance optimizations designed to limit data on the
network—a non-compliant node may relay invalid or conflict-
ing data, requiring all nodes to independently validate all data
they receive.

Relay policy. By default, Bitcoin nodes only relay trans-
actions and blocks which satisfy stricter validation rules than
what is permitted by the transaction validity rules. The goal
is to prevent various denial of service attacks—an application
of the classic robustness principle “be conservative in what
you send, be liberal in what you accept.” For example,
default nodes only relay transactions containing scripts from
a very narrow whitelist of standard transaction types. The
implication of this policy is that users of the system wishing
to have non-standard transactions included in the blockchain
cannot use the normal Bitcoin network, but will need to contact
an agreeable miner directly.8 Another example is that default
nodes refuse to relay more than a few thousand transactions
below 0.001 XBT per minute as a “penny-flooding” defense.

III. STABILITY OF BITCOIN

A key open question regarding Bitcoin is under what
conditions the protocol is stable. Stability has been defined in
multiple conflicting ways, but it is broadly taken to means that
the system will continue to behave in a way that facilitates a
functional currency system as it grows and participants attempt
novel attacks. We will consider notions of stability for each
component of Bitcoin in turn.

A. Stability of transaction rules

How participants in the Bitcoin ecosystem achieve consen-
sus about the validity rules for Bitcoin transactions is under-
analysed. The baseline philosophy is that the rules were set in

8For example, Andrychowicz et al. [5] reported needing to submit their
complex multiparty lottery scripts directly to the Eligius mining pool.



stone by Satoshi, which we can call canonicalism. This has
mediated some disagreements about the specified rules, such
as a benign bug in the original OP_CHECKMULTISIG opcode
which has been preserved as canonical.

However, canonicalism cannot fully explain the current rules
of Bitcoin. Several changes to the rules have been implemented
to add new features (e.g., pay-to-script-hash [2]). Rules have
also been modified to fix bugs, with the best-known example
occurring in March 2013 when a bug limiting the size of
valid blocks was removed. This caused a fork as new, larger
blocks were rejected by unpatched clients. To resolve this, the
updated clients abandoned a 24-block fork and temporarily
ceased including larger blocks during a two-month window for
older clients to upgrade [1]. Eventually however, the bug fix
won out and unpatched clients, while arguably implementing
a more canonical version of the rules, were excluded.

Within the technical rules of Bitcoin, no process is specified
for updating or evolving the rules. Without unanimity among
miners, any major change may permanently fork the system,
with different populations considering the longest blockchain
reflecting their interpretation of the rules to be authentic,
regardless of its length relative to other blockchains. At this
point, it would no longer be clear which version is “Bitcoin.”
Thus despite the popular conception of Bitcoin as a fully de-
centralized system, the need for rule changes (or disambigua-
tion) means some level of governance is inherently required
to maintain real-world consensus about what is considered
Bitcoin [59].

Currently, de facto governance is provided by the core
Bitcoin developers who maintain bitcoind, with the Bitcoin
Foundation providing a basic organizational structure and
raising a small amount of funding through donations to support
the development team. As with many early Internet protocols,
there is as of yet no formal process for taking decisions beyond
rough consensus.

B. Stability of the consensus protocol

Assuming universal agreement on Bitcoin’s transaction
rules, various attempts have been made to describe the prop-
erties of the consensus protocol which must hold for the
blockchain to be stable. We systemize this literature [43],
[59], [80], [85] into five desirable stability properties. Note
that these have been given different names and different
technical definitions by different authors, we will not give
formal definitions here but an informal overview of potential
stability properties.

• Eventual consensus. At any time, all compliant nodes will
agree upon a prefix of what will become the eventual valid
blockchain. We cannot require that the longest chain at any
moment is entirely a prefix of the eventual blockchain, as
blocks may be orphaned by temporary forks.

• Exponential convergence. The probability of a fork of
depth n is O(2−n). This gives users high confidence that a
simple “k confirmations” rule will ensure their transactions
are permanently included.

• Correctness. All blocks in the longest valid proof-of-work
chain will only include valid transaction.

• Liveness. New blocks will continue to be added containing
new valid transactions.

• Fairness. Over time, a miner with a proportion α of the
total computational power will mine a proportion ≈ α of
blocks regardless of how they choose transactions to include
in their blocks, so long as the blocks are valid according to
the rules of Bitcoin.
We say that Bitcoin is stable if all of these properties

hold. Two analyses have separately argued that Bitcoin is
stable assuming a majority of miners executes the default
protocol [43], [80]. With billions of dollars now at stake, it
is not sufficient to assume that participants will always follow
the protocol as specified out of goodwill or inertia.

Surprisingly, correctness is not actually required for a func-
tioning currency, as participants can simply disregard any long
proof-of-work chain that contains invalid transactions. How-
ever, correctness enables an important performance benefit in
the form of SPV clients which validate only proof-of-work
and not transactions (see Section VI-A). While they are both
often mentioned as desirable properties, neither correctness
nor liveness have seen significant analysis or been called into
question by plausible attacks; we will not discuss them further.

Incentive compatibility and game theory. The general
argument for stability put forward by Nakamoto [85] is that
the system will remain stable as long as all miners follow
their own economic incentives, a property called incentive
compatibility. Incentive compatibility has never been formally
defined in the context of Bitcoin or cryptocurrencies, but has
been used in the economics literature particularly in regards
to voting and auction systems. It is an intuitively appealing
concept and has proven to have significant marketing value in
promoting the stability of the Bitcoin network.

Because we are discussing the interaction of multiple strate-
gic players (the miners), each of whom is presumed to be
optimizing an objective reward function, formal analysis could
be attempted using the framework of game theory [86], [119].
We assume each miner chooses a strategy, which is a (possibly
randomized) function from states of the game to game moves.
Miners’ strategies will lead to a distribution over resulting
blockchains, and each player’s payoff will depend on the
resulting blockchain.9

We call the strategy of following the default mining rules
(see Section II-B2) the compliant strategy. This is sometimes
called “honest” but we avoid this term as non-compliant
strategies might also reasonably be considered honest.

Recall that a Nash equilibrium is the state of a strategic
game in which all players, knowing the actions of all other
players, believe their choice of strategy to be the best response
to the strategies of the other players. That is, at a Nash equilib-
rium, no player benefits by changing to a different strategy. If
we could prove that all miners playing the compliant strategy

9Even if all miners’ strategies are deterministic, the Bitcoin mining process
is inherently randomized, so the outcome will always be a distribution.



is a Nash equilibrium, this would imply incentive compatibility
for Bitcoin (and hence stability), as no miner would have any
incentive to change strategy.

We only call this weak stability though, because in general
games may have arbitrarily many Nash equilibria. It is possible
that universal compliance is one equilibrium, but the system
could eventually degenerate into a different equilibrium which
does not result in stability for Bitcoin. If we could prove that
universal compliance is the only Nash equilibrium, this would
imply strong stability in that the system would eventually work
its way back to this state.

1) Results on stability: We discuss what is known on
Bitcoin stability under various assumptions. All models in this
section assume that miners’ objective function is purely ob-
taining nominal bitcoins, but we will return to that assumption.

Supermajority compliance implies stability. The original
Bitcoin white paper considers an attack in which a malicious
miner tries to reverse a transaction by “trying to generate
an alternate chain faster than the honest chain.” The white
paper claims that such an attack will fail by modeling the
race between the attacker and the rest of the network as a
binomial random walk.

