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So Far 

•  Hash table as dictionary 
  Insert/Search/Delete 

•  Collisions by chaining 
  Build a linked list in each bucket 
  Operation time is length of list 

•  Simple Uniform Hashing 
  Every item to uniform random bucket 
  n items in size m table  average length n/m = α

•  Signatures: fast comparison 
•  Rolling Hash: fast sequence of hash’s 



DYNAMIC DICTIONARIES 



Dynamic Dictionaries 
•  In substring application, inserted all at once 

then scanned 
•  More generally, arbitrary sequence of insert, 

delete, find 
•  How do we know how big the table will get? 
•  What if we guess wrong? 

too small  load high, operations too slow 
too large   high initialization cost, consumes space,  

•  Want m=Θ(n) at all times 
potentially more cache-misses 



Solution: Resize 

•  Start table at small constant size 
•  When table too full, make it bigger 
•  When table too empty, make it smaller 
•  How? 

  Build a whole new hash table and insert items 
  Recompute all hashes 
  Recreate new linked lists 
  Time spent to rebuild:  

   (new-size) + #hashes x (HashTime) 



When to resize? 
•  Approach 1: whenever n > m, rebuild table to new 

size 
  Sequence of n inserts 
  Each increases n past m, causes rebuild 
  Total work: Θ(1 + 2 + … + n) = Θ(n2) 

•  Approach 2: Whenever n ≥ 2m, rebuild table to new 
size 
  Costly inserts: insert 2i for all i:  

These cost: Θ(1 + 2 + 4 + … + n) = Θ(n) 
  All other inserts take O(1) time – why? 
  Inserting n items takes O(n) time 
  Keeps m a power of 2 --- good for mod 

a factor of 
(HashTime) is 

suppressed here 



Amortized Analysis 

•  If a sequence of n operations takes time T, then 
each operation has amortized cost T/n 
  Like amortizing a loan: payment per month 

•  Rebuilding when n ≥ 2m  some ops are very 
slow 
 Θ(n) for insertion that causes last resize 

•  But on average, fast 
 O(1) amortized cost per operation 

•  Often, only care about total runtime 
  So averaging is fine 



Insertions+Deletions? 
•  Rebuild table to new size when n < m? 

  Same as bad insert: O(n2) work 
•  Rebuild when n<m/2? 

  Makes a sequence of deletes fast 
  What about an arbitrary sequence of inserts/deletes? 
•  Suppose we have just rebuilt: m=n 
• Next rebuild a grow  at least m more inserts are 

needed before growing table 
 Amortized cost O(2m / m)) = O(1) 

• Next rebuild a shrink  at least m/2 more deletes are 
needed before shrinking 
 Amortized cost O(m/2 / (m/2)) = O(1) 



Another Approach 

•  Algorithm 
 Keep m a power of 2 (good for mod) 
 Grow (double m) when n ≥ m 
  Shrink (halve m) when n ≤ m/4 

•  Analysis 
  Just after rebuild: n=m/2 
 Next rebuild a grow  at least m/2  more inserts 
•  Amortized cost O(2m / (m/2)) = O(1) 

 Next rebuild a shrink  at least m/4 more deletes 
•  Amortized cost O(m/2 / (m/4)) = O(1) 



Summary 

•  Arbitrary sequence of insert/delete/find 
•  O(1) amortized time per operation 



OPEN ADDRESSING 



U : universe of all possible keys-huge set 

h(k1) 

h(k3) 

h(k2) = h(k4) 

: actual keys-small set, but not known when 
designing data structure 

K 

item3 

item1 

item2  item4 

K

U

Recall Chaining… 



Open Addressing 
•  Different technique for dealing with collisions; 

does not use linked list 
•  Instead: if bucket occupied, find other bucket 

(need m≥n) 
•  For insert: probe a sequence of buckets until 

find empty one! 
•  h(x) specifies probe sequence for item x 

  Ideally, sequence visits all buckets 
  h: U × [1..m]  [1..m] 

Universe of keys  Probe number 
Bucket 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collision 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free spot! 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Open Addressing (example) 



Operations 

•  Insert 
  Probe till find empty bucket, put item there 

•  Search 
  Probe till find item (return with success) 
 Or find empty bucket (return with failure) 
•  Because if item inserted, would use that empty bucket 

•  Delete 
  Probe till find item 
  Remove, leaving empty bucket 



Problem with Deletion 

•  Consider a sequence 
  Insert x 
  Insert y 
•  suppose probe sequence for y passes x bucket 
•  store y elsewhere 

 Delete x (leaving hole) 
  Search for y  
•  Probe sequence hits x bucket 
•  Bucket now empty 
•  Conclude y not in table (else y would be there) 



Solution for deletion 

•  When delete x 
  Leave it in bucket 
  But mark it deleted --- store “tombstone” 

•  Future search for x sees x is deleted 
  Returns “x not found” 

•  “Insert z” probes may hit x bucket 
  Since x is deleted, overwrite with z 
  So keeping deleted items doesn’t waste space 



What probe sequence? 



