6.006- Introduction to Algorithms

Lecture 7

Prof. Constantinos Daskalakis CLRS: 11.4, 17.

So Far

- Hash table as dictionary
 - Insert/Search/Delete
- Collisions by chaining
 - Build a linked list in each bucket
 - Operation time is length of list
- Simple Uniform Hashing
 - Every item to uniform random bucket
 - n items in size m table \rightarrow average length n/m = α
- Signatures: fast comparison
- Rolling Hash: fast sequence of hash's

DYNAMIC DICTIONARIES

Dynamic Dictionaries

- In substring application, inserted all at once then scanned
- More generally, arbitrary sequence of insert, delete, find
- How do we know how big the table will get?
- What if we guess wrong?
 too small → load high, operations too slow
 too large → high initialization cost, consumes space,
 potentially more cache-misses
- Want m= $\Theta(n)$ at all times

Solution: Resize

- Start table at small constant size
- When table too full, make it bigger
- When table too empty, make it smaller
- How?
 - Build a whole new hash table and insert items
 - Recompute all hashes
 - Recreate new linked lists
 - Time spent to rebuild:

(new-size) + #hashes x (HashTime)

When to resize?

- Approach 1: whenever n > m, rebuild table to new size
 - Sequence of n inserts
 - Each increases n past m, causes rebuild
 - Total work: $\Theta(1 + 2 + ... + n) = \Theta(n^2)$

a factor of (HashTime) is suppressed here

- Approach 2: Whenever n ≥ 2m, rebuild table to new size
 - Costly inserts: insert 2ⁱ for all i: These cost: $\Theta(1 + 2 + 4 + ... + n) = \Theta(n)$
 - All other inserts take O(1) time why?
 - Inserting n items takes O(n) time
 - Keeps m a power of 2 --- good for mod

Amortized Analysis

- If a sequence of n operations takes time T, then each operation has amortized cost T/n
 - Like amortizing a loan: payment per month
- Rebuilding when n ≥ 2m → some ops are very slow
 - $\Theta(n)$ for insertion that causes last resize
- But on average, fast
 - O(1) amortized cost per operation
- Often, only care about total runtime
 - So averaging is fine

Insertions+Deletions?

- Rebuild table to new size when n < m?
 - Same as bad insert: O(n²) work
- Rebuild when n<m/2?
 - Makes a sequence of deletes fast
 - What about an arbitrary sequence of inserts/deletes?
 - Suppose we have just rebuilt: m=n
 - Next rebuild a grow → at least m more inserts are needed before growing table
 - Amortized cost O(2m / m)) = O(1)
 - Next rebuild a shrink → at least m/2 more deletes are needed before shrinking
 - Amortized cost O(m/2 / (m/2)) = O(1)

Another Approach

- Algorithm
 - Keep m a power of 2 (good for mod)
 - Grow (double m) when $n \ge m$
 - Shrink (halve m) when $n \le m/4$
- Analysis
 - Just after rebuild: n=m/2
 - Next rebuild a grow \rightarrow at least m/2 more inserts
 - Amortized cost O(2m / (m/2)) = O(1)
 - Next rebuild a shrink \rightarrow at least m/4 more deletes
 - Amortized cost O(m/2 / (m/4)) = O(1)

Summary

- Arbitrary sequence of insert/delete/find
- O(1) amortized time per operation

OPEN ADDRESSING

Recall Chaining...

 \mathcal{U} : universe of all possible keys-huge set

K: actual keys-small set, but not known when designing data structure

Open Addressing

- Different technique for dealing with collisions; does not use linked list
- Instead: if bucket occupied, find other bucket (need m≥n)
- For insert: probe a sequence of buckets until find empty one!
- h(x) specifies probe sequence for item x
 - Ideally, sequence visits all buckets
 - h: U × [1..m] → [1..m]
 Bucket
 Universe of keys

Open Addressing (example)

Operations

- Insert
 - Probe till find empty bucket, put item there
- Search
 - Probe till find item (return with success)
 - Or find empty bucket (return with failure)
 - Because if item inserted, would use that empty bucket
- Delete
 - Probe till find item
 - Remove, leaving empty bucket

Problem with Deletion

- Consider a sequence
 - Insert x
 - Insert y
 - suppose probe sequence for y passes x bucket
 - store y elsewhere
 - Delete x (leaving hole)
 - Search for y
 - Probe sequence hits x bucket
 - Bucket now empty
 - Conclude y not in table (else y would be there)

Solution for deletion

- When delete x
 - Leave it in bucket
 - But mark it deleted --- store "tombstone"
- Future search for x sees x is deleted
 - Returns "x not found"
- "Insert z" probes may hit x bucket
 - Since x is deleted, overwrite with z
 - So keeping deleted items doesn't waste space

What probe sequence?