Miller and LaViola [80] and Garay et al. [43] provide
independent formal proofs that if a supermajority of miners
follow the compliant strategy and communication is latency is
negligible compared to the expected time to discover a block,
miners will eventually agree on an ever-growing prefix of the
transaction history regardless of the strategy of non-compliant
miners. This is sufficient to ensure stability, with the size
of this supermajority required varying slightly depending on
network and other assumptions.

Simple majority compliance does not guarantee fairness.
Eyal and Sirer [41] analyzed a strategy they refer to as selfish
mining10 in which a miner temporarily holds blocks after
finding them, hoping to find itself two blocks ahead of the
longest publicly-known chain so that it can effectively mine
unopposed until the remainder of the network has caught up to
within one block at which point the selfish miner will publish
their withheld blocks. If all other miners are compliant, this
strategy is always advantageous for a miner controlling at
least 1

3 of all mining power. This clearly violates the fairness
property as the selfish miner would earn an outsize share of
mining rewards at the expense of others. While convergence
would be slightly slower, it appears rapid convergence would
still apply as the chance of a very long fork due to withheld
blocks is still exponentially small.

This strategy may also be advantageous for attackers with
even lower levels of mining power, depending upon assump-
tions about network propagation and how miners will choose
between near-simultaneously announced blocks. Garay et al.’s
model [43] naturally incorporate selfish mining and worst-case
assumptions about an attackers’ ability to win simultaneous-
block broadcasts and shows that under these assumptions
selfish mining is always profitable, meaning fairness inherenly

10A related set of strategies were exhibited concurrently by Bahack [10].

relies on assumptions about the communication network.
These results imply that universal compliance is not a Nash
Equilibrium for many distributions of mining power, including
some which have been observed in practice, but there is no
evidence that selfish mining has ever been attempted.

Weak stability is guaranteed under strong assumptions.
Kroll et al. [59] analyzed a model in which there is no majority,
no collusion, and miners are assumed to have perfect informa-
tion about all discovered blocks (negating block withholding).
In this model, universal compliance is a Nash Equilibrium
(although not unique), implying that Bitcoin is (weakly) stable.

With a majority miner, stability is not guaranteed. It
is well known that if a single miner controls a majority of
computational power, stability is not guaranteed. The majority
miner could collect all of the mining rewards, simply by
ignoring blocks found by others and building their own chain
which by assumption will grow longer than any chain the
rest of the miners can make. This would only necessarily
undermine fairness, but the majority miner could undermine
the other stability properties as well if they desired. Fore
example the majority miner might also intentionally introduce
arbitrarily long forks in the block chain to reverse (and hence
double-spend) transactions for profit, violating the eventual
consensus and convergence properties.

If miners can collude, stability is not known. Even in the
absence of a majority miner, multiple smaller miners could
potentially collude to form a cartel controlling a majority of
mining power and emulating any strategy available to a single
majority miner. It is not known whether such a cartel would
be stable or whether it would fail because cartel members
would cheat each other or excluded miners could break it
up by offering to form a cartel on more favorable terms.
If a stable cartel did form, similar to the majority mining
scenario blockchain stability could not be guaranteed with-
out strong assumptions about the cartel’s objective function.
Mining pools could possibly be a technical mechanism for
cartel formation; the dynamics of miners’ choice of pools and
migration between pools have not been studied. It also appears
no rigorous analysis has been attempted of whether and how
miners might encourage others to participate in a majority
attack cartel through side-payments.

Future directions and attacker rationality. These results
do not provide convincing justification of Bitcoin’s observed
stability in practice nor convincing assurance of its continued
stability in the future. An underlying problem is that miners are
clearly not solely interested in obtaining nominal bitcoins but
in obtaining real-world profits. Some non-compliant strategies,
particularly those that would affect stability in a visible way,
might undermine public confidence and weaken demand for
bitcoins. Indeed, in practice the exchange rate has been found
to dip in the face of technical glitches with the system [67].

Thus, although one strategy may earn more nominal bitcoins
than another, if it drives down the exchange rate it may provide
a lower effective reward for miners. We call this principle
exchange-rate rationality.

In practice most miners have a significant additional interest



in maintaining Bitcoin’s exchange rate because they have
significant capital tied up in mining hardware which will
become less if the exchange rate declines. If miners expect
they will maintain their share of mining power far into the
future with low marginal costs (e.g., if a substantial portion
of their operational costs are paid upfront to buy equipment),
then they may avoid strategies which earn them more bitcoins
but decrease the expected value of their future mining rewards.
We call this principle long-term rationality.

Indeed, Nakamoto dismissed the possibility of majority-
miner attacks in the original Bitcoin paper [85] by an appeal
to long-term rationality, arguing that they would permanently
damage the system (and exchange rate) and “playing by
the rules” would be more profitable over time. In practice,
the GHash.IO mining pool exceeded 50% of the network’s
computational capacity for an extended period in July 2014
and publicly promised to not attack and to shrink in order to
avoid damaging confidence in the system.

It may be that one or both rationality assumptions are
required to model the lack of attacks on Bitcoin. Unfortunately,
this is very difficult to capture in any tractable game-theoretic
model as reasoning about the exchange rate inherently depends
on human judgement and market confidence. Modeling this
assumption more formally is a significant open problem.

Another lingering model problem is that all of these models
have assumed each block carries a constant, fixed reward fee,
although the planned transition to transaction fees will negate
this assumption and require more complex models which take
into account the distribution of available transaction fees.

2) Results with non-monetary objective functions: At least
two strategies have been analysed which may be advantageous
for a miner whose objective are not purely monetary.

Goldfinger attacks. If a majority miner’s goal is explicitly
to destroy Bitcoin’s stability and hence its utility as a currency,
they can certainly do so by intentionally introducing deep
forks, undermining convergence. Kroll et al. [59] introduced
this model and named it a Goldfinger attack. For example,
a state wishing to damage Bitcoin to avoid competition with
its own currency, or an individual heavily invested in a com-
peting currency, may be motivated to attempt such an attack.
Arguably, these attacks have already been observed through
altcoin infanticide, in which deep-forking attacks against new
competing currencies with low mining capacity have been
successfully mounted by Bitcoin miners.11

Feather-forking. Miller [77] proposed the strategy of
feather-forking, in which a miner tries to censor a set of
target transactions by publicly promising that if a targeted
transaction is included in the block chain, the attacker will
retaliate by attempting to fork the block chain, ignoring the
block containing the targeted transaction. The attacker’s fork
will continue until it either outraces the main branch and wins,
or falls behind by k blocks causing the attacker to rejoin the
main and accept publication of the targeted transaction. An

11For example, CoiledCoin was an altcoin that was destroyed by a signifi-
cant attack from Eligius, a Bitcoin mining pool [71].

attacker with α < 50% of the mining power will succeed with
probability α2

1−α+α2 and will, on expectation, lose money.
However, if the attacker can convincingly show that they are

serious about performing the retaliatory forking, other miners
will gain by shunning the targeted transactions as they also
lose on expectation if the attacker does retaliate. Thus, an
attacker may be able to enforce their blacklist with no cost
at all, as long as all other miners are convinced the attacker
will perform a costly feather-forking retaliation. This has some
resemblance to the well-studied Chicken game from game
theory [95], in which players have an incentive to convince the
other they will take a self-destructing action if the other does
not yield. Feather-forking has never been observed in practice,
which may again be attributed to long-term rationality.