Linear probing 

•  h(k,i) = h’(k) + i for ordinary hash h’ 
•  Problem: creates “clusters”, i.e. sequences of full 

buckets  
  exactly like parking 
  Big clusters are hit by lots of new items 
  They get put at end of cluster 
  Big cluster gets bigger: “rich get richer” phenomenon 



Ø 

1 

m-1 

cluster 

if h(k,1) is any of 
these, the cluster 
will get bigger 

i.e. the bigger the cluster is, the 
more likely it is to grow larger, 
since there are more opportunities 
to make it larger… 



Linear probing 

•  h(k,i) = h’(k) + i for ordinary hash h’ 
•  Problem: creates “clusters”, i.e. sequences of full 

buckets 
  exactly like parking 
  Big clusters are hit by lots of new items 
  They get put at end of cluster 
  Big cluster gets bigger: “rich get richer” phenomenon 

•  For 0.1 < α < 0.99, cluster size Θ(log n) 
•  Wrecks our constant-time operations 



Double Hashing 
•  Two ordinary hash functions f(k), g(k) 
•  Probe sequence h(k,i) = f(k) + i·g(k) mod m 
•  If g(k) relatively prime to m, hits all buckets 

  E.g., if m=2r, make g(k) odd 
  The same bucket is hit twice if for some i,j: 

 f(k) + i·g(k) = f(k) + j·g(k) mod m  
  i·g(k) = j·g(k)  (mod m) 
 (i-j)·g(k) = 0 (mod m) 
  m and g(k) not relatively prime  

(otherwise m should divide i-j, which is not possible for i, j<m) 



Performance of Open Addressing 

•  Operation time is length of probe sequence 
•  How long is it? 
•  In general, hard to answer. 
•  Introducing… 
•  “Uniform Hashing Assumption” (UHA): 

  Probe sequence is a uniform random permutation 
of [1..m] 

  (N.B. this is different to the simple uniform 
hashing assumption (SUHA)) 



Analysis under UHA 

•  Suppose: 
   a size-m table contains n items 
 we are using open addressing 
 we are about to insert new item 

•  Probability first prob successful? 

Why?  From UHA, probe sequence random permutaFon 
Hence, first posiFon probed random 
m‐n out of the m slots are unoccupied 

m− n

m
:= p



Analysis (II) 
•  If first probe unsuccessful, probability second 

prob successful? 

Why? 
•  From UHA, probe sequence random permutation 

m− n

m− 1 ≥ m− n

m
= p

• Hence, first probed slot is random; the second probed 
slot is random among the remaining slots, etc. 
• Since first probe unsuccessful, it probed an occupied slot 
• Hence, the second probe is choosing uniformly from m-1 
slots, among which m-n are still clean 



Analysis (II) 

•  If first two probes unsuccessful, probability 
third prob successful? 

m− n

m− 2
≥ m− n

m
= p

•  … 

 every trial succeeds with probability ≥p 

expected number of probes till success? ≤ 1
p

=
1

1− α

e.g. if α=90%,  expected number of probes is at most 10 



Open Addressing vs. Chaining 

•  Open addressing skips linked lists 
  Saves space (of list pointers) 
  Better locality of reference 
•  Array concentrated in m space 
•  So fewer main-memory accesses bring it to cache 
•  Linked list can wander all of memory 

•  Open addressing sensitive to α
 As α  1, access time shoots up 



1
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Open Addressing vs. Chaining 

•  Open addressing skips linked lists 
  Saves space (of list pointers) 
  Better locality of reference 
•  Array concentrated in m space 
•  So fewer main-memory accesses bring it to cache 
•  Linked list can wander all of memory 

•  Open addressing sensitive to α
 As α  1, access time shoots up 
  Cannot allow α > 1 

•  Open addressing needs good hash to avoid 
clustering 



ADVANCED HASHING 
covered in recita@on (for those who care) 



Universal Hashing 

•  Get rid of simple uniform hashing assumption 
•  Create a family of hash functions 
•  When you start, pick one at random 
•  Unless you are unlucky, few collisions 

 Adversary doesn’t know what hash you will use 
  So cannot pick keys that collide in it 



Universal Hash Family… 
•  …is a family (set) of hash functions such that, for 

any keys x and y, if you choose a random h from 
the family, Pr[h(x)=h(y)] = 1/m 

•  Such a family produces few expected collisions 
  E[collisions with x] = E[number of y s.t. h(x)=h(y)] 

                                     = E[Σy 1h(x)=h(y)] 
                                     = Σy E[1h(x)=h(y)] (linearity of E) 

                                     = Σy Pr[ h(x)=h(y) ] 
                                     = n/m 



Universal Families Exist! 
•  Suppose m is a prime p 
•  Define hab(x) = a·x+b (mod p) 
•  If a and b are random elements in {0,…,p-1}, then hab(x) is a 

universal family 
  mod p is field, so you can divide/substract as well 
  Pick two keys x and y. What is the probability (over the choice of a, b) 

that the hashes of x and y collide? 
  It has to be that a·x+b = q (mod p) and a·y+b = q (mod p), for some q in 

{0,…,p-1} 
  This is a linear system in a, b 

•  Two variables, two equations 
  Unique solution---unique hab makes this happen 

•  Probability of choosing this hab is 1/p2 

  Collide if hab(x) = hab(y) = q for some q 
  hence overall probability of collision: p/p2 = 1/p = 1/m 

•  Justifies multiplication hash 



Even Better 

•  Perfect Hashing 
 Hash table with zero collisions 
  So don’t need linked lists 

•  Can’t guarantee for arbitrary keys 
•  But if you know keys in advance, can quickly 

find a hash function that works 
  E.g. for a fixed dictionary 



Summary 

•  Hashing maps a large universe to a small range 
•  But avoids collisions 
•  Result:  

  Fast dictionary data structure 
  Fingerprints to save comparison time 

•  Next week: sorting 