Linear probing

- h(k,i) = h'(k) + i for ordinary hash h'
- Problem: creates "clusters", i.e. sequences of full buckets
 - exactly like parking
 - Big clusters are hit by lots of new items
 - They get put at end of cluster
 - Big cluster gets bigger: "rich get richer" phenomenon

Linear probing

- h(k,i) = h'(k) + i for ordinary hash h'
- Problem: creates "clusters", i.e. sequences of full buckets
 - exactly like parking
 - Big clusters are hit by lots of new items
 - They get put at end of cluster
 - Big cluster gets bigger: "rich get richer" phenomenon
- For $0.1 < \alpha < 0.99$, cluster size $\Theta(\log n)$
- Wrecks our constant-time operations

Double Hashing

- Two ordinary hash functions f(k), g(k)
- Probe sequence $h(k,i) = f(k) + i \cdot g(k) \mod m$
- If g(k) relatively prime to m, hits all buckets
 - E.g., if m=2^r, make g(k) odd
 - The same bucket is hit twice if for some i,j:
 f(k) + i · g(k) = f(k) + j · g(k) mod m
 - \rightarrow i · g(k) = j · g(k) (mod m)

 $\rightarrow (i-j) \cdot g(k) = 0 \pmod{m}$

 \rightarrow m and g(k) not relatively prime

(otherwise m should divide i-j, which is not possible for i, j < m)

Performance of Open Addressing

- Operation time is length of probe sequence
- How long is it?
- In general, hard to answer.
- Introducing...
- "Uniform Hashing Assumption" (UHA):
 - Probe sequence is a uniform random permutation of [1..m]
 - (N.B. this is different to the simple uniform hashing assumption (SUHA))

Analysis under UHA

- Suppose:
 - a size-m table contains n items
 - we are using open addressing
 - we are about to insert new item
- Probability first prob successful?

$$\frac{m-n}{m} := p$$

Why? From UHA, probe sequence random permutation Hence, first position probed random m-n out of the m slots are unoccupied

Analysis (II)

• If first probe unsuccessful, probability second prob successful?

$$\frac{m-n}{m-1} \ge \frac{m-n}{m} = p$$

Why?

- From UHA, probe sequence random permutation
- •Hence, first probed slot is random; the second probed slot is random among the remaining slots, etc.
- Since first probe unsuccessful, it probed an occupied slot
 Hence, the second probe is choosing uniformly from m-1 slots, among which m-n are still clean

Analysis (II)

• If first two probes unsuccessful, probability third prob successful?

$$\frac{m-n}{m-2} \ge \frac{m-n}{m} = p$$

→ every trial succeeds with probability ≥p expected number of probes till success? $\leq \frac{1}{p} = \frac{1}{1-\alpha}$

e.g. if α =90%, expected number of probes is at most 10

Open Addressing vs. Chaining

- Open addressing skips linked lists
 - Saves space (of list pointers)
 - Better locality of reference
 - Array concentrated in m space
 - So fewer main-memory accesses bring it to cache
 - Linked list can wander all of memory
- Open addressing sensitive to $\boldsymbol{\alpha}$
 - As $\alpha \rightarrow 1$, access time shoots up

Open Addressing vs. Chaining

- Open addressing skips linked lists
 - Saves space (of list pointers)
 - Better locality of reference
 - Array concentrated in m space
 - So fewer main-memory accesses bring it to cache
 - Linked list can wander all of memory
- Open addressing sensitive to $\boldsymbol{\alpha}$
 - As $\alpha \rightarrow 1$, access time shoots up
 - Cannot allow $\alpha > 1$
- Open addressing needs good hash to avoid clustering

ADVANCED HASHING

covered in recitation (for those who care)

Universal Hashing

- Get rid of simple uniform hashing assumption
- Create a family of hash functions
- When you start, pick one at random
- Unless you are unlucky, few collisions
 - Adversary doesn't know what hash you will use
 - So cannot pick keys that collide in it

Universal Hash Family...

- ...is a family (set) of hash functions such that, for any keys x and y, if you choose a random h from the family, Pr[h(x)=h(y)] = 1/m
- Such a family produces few expected collisions
 - E[collisions with x] = E[number of y s.t. h(x)=h(y)]

$$= E[\Sigma_y 1_{h(x)=h(y)}]$$

= $\Sigma_y E[1_{h(x)=h(y)}]$ (linearity of E)
= $\Sigma_y Pr[h(x)=h(y)]$
= n/m

Universal Families Exist!

- Suppose m is a prime p
- Define $h_{ab}(x) = a \cdot x + b \pmod{p}$
- If a and b are random elements in $\{0, \dots, p-1\}$, then $h_{ab}(x)$ is a universal family
 - mod p is field, so you can divide/substract as well
 - Pick two keys x and y. What is the probability (over the choice of a, b) that the hashes of x and y collide?
 - It has to be that $a \cdot x + b = q \pmod{p}$ and $a \cdot y + b = q \pmod{p}$, for some q in $\{0, \dots, p-1\}$
 - This is a linear system in a, b
 - Two variables, two equations
 - Unique solution---unique h_{ab} makes this happen
 - Probability of choosing this h_{ab} is $1/p^2$
 - Collide if $h_{ab}(x) = h_{ab}(y) = q$ for some q
 - hence overall probability of collision: $p/p^2 = 1/p = 1/m$
- Justifies multiplication hash

Even Better

- Perfect Hashing
 - Hash table with zero collisions
 - So don't need linked lists
- Can't guarantee for arbitrary keys
- But if you know keys in advance, can quickly find a hash function that works
 - E.g. for a fixed dictionary

Summary

- Hashing maps a large universe to a small range
- But avoids collisions
- Result:
 - Fast dictionary data structure
 - Fingerprints to save comparison time
- Next week: sorting