3) Stability of mining pools: Mining pools rely on partic-
ipants to submit valid blocks when they are found and are
vulnerable to participants submitting partial shares in exchange
for compensation but withholding valid blocks to lower the
pool’s profitability. Though this attack has long been known,
it appears self-destructive as the participant withholding a
block is lowering their own earnings in addition to other pool
members. However, it has been shown [31] that a large miner
(or a pool) can actually profit from using some of its mining
power to infiltrate another pool by submitting partial shares
but withholding valid blocks. The benefit is that the capacity
used to infiltrate will not contribute to increasing the difficulty
of the mining puzzle (as blocks are not published) but can still
earn profits. This strategy is advantageous to a large miner or
pool across a range of mining capacities for the attacker and
the infiltrated pool.

Eyal [40] provides an extended treatment of this attack and
shows that it, between any two pools, the resulting game
is an iterated prisoner’s dilemma, with a Nash equilibrium
of both pools attacking each other but a Pareto equilibrium
of neither attacking. This attack can be detected statistically
if done on a large scale, which has happened at least once
in the wild against the Eligius pool in June 2014 [121].
However, a clever attacker can easily obfuscate the attack
using many participant addresses. Further countermeasures
have been proposed but not seriously studied or deployed. As
an iterated prisoner’s dilemma, it is possible pools will avoid
attacking each other through out-of-channel communication
and the threat of retaliation.

C. Stability of the peer-to-peer layer

Almost all analysis of Bitcoin assumes that the peer-to-peer
layer functions as specified and that, in general, a majority
of participants will learn nearly all of the available protocol
state information within reasonable time scales. However,
Babaioff et al. [7] demonstrated that information propagation
at the peer-to-peer layer is not always incentive compatible
for protocol participants. It remains open whether participants
internalize sufficient value from the peer-to-peer network as a
public good to justify the opportunity costs of propagating in-
formation Babaioff et al. identified, or whether the information
propagation equilibrium observed in the wild (in which people



willingly participate in the peer-to-peer protocol) is unstable
and might break down eventually.

Johnson et al. [54], [63] study whether and when partici-
pants in the peer-to-peer protocol are incentivized to engage in
network-level denial-of-service attacks against other players.
Johnson et al. conclude that mining pools have an incentive to
engage in attacks, that pools have a greater incentive to attack
larger pools than smaller pools and that larger pools have a
greater incentive than smaller pools to attack at all. Denial-
of-service attacks against pools are regularly observed in the
wild, so this theoretical analysis can be backed up by observed
phenomenology [116]. Others have performed measurement
and simulation studies to determine the dynamics and time
scale of information propagation [35], [36].

IV. MODIFYING BITCOIN

The remainder of this paper will largely form several
comparative evaluations of proposed changes and extensions
to Bitcoin. The following levels of changes are distinguished:

• Hard forks. A protocol change requires a hard fork if it
enables transactions or blocks which would be considered
invalid under the previous rules, such as increasing the
miner block reward, changing the fixed block size limit, or
removing an opcode. If miners update to the new protocol,
they may produce blocks that are rejected by other nodes
leading to a permanent (or “hard”) fork. Changes involving
a hard fork therefore require near-unanimity to be attempted
in practice.

• Soft forks. In contrast to a hard fork, a soft-fork change
is one that’s backward compatible with existing clients;
generally this involves a restriction of which blocks or
transactions are considered valid. Such a change requires
only the support of a majority of miners to upgrade, since
older clients will continue to consider their blocks valid.
A miner that doesn’t upgrade may waste computational
work by generating blocks that the rest of the network
considers invalid and ignores, but will always rejoin the
longest chain found by the majority of the miners. In some
cases, a soft fork can be used to introduce new opcodes to
the scripting language. This is possible because there are
currently several unused opcodes that are interpreted as no-
ops; including these in a transaction output may make it
spendable by anyone, and hence they are typically avoided.
However, any one of these op-codes can be given new
semantics if miners decide to reject transactions that fail
some condition indicated by this opcode. This is a strict
narrowing of the set of acceptable transactions, and hence
requires only a soft fork.

• Relay policy updates. Recall from Section II-B3 that nodes
enforce a stricter policy in what they will relay than what
they will actually accept as valid. Changing this policy or
most other aspects of the communication network require
the least coordination as they can typically be done in a
backwards-compatible fashion with nodes advertising their
protocol version number. The default relay policy has al-

ready changed several times to add new standard transaction
types such as mult-signature transactions.

A. Altcoins

Due to the friction of changing Bitcoin, hundreds of deriva-
tive systems, referred to as altcoins, have arisen to incorporate
alternate design approaches. Many of these systems have
forked Bitcoin’s codebase and maintained most of its features,
although some systems (such as Ripple) are completely inde-
pendent designs. Altcoins must bootstrap the initial allocation
of currency to entice users to participate, which can be
achieved in several ways:
• New genesis block. Altcoins may simply start a new

blockchain from scratch, allocating funds to initial miners as
Bitcoin did in its early days. This approach is now viewed
suspiciously by the cryptocurrency community due to a
wave of altcoins allegedly launched by founders hoping to
cash in through early mining.

• Forking Bitcoin. To avoid this suspicion, an altcoin might
intentionally choose to fork Bitcoin at a certain point,
accepting the prior transaction history and ownership of
funds. Bitcoin owners would continue to have bitcoins in the
original system, plus an equal amount of the new currency
at the time of its founding. This would function like a hard
fork, but with no claim that the new system is the legitimate
Bitcoin system. Interestingly, this approach seems not to
have been attempted seriously.

• Proof-of-burn. A more popular approach to inheriting
Bitcoin’s allocation of resources is proof-of-burn [110], in
which users must provably destroy a quantity of Bitcoins—
e.g., transfering funds in Bitcoin to a special address whose
private key cannot be found, such as the key with a hash of
all zeroes. This approach has the downside of permanently
lowering the number of units of Bitcoin available for use.

• Pegged sidechains. Most recently, a number of influential
Bitcoin developers [8] proposed sidechains, to which bit-
coins can be transferred and eventually redeemed. Adding
validation rules to redeem currency from a sidechain would
require at least a Bitcoin soft-fork, and hence is not yet
possible.
Altcoins also must compete with Bitcoin for miners (and

avoid Goldfinger attacks by Bitcoin miners), which can be
difficult prior to the currency achieving a non-zero exchange
rate. A popular approach is merge-mining, whereby an altcoin
accepts blocks if their root is included in a valid Bitcoin block,
thus enabling Bitcoin miners to mine blocks in the altcoin
without performing any additional work. This can quickly
provide an altcoin the full mining power of Bitcoin, as many
Bitcoin miners now merge mine a large number of altcoins to
earn extra rewards. However, it limits the ability of the altcoin
to deviate from Bitcoin’s computational puzzle.

V. ALTERNATIVE CONSENSUS PROTOCOLS

Bitcoin’s consensus protocol has been its most heavily de-
bated component, due to the open questions about stability (see
Section III-B), concerns about the performance and scalability



of the protocol [109], and concerns that it is wasteful of com-
putation. In this section we evaluate alternative proposals for
consensus, noting that in each case the stability implications of
the proposed changes are unknown and alternative proposals
rarely define any specific stability properties they claim to
provide.

Typically, alternate consensus schemes aim to fix some spe-
cific perceived problem with Bitcoin and hope the stability ar-
guments towards Bitcoin will carry over to the new consensus
protocol, although given the lack of a solid model guaranteeing
stability for Bitcoin this may be a shaky assumption.

A. Parameter changes

Bitcoin’s consensus protocol incorporates many “magic
constants” which were hard-coded based on initial guesswork.
Nearly every altcoin has varied at least some of these parame-
ters, yet the modifications are often controversial and we still
have only a few clear guidelines on how these should be set
and how sensitive the consensus protocol is to their change.

Inter-block time and difficulty adjustment window. Bit-
coin automatically adjusts the difficulty of its proof-of-work
puzzle so that each puzzle solution is found (on average) ten
minutes apart. This setting is constrained primarily by network
latency, which plays a critical role. If this rate is too high,
then miners will frequently find redundant blocks before they
can be propagated. On the other hand, a slower block rate
directly increases the amount of time users need to wait for
transaction confirmations. Bitcoin’s setting is by all accounts
conservative; all altcoins we know of have the same or faster
blocks (e.g., the second most popular system, Litecoin, is four
times faster). There are many proposals to modify aspects of
the communication network to reduce latency, allowing this
parameter to be safely reduced [35], [109].

Limits on block and transaction size. One of the most
controversial proposed changes is to change the fixed 1-
megabyte limit on the size of a block [3]. As the transaction
volume has steadily increased, this limit may soon be regularly
reached. The upper bound on transaction volume is currently
only 7 per second, approximately 1,000 times smaller than
the peak capacity of the Visa network [49]. Once this limit is
reached, transactions will effectively need to use their fees to
bid for a scarce resource. This may raise the cost of using Bit-
coin, potentially slowing adoption, yet increasing the revenue
for miners. It may also lead users to rely on intermediaries
who aggregate and settle transactions off-chain. The limit is
artificial, and the network’s bandwidth could likely sustain an
increase; on the other hand, increased transaction volume may
exclude some participants who are bandwidth-limited. Several
altcoins have raised this limit in their specification, though to
our knowledge none has come close to actually utilizing this
capacity so it remains unknown how it will affect operation
of the system.

Monetary Policy. Bitcoin’s consensus protocol effectively
mandates a monetary policy in the rate at which new currency
is minted and the schedule by which this rate changes. By
mandating a capped amount of currency, Bitcoin effectively

has a deflationary monetary policy which has caused multiple
economists to predict the system will eventually be desta-
bilized by a deflationary spiral in which nobody is willing
to spend bitcoins as hoarding them is considered more prof-
itable [48], [60]. Issuance of coins is one of the most widely
varied parameters: for example, in Dogecoin inflation will
continue indefinitely but at a harmonically-diminishing rate
while in Freicoin [42], the inflation rate maintains constant.

B. Alternative computational puzzles

Miller et al. [81] present a formalism for Bitcoin-compatible
proof-of-work schemes called scratch-off puzzles, which es-
sentially must be decomposable into individual attempts. This
property is often referred to as “progress-free;” it guarantees
that a) the creator of each block is chosen by an approximately
weighted random sample of computational power, b) even
individual participants are able to receive (proportional) reward
for their contribution, c) the time between consecutive puzzle
solutions is sufficiently large that puzzle solutions propagate.
Bitcoin’s SHA-256 puzzle satisfies these properties, and many
other constructions are possible.

ASIC-resistant puzzles. While Bitcoin mining was orig-
inally performed using ordinary general-purpose processors,
the competitive nature of mining has led to a steady movement
towards more powerful and energy-efficient customized hard-
ware. Today, most of the computational power is accounted
for by ASICs. Taylor provides an excellent survey of the
technical challenges in computing SHA-256 efficiently at scale
and estimates that today’s ASICs are already within an order
of magnitude of theoretical efficiency limits [112].

This has both positive and negative implications: a positive
is that “botnets” who steal cycles from commodity equipment
are no longer competitive against modern mining rigs [52]; a
(perceived) negative is that this moves Bitcoin mining away
from its core democratic value (i.e., “one-CPU-one-vote” [85])
since most participants in the system do not own ASICs and
hence perform no mining at all.

In response, many proposals have been made for ASIC-
resistant mining puzzles. Ideally, an ASIC-resistant puzzle
could be effectively solved using commodity hardware, with
only minor performance gains for customized hardware. The
primary approach taken so far has been to design “memory-
hard” puzzles which are designed to require efficient access
to a large memory. The most popular memory-hard puzzle so
far (used in Litecoin and Dogecoin, among others) has been
the scrypt hash function [92] originally designed for cracking-
resistant password hashing. Until 2014 it was unknown if it is
possible to design a puzzle which is memory-hard to compute
but memory-easy to verify. Tromp’s cuckoo-cycle puzzle [114]
appears to answer this question affirmatively.

It remains an important open problem if ASIC-resistance
is possible.12 ASICs that mine scrypt, for example, have

12This problem has applications in other applications including password
hashing and password-based encryption, towards which the current Password
Hashing Competition is attempting to identify a new standard.



already been released in the market and offer performance
improvements comparable to SHA-256 ASICs.

Useful puzzles. Achieving consensus through computa-
tional puzzles appears to be wasteful both in terms of the
energy consumed in computation and the energy and resources
used to manufacture mining equipment. Becker et al. [13] posit
that ultimately Bitcoin might be subject to control by real-
world entities in control of the world’s energy supplies. If it
is possible to obtain the same level of security while utilizing
the work for some additional purpose, then some of this cost
can be recovered.

A common suggestion is to use a search function with
appliations to scientific research, such as the popular Folding@
Home [62] project. A challenge for useful puzzles is that they
must be automatically generated and verified with no trusted
parties, (otherwise this party could choose puzzles on which
they already had a head start). Kroll et al. [59] further argued
that any useful puzzle must produce a pure public good, or
else it might increase the amount mining by the amount it
recovers, canceling out any recycling effect.

Primecoin [57] introduced the first useful puzzle in a
successful altcoin. Its puzzle requires finding sequences of
large prime numbers of mathematical interest and which may
be used as parameters for cryptographic protocols. Miller et
al. [79] proposed a puzzle incorporating proof-of-retreivability,
so that mining requires storing a portion of a large public
dataset. In particular, if the public dataset is of use to the
Bitcoin network itself (e.g., the blockchain history), this ap-
proach provides additional incentives to contribute resources
to the network.

Nonoutsourceable puzzles. The growth of large mining
pools [72] and their potential to facilitate collusion and cartel
formation has motivated the design of puzzles which cannot
be easily outsourced. Members of a pool do not inherently
trust each other; instead, these coalitions succeed because
members can easily prove that they are performing mining
work that, if successful, would pay the reward to the pool
manager. Miller et al. [81] as well as Sirer and Eyal [108] have
proposed “nonoutsourceable” variations of scratch-off puzzles
that ensure whoever performs the mining work can claim the
reward for themselves when a block is found, thus thwarting
pools’ enforcement mechanisms and making the formation of
large pools between anonymous participants unlikely.

C. Virtual Mining and Proof-of-Stake

At a high level, proof-of-work schemes exist to require
expenditure of resources to perform mining. Instead of ex-
pending external computing resources, it may be possible to
expend wealth directly. Instead of having participants “mine”
by exchanging their wealth for computational resources, they
may simply exchange their wealth for the ability to choose
blocks. Rather than advancing the global history by a random
sample of participants weighted by computational power, the
random sample is weighted by the previous allocation of
wealth. We can call such schemes broadly “virtual mining.”

The earliest virtual mining proposal [94] used the term “proof-
of-stake.”

Virtual mining offers two main benefits: first, it may be
more difficult for an attacker to acquire a sufficiently large
amount of the digital currency than to acquire sufficiently
powerful computing equipment. Second, by avoiding the con-
sumption of real resources (i.e., compute cycles), no real-
world resources are wasted. There have been several variations
of virtual mining proposed to date, which vary mainly on the
criteria by which possession of a quantity of currency makes
one eligible to choose the next block:

• Proof-of-coin-age. Peercoin [58] proposed mining by
demonstrating possession of a quantity of currency by
posting a transaction (potentially to oneself, in which case
the coins are not lost). Each quantity of currency is weighted
by its “coin-age”, the time since the coins were last moved.

• Proof-of-deposit. In Tendermint [61], participation in min-
ing requires depositing coins in a time-locked bond account,
during which they cannot be moved.

• Proof-of-burn. Stewart [110] proposed mining by destroy-
ing coins (i.e., sending them to an unspendable address).

• Proof-of-activity. Bentov et al [19] proposed having every
coin owner implicitly entered into a mining lottery by
default; periodically, random values from a beacon (e.g.,
generated from transactions occurring on the network) are
used to select randomly among all the coins in the system;
the current owner of the winning coin must respond with a
signed message within some time interval.

There has yet to be any formalization of the model assump-
tions that may allow virtual mining systems to achieve security,
or to compare virtual mining systems to proof-of-work systems
in a common setting. Poelstra [93] presents a survey of
the folklore arguments suggesting that consuming external
resources (i.e., burning energy) is necessary for blockchain
security and hence virtual mining schemes are inherently
infeasible. The central argument – deemed the nothing-at-stake
problem – is that virtual mining is susceptible to costless simu-
lation attacks; it costs nothing to construct an alternate view of
history in which the allocation of currency evolves differently.
Providing a rigorous argument for or against stability of virtual
mining remains an open problem.

D. Designated Authorities.

Although Bitcoin’s decentralized nature is one of the pri-
mary selling points and is a fiercely-defended principle among
many in the community, we can observe that Bitcoin’s con-
sensus protocol could be drastically simplified if we could
rely on a (small) number of designated authorities to receive,
sequentially order, and sign transactions. This would make
stability assumptions much easier to reason about and remove
concerns about wasteful computation all at once. We might
even invoke a similar long-term rationality argument to that
used for Bitcoin and argue that if the authorities earned a small
income by behaving honestly they would have no incentive to
misbehave.



Trust in these authorities might be limited by using a mu-
tually untrusting set of authorities [64], using social networks
to choose which authorities to trust [105] or provisioning for
coin owners to choose their trusted authorities every time they
spend coins [22]. Ripple [105] is one of the few altcoins
launched with this model; however, its stability argument
remains essentially unproven.

VI. CLIENTSIDE SECURITY

A. Simplified Payment Verification (SPV) Security

Although the reference Bitcoin client maintains a vali-
dated copy of the entire blockchain, this would impose a
prohibitive burden on mobile devices. A simple observation
leads to a lightweight alternative: assuming that a majority of
nodes only mine on valid chains (the correctness property of
Section III-B), then clients need validate only the proofs of
work and can trust that the longest chain only contains valid
transactions. Such SPV proofs [85] enable untrusted nodes to
efficiently prove to lightweight clients that a transaction has
been included in the agreed-upon history.

SPV is implemented in the BitcoinJ library which underlies
most mobile (and some desktop) Bitcoin clients. Though
effective in practice, this technique still requires lightweight
clients to maintain an ever-growing chain of proof-of-work
solutions.13 SPV also requires disclosing the set of addresses
the client is interested in to untrusted nodes, a practical privacy
concern (see Section VII and [45]).

B. Key Management

Bitcoin assumes a solution to the longstanding problem of
usable public key cryptography for user authentication, while
nearly all other forms of online commerce today rely on
passwords or confidential credit card information. Developers
of Bitcoin software have attempted a variety of approaches
solve, or at least mask, the complexities of key management.
Eskandari et al. [39] propose a set of evaluation criteria for
the usability Bitcoin key management interfaces and conclude
that current tools employ complex metaphors which don’t fully
capture the implications of key management actions.

Keys stored on device. Keys stored on a device in a
file is a simple model, but may be stolen by specifically-
crafted malware [69], may be inadvertently shared (network
sharing, offsite backup, P2P filesharing), or the device may be
physically stolen or lost. Some clients send change to newly
created Bitcoin addresses, requiring a new backup each time
the keypool is depleted (generally without any user-interface
indication when it happens), while others send change to the
originating address or derive all keypool addresses from a
random seed.

Password-protected wallet. A Bitcoin client may allow a
stored keypool file (called a wallet) to be encrypted with a
key derived from a user-chosen password. Password-protected
wallets deter certain types of theft, additionally requiring pass-
word guessing or keystroke capture if the file is physically or

13In theory, succinct proof systems (e.g., SNARKs [16]) could reduce this
verification cost to a constant.

digitally stolen. Password-protected wallets may also mislead
the user to believe that the password itself provides access to
their funds (e.g., on a new device).

Offline storage. To further enhance theft-protection from
malware-based threats, wallets can be stored offline on some
form of passive portable media, such as paper or a USB
thumbdrive. This enables the use of traditional physical se-
curity to protect the media, which users may have a better
mental model of. In the case of paper, typically private keys
are printed in scannable form (e.g., QR codes). Unlike paper
money, funds can be stolen by passive observation (e.g., on
live television [98]). Offline storage must be updated each
time the keypool is depleted. Finally, as offline wallets are
not immediately accessible for use, they must be loaded into
a device at some point and then again become susceptible.

Air-gapped and hardware storage. Air-gapped storage is
a special case of offline storage, where the device holding
the keypool can perform computations, such as signing trans-
actions for the keys it holds. Air-gapped devices can thwart
certain types of thefts by never exposing the keypool directly
to an internet-connected device. That said, unauthorized access
to a transaction-signing oracle is not much different from ac-
cessing the keypool itself—both allow theft. Related, hardware
security modules (HSMs) emulate the properties of an air gap
by isolating the key material from the host device, and only
exposing the ability to sign transactions.

Password-derived wallet. A Bitcoin client may permit
deterministically deriving a keypool from a user-chosen pass-
word. This allows the keypool to be regenerated from a memo-
rized password on any new device. The primary drawback of a
password-derived wallet is that weak passwords can be found
through unthrottled exhaustive search, as a fingerprint of the
associated public key will be in the ledger if the account holds
any amount of Bitcoin. Additionally, a forgotten password will
orphan all funds in the account.

Hosted wallet. A final approach is storing your keypool
with a third party webservice that provides transactional func-
tionalities through standard web authentication mechanisms,
such as a password or two-factor authentication, and allow
a password recovery mechanism. This provides the closest
experience to traditional online banking, however requires
trusting the host: the host may lose or steal from the accounts it
hosts (many incidents are catalogued online [37]) and include
over 40 events involving losses greater than 1000 XBT).

VII. ANONYMITY & PRIVACY

Bitcoin provides a limited form of unlinkability: users may
trivially create new pseudonyms (addresses) at any time. This
was argued in the original specification to provide strong
privacy [85], however it quickly became clear that due to the
public nature of the blockchain it sometimes possible to trace
the flow of money between pseudonyms and conclude that
they are likely controlled by the same individual.

A. Deanonymization
The actual level of unlinkability depends heavily on use

patterns and implementation details that we term idioms of use,



following [75]. For example, merchants that generate a fresh
payment address for each sale ensure that received payments
are not automatically linkable on the blockchain. By contrast,
the customer may need to assemble the payment amount
from multiple addresses she owns,14 linking these addresses
(and their accompanying transactional history) together on the
blockchain, given different users rarely contribute inputs to a
single, joint transaction.15 Other idioms such as “every non-
change output is controlled by a single entity” [4] and “an
address is used at most once as change” [75] can also be
utilized by an adversary to link together different addresses
controlled by the same entity.

Linking can be applied transitively to yield clusters of
addresses; this is an instance of transaction graph analysis.
A major challenge for the adversary is that these idioms are
fragile—they may yield false positives and may lose accuracy
over time as implementations evolve. New linking techniques
may also arrive. For example, multi-signature addresses have
an unintended negative effect on privacy since the multi-sig
structure in a change address can be matched to the sending
address even if the keys involved change [46].

To de-anonymize, the adversary must take the further step
of linking address clusters to real-world identities. Meiklejohn
et al. [75] were successful at identifying clusters belonging to
online wallets, merchants, and other service providers since
it is easy to learn at least one address associated with such
entities by interacting with them. As for identifying regular
users, the authors suggest that this may be easy for law
enforcement (using subpoena power) since most flows of
bitcoins pass through these centralized service providers (who
typically require customer identity and keep records). Without
such access, however, the adversary is limited precisely due to
the centrality of flows—online wallets and other such services
mix users’ coins together.

Network de-anonymization. The other major target of de-
anonymization efforts is the peer-to-peer network. Nodes leak
their IP address when broadcasting transactions. Using an
anonymity network is therefore crucial for privacy. However,
Biryukov et al. [20] point out a DoS attack to disconnect Tor
exit nodes from the Bitcoin network. It remains to be seen
if Bitcoin’s P2P layer will evolve to better utilize Tor or if
a dedicated anonymity network will be developed. Finally,
current SPV implementations provide little anonymity due to
the difficulty of privately retrieving the list of transactions that
the client is interested in [45].

B. Proposals for improving anonymity

There are three main classes of anonymity proposals. A
comparison is provided in Table I with respect to 6 security
and deployment properties (with  meaning a scheme has a
property and G# indicating it partially does).

14An alternative payment approach is to use multiple distinct merchant
addresses to avoid merges [50], but this is not yet standardized or adopted.

15 One exception is CoinJoin in Section VII-B, which explicitly users multi-
input transactions to increase anonymity.
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CoinJoin [74] P2P    1
Shuffle Net [32] P2P    1
Fair Exchange [12] P2P    4
CoinShuffle [101] P2P    G#  1
Mixcoin [23] distr. G#  G#   2
Blindcoin [115] distr.   G#   4
Zerocoin [76] altcoin     2
Zerocash [15] altcoin     0

Peer-to-peer. In P2P mixing protocols, a set of Bitcoin
holders jointly create a series of transactions which (privately)
permute ownership of their coins, making each participant
anonymous within this set. This process may be repeated with
different sets of users to grow the anonymity set.

A straightforward mechanism for achieving this is Coin-
Join [74], where a set of users form a single standard Bit-
coin transaction with one input from each user and and a
fresh output address controlled by each user such that no
external party examining the transaction knows which input
corresponds to which output (providing external unlinkability).
Any user can refuse to sign the transaction if their desired
output address is not included, preventing theft but making it
vulnerable to DoS by any individual. In vanilla CoinJoin, users
announce their output address to the other users (not providing
internal unlinkability). This can be addressed through toggling
a new Tor circuit or other ad hoc methods, however for robust
internal unlinkability, a cryptographic protocol should be used
(e.g., CoinShuffle below).

Two earlier proposals offer similar properties to CoinJoin,
one based on a shuffling network [32] and one based on
fair exchange [12]. However, both are limited to two-party
mixing making internal unlinkability impossible. To address
the difficulty of finding partners for two party mixing proto-
cols, Xim [21] is a decentralized protocol for finding mixing
partners using three stages of fees paid to miners to discourage
denial of service attacks.

CoinShuffle [101] is an overlay protocol for forming Coin-
Join transactions, adding internal unlinkability through a cryp-
tographic mixing protocol between the participants. It partially
(G#) prevents DoS by identifying which parties abort.

Distributed mix network. In Mixcoin [23], users sent
standard-sized transactions to a third-party mix and receive
back the same amount from coins submitted by other users
of the same mix. This provides anonymity toward external
entities and partial internal anonymity (G#), as the mix will
know the linking between users and output but other users
will not. Other users also cannot disrupt the protocol. While
mixes may steal Bitcoins at any time, cheating mixes can
be identified using signed warrants (providing partial G# theft



resistance). While Mixcoin’s warranties and other features
have not been deployed, this is the closest to third-party mixes
as are most commonly used in practice.

Blindcoin [115] extends Mixcoin using blinded tokens sim-
ilar to Chaum’s original e-cash proposal [25]. This prevents
an honest-but-curious mix from learning the mapping between
inputs and outputs and upgrade to full internal unlinkability,
at a cost of two additional transactions to publish and redeem
the blinded tokens.

Altcoins with integrated unlinkability. Zerocoin [76] is
an altcoin with integrated unlinkability, using a Bitcoin-esque
base currency and an anonymous shadow currency called
zerocoins. Users transact solely in the base currency, but can
cycle the base currency into and out of zerocoins anonymizing
it relative to the set of all zerocoins (a much larger anonymity
set than the other techniques above). This provides strong
unlinkability with no theft or DoS concerns and without
relying on any entities other than miners. However, it is
not compatible with Bitcoin and must be implemented as an
altcoin (or hard fork). PinnochioCoin [34] is a similar proposal
using a different cryptographic construction.

Zerocash [15] is an even stronger proposal for an anony-
mous altcoin that is effectively impossible to implement as a
hard-fork. Zerocash transactions are a special type of zero-
knowledge proofs called SNARKs [16] which reveal no infor-
mation at all about the amount or recipients (except a possible
public transaction fee), enabling a completely untraceable
ledger in which no information is revealed publicly. SNARKs
are a new cryptographic primitive without any real-world
deployment to date and require an initial generation of secret
parameters by a trusted party; however, recent work has shown
this initial setup can be distributed amongst a set of mutually
untrusted parties [17].

VIII. EXTENDING BITCOIN’S FUNCTIONALITY

While Bitcoin can be described simply as a digital currency,
the power of the scripting language with enforcement by
miners makes many other types of functionalities possible
between two or more mutually distrusting parties that would
otherwise require a trusted intermediary. We use the term
disintermediation to refer to the general process of designing
transactions that remove the need for a trusted intermediary
and observe many proposals to do so by creatively applying
or extending Bitcoin’s transaction semantics.

A. Disintermediation with Bitcoin today

The extent to which Bitcoin is an extensible platform
is often overstated. The scripting language remains highly
constrained. However, many protocols have been designed for
disintermediation which can be realized with Bitcoin’s current
transaction semantics. We identify three general disintermedi-
ation strategies:

Atomicity. In many cases, a desired security property
can be enforced directly using functionality provided by the
blockchain and the fact that transactions can be atomic, being
invalid until multiple parties sign. CoinJoin [74] is a simple

example, with no participant’s coins swapped until all parties
sign. Another example is Hearn’s “serial micropayments”
protocol [51], which makes efficient use of an out-of-band
channel to allow one party to authorize a nearly-continuous
slow release of funds (e.g., a fraction of a penny per second)
in exchange for some service such as Internet access. At any
time, either party can abort the protocol by refusing to sign
any more transactions, at which point the flow of payment
will be complete and only one transaction needs posting to the
blockchain. Another clever protocol is Nolan’s atomic cross-
chain exchange protocol, which actually allows users to swap
currency between two altcoins with two linked transactions
and atomic security [87].

Collateral. In other cases, when a desired security property
cannot be enforced directly, Bitcoin can provide an acceptable
remedy by posting a deposit or bond which is only refunded in
the case of correct behavior. This approach is exemplified by
the multi-player lottery protocol from Andrychowicz et al. [5].
Each of N parties places a $1 bet, and one party (chosen at
random) walks away with $N . In order to guarantee that a
cheating player doesn’t spoil the game by learning the outcome
first and selectively aborting the protocol, every player must
deposit $N2. If any participant aborts the protocol they forfeit
their deposit, which is used to compensate the others to the
maximum amount they could have won. This approach is not
limited to lotteries, but in fact can provide a notion of fairness
for arbitrary multiparty computations [18].

Auditability. Even if Bitcoin is not used to apply an imme-
diate remedy against a dishonest party, it can still play a crucial
role in providing evidence that incriminates the dishonest
party. One example is the green addresses technique [53]: here,
a payment processor with a well-known public key pledges
never to sign an invalid or conflicting transaction. A user
who receives a transaction from a green address may accept
it (i.e., make an irrevocable decision) before waiting for it
to be included in blocks. If at some point the transaction
is preempted by a conflicting transaction published in the
blockchain, the user obtains easily checkable evidence that the
server defaulted. A similar technique is used in Mixcoin [23]
to obtain evidence if an anonymity mix has cheated.

B. Cost of disintermediation

Disintermediation usually comes at a cost. Bitcoin’s transac-
tion fee mechanism ensures users pay miners in exchange for
enforcing their contracts. The fee mechanism is not perfect; for
the time being, transaction fees are optional, and the amount
of miner income from fees pales in comparison to the fixed
“block creation” subsidy. Default miner policy is currently to
assign fees based mainly on transaction size.

Costs to the Bitcoin network. First, since each transaction
is propagated to every node in the network, an immediate
communication cost is incurred proportional to the number
and size of each transaction. Second, nodes (by default) store
every transaction in history on disk and serve them to new
nodes who join the network. Transactions whose outputs have
already been spent are no longer needed for validation, and can
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be pruned or moved to archival storage; however, the unspent
transaction outputs must be stored in a readily accessible
index. Hence, the size and length of time a transaction’s
outputs remain unspent, rather than just the size of the
transaction, determine the cost imposed on the network. Third,
computation is required to validate new transactions. In the
worst case, the computation depends on the maximum effort
required to reject an invalid transaction. Since the Bitcoin
scripting language has no looping/iterating instructions, the
worst-case validation cost is typically proportional to the size
of the transaction output.

Costs to the participants. First, parties may or may not
need to perform the full duties of a Bitcoin node (i.e., receiving
and processing every transaction). For example, a user that
receives a transaction output and must spend it later needs only
to maintain his private key; however, an auditor that waits for a
message encoded in the blockchain may need to wait for every
transaction. Second, for protocols involving collateral-based
enforcement, a party may need to make a capital deposit that
is returned at the end of the protocol. Third, a party often needs
to wait for a transaction to appear “settled” before proceeding;
this amount of time depends on the parameters of the system
and the user’s desired security.

In Table II we evaluate the asymptotic performance charac-
teristics of a variety of disintermediated blockchain protocols.
For protocols that involve heterogeneous roles, we break down
the costs to each role on a separate row. We use n for
the number of participants in the protocol and k to denote
the amount of time needed to wait for a transaction to be
confirmed (typically 6 blocks in practice).

For incremental micropayment transactions [51], p denotes
a maximum amount of money the user may wish to pay
over the course of a transaction, while p denotes the total
number ultimately paid. Note that for the cross-chain exchange
protocol [87], n is limited to two parties.

C. Bitcoin as a data store

An alternate approach to utilizing Bitcoin is to simply use it
as global append-only log into which anybody can write data.

Secure timestamping. Because the blockchain is (modulo
forks) append-only, it can be used immediately as a secure
timestamping service [29], which is useful in a variety of secu-
rity protocols. Arbitrary data can be written into the blockchain
through several mechanisms—the community prefers the use
of a small provably unspendable script which allows data in
an unused variable.16 Multiple services collect data from users
and publish a Merkle root to the blockchain, allowing anybody
to timestamp arbitrary data.

Digital tokens: Colored Coins. Because data can be written
into individual transactions, it is possible to mark certain
transactions with a “color.” This enables a protocol called
Colored Coins [100] which defines a set of rules (not enforced
by miners) to transfer color from input transactions to output
transactions. Coins may initially be colored by including a
special signature from any authority trusted to issue color
for some application. This allows the creation of arbitrary
tokens which can be traded for each other or for ordinary
uncolored bitcoins. This uses the history-tracking functionality
of the blockchain as a feature. In general, it has been observed
that every transaction output has a unique history of ancestors
which may be meaningful to different users, meaning that in
the long run bitcoins are not guaranteed to be fungible [84].

Colored coins have been proposed for many applications,
such as trading stocks or property rights. Because Bitcoin
miners do not enforce the rules of the colored coins pro-
tocol, validating a transaction’s color requires scanning the
blockchain for all ancestor transactions (thwarting SPV).

Overlay protocols: Mastercoin. A more flexible approach
is to use Bitcoin as a consensus mechanism which holds arbi-
trary data, but implements a completely different transaction-
based system within that data. Two prominent such systems
are Counterparty and Mastercoin [120], which define a large
number of additional transaction types for trading digital assets
and contracts. Note that this design removes the transaction
validity property that Bitcoin’s consensus mechanism normally
enforces. Thus invalid overlay transactions may be published

16Proof-of-burn is also a solution, but this is not provably unspendable and
so it is discouraged by miners.



and have to be ignored. SPV security is impossible as users
must validate the entire overlay transaction history.

D. Extending Bitcoin’s transaction semantics.

The Bitcoin scripting language is deliberately restrictive; in
fact, the original source contains the makings of a much more
versatile language, but most of the opcodes are marked as
unusable. There are many plausible new opcodes to add to
the scripting language, such as new cryptographic primitives,
although any new op-code is a hard-forking change.

Mostly orthogonal to the transaction semantics are a variety
of mechanisms for computing them; we defer discussion of
these to Appendix X.

Turing-complete scripting. Taken to the limit, we may
wish for a fully general-purpose policy language, removing
the need to gradually add specific opcodes to enable new
functionality. This approach is taken by the altcoin Ethereum
[122], which provides both a Turing-complete scripting lan-
guage and a random access datastore. It remains unclear how
Ethereum will play out in practice, and designing a practical
cryptocurrency with a Turing-complete scripting language
remains an interesting open problem.

Application-specific primitives. Many interesting
application-specific primitives have been proposed for
use with Bitcoin (after a hard-fork) or, more likely in new
altcoins. We will not attempt a complete survey here but
will discuss several interesting examples. Perhaps the best
known example is Namecoin [70] (the first altcoin), which
adds logic for mapping strings to values and transferring
control over those strings, allowing the system to function
as a decentralized naming system. Another proposal is
decentralized prediction markets and order books, enabling
the purchase and trade of shares in a future event [28].

IX. CONCLUDING REMARKS

Our extensive analysis of Bitcoin based on both the aca-
demic and (vast, fragmented) online literature shows how
second-generation cryptocurrencies have led to a renaissance
of new ideas, addressing important and challenging security
problems. Innovation has not been limited to new cryp-
tocurrency protocol designs, but has touched many areas of
computer security, distributed systems, hardware design and
economics.

Although our scientific knowledge has grown considerably,
our understanding is often still lacking. A simple fact demon-
strates this: given the chance to design a currency system from
scratch, it is unclear what significant deviations from Bitcoin
would be desirable or what effects they would have in practice.
This is not to say Bitcoin is flawless, as its many design
quirks show. There are also several areas, such as anonymity,
in which greatly enhanced designs have been proposed. Yet
no altcoin has seriously challenged it for market share despite
their freedom to improve on the initial design.

Unfortunately, it remains difficult to assess the extent to
which Bitcoin’s success is due to its specific design choices,
as opposed to its first-mover advantage. Our systematization

shows many dimensions in which it is not clear if any
alternative proposals are actually “better” or even what “better”
should mean. For the consensus protocol, we proposed a
standard definition for stability, yet the literature does not
provide adequate tools to assess under which economic and
social assumptions Bitcoin actually guarantees them. We also
do not yet know if it is possible to design an alternate decen-
tralized consensus system which can match Bitcoin’s stability
in practice while offering better performance or efficiency. For
designing new disintermediated protocols, it is not clear what
the right approach is to allow expanding Bitcoin’s functionality
without upsetting its decentralized nature.

Compared to many other areas of security research, Bitcoin
is a rare case where practice seems to be ahead of theory.
We consider that a tremendous opportunity for the research
community to tackle the many open questions about Bitcoin
which we have laid out.
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X. TRANSACTION VALIDATION COSTS

In the simplest model, system stability follows from the
assumption that honest nodes only accept blocks containing
valid transactions, where validity is defined as a function over
the transaction history. In the case of Bitcoin, a transaction
is valid only if its input coins (i.e., transaction outputs) have
not already been spent. Let N denote the total number of
transaction outputs processed at some point in time, and let
M < N denote the number of active unspent coins.

By what process do honest nodes efficiently determine
whether or not a transaction is valid? A naı̈ve approach
would be for each honest node to store an entire copy of the
transaction history so far, and to check each new transaction
by directly computing the validation function. This approach
has two immediate drawbacks. First, the cost of storing the
transaction history — especially in a readily-accessible rather
than archival way — grows without bound over time. Second,
the validation function can be expensive to compute directly;
validating a Bitcoin transaction could require traversing the
entire O(N) history to check each input has not been spent.

To overcome the drawbacks of the naı̈ve approach, Bitcoin
nodes maintain a statefile that contains indexed data to ef-
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TABLE III
ASYMPTOTIC PERFORMANCE TRADEOFFS FOR DIFFERENT DATA STRUCTURES FOR VALIDATING TRANSACTION RULES

Verifier Cost Prover Cost
Comp. State Network Comp. State Network

Naı̈ve O(N) O(N) O(1) O(1) O(1) O(1)
Bitcoin (store UTXO) O(logM) O(M) O(1) O(1) O(1) O(1)

UTXO Tree ADS [73], [78] O(logM) O(1) O(logM) O(logN) O(M) O(N logM)
TXO Tree ADS [113] O(logN) O(1) O(logN) O(logN) O(logN) O(N logN)

SNARKcoin O(1) O(1) O(1) O(polylogN) O(polylogN) O(N logN)

ficiently check transactions.17 The statefile is a function of
the transaction history, and can be incrementally updated each
time new transactions are added to the history. In particular,
the statefile in Bitcoin contains a O(M)-size table of unspent
transaction outputs (called the UTXO set), indexed for retrieval
by transaction hash in O(logM) time. Other transaction
validation rulesets call for different statefiles: for example,
in Namecoin, the statefile contains the current mapping of
domain names to IP addresses.

The statefile approach has the drawback that honest nodes
still maintain copies of a potentially large and growing
database. To avoid this, Maxwell [73] proposed replacing
the statefile with a hash-based authenticated data structure
(UTXO Tree ADS). ADS protocols (e.g., Merkle trees) a
protocols allowing a verifier (in this case, an honest node)
to outsource the storage of a datastructure to an untrusted
prover (e.g., other peers on the network). The verifier stores
just a constant sized digest of the data structure; in order
to query the data structure, the untrusted prover generates a
Verification Object (VO) that the verifier can check. Miller et
al. [78] developed a generic programming language for ADS
protocols with this application as a case study. The “prover”
in an ADS protocol need not be a single entity that stores the
entire data structure; with this in mind, Todd, Maxwell, and
Andreev [113] proposed an arrangement wherein each client
is responsible for maintaining a VO for just transactions they
wish to make in the future. In particular, they propose using a
data structure that has the desirable property that the VO for a
transaction can be incrementally maintained without use of the
additional state. However, this data structure has a larger size
(O(N) rather than O(M)) since it includes both spent and
unspent transactions outputs; hence we call it a TXO Tree
ADS.

Finally, we observe that the verifier cost in any ADS
protocol can be reduced (to a constant) using succinct non-
interactive argument systems (SNARKs), though this comes at
an additional cost to the prover (and requires an initial setup
procedure to be performed by a trusted party); we use the
name SNARKcoin to denote such a system.18

17Bitcoin nodes, by default, also maintain the transaction history, even
though this is not needed for transaction validation; such nodes are called
archival.

18Zerocash, and PinocchioCoin [34] also use (the zero-knowledge variant
of) SNARKs in a related way. However, their goal is to provide anonymity
rather than to reduce verifier cost to a constant. Indeed transaction validation
in their schemes requires additionally checking a plaintext table of spent serial
numbers.

We summarize the performance tradeoffs of the transaction
validation protocols discussed above in Table III. For the sake
of this evaluation, we concern ourselves only with validation
rules of a restricted form, namely rules that involve dictionary
lookup by a key; this model suffices for applications ranging
from Bitcoin and Ethereum, and given the generic nature of
ADS protocols we believe this is without loss of generality. We
also note that there are other possible arrangements, including
combinations of the ones we’ve discussed. For example, when
using an ADS as in [78], [113], we may have a heterogeneous
network where clients send their transactions to honest “full”
nodes storing the entire O(M) state file, while other honest
“lite” nodes verify the VOs generated by the full nodes.
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