6.006- Introduction to Algorithms

Lecture 6

Prof. Constantinos Daskalakis

CLRS: Chapter 17 and 32.2.
LAST TIME...
Dictionaries, Hash Tables

- **Dictionary**: Insert, Delete, Find a key
 - can associate a whole item with each key

- **Hash table**
 - implements a dictionary, by spreading items over an array
 - uses *hash function*
 - \(h: \) Universe of keys (huge) → Buckets (small)
 - **Collisions**: Multiple items may fall in same bucket
 - **Chaining Solution**: Place colliding items in linked list, then scan to search

- **Simple Uniform Hashing** Assumption (SUHA):
 - \(h \) is “random”, uniform on buckets
 - Hashing \(n \) items into \(m \) buckets → expected “load” per bucket: \(n/m \)
 - If chaining used, expected search time \(O(1 + n/m) \)
Hash Table with Chaining

\(\mathcal{U} \): universe of all possible keys - huge set

\(K \): actual keys - small set, but not known when designing data structure
Hash Functions?

• **Division hash**
 - \(h(k) = k \mod m \)
 - Fast if \(m \) is a power of 2, slow otherwise
 - Bad if e.g. keys are regular

• **Multiplication hash**
 - \(a \) an odd integer
 - \(h(k) = (a \cdot k \mod 2^w) >> w-r \)
 - Better on regular sets of keys
Non-numbers?

• What if we want to hash e.g. strings?
• Any data is bits, and bits are a number
• E.g., strings:
 – Letters a..z can be “digits” base 26.
 – “the” = t·(26)^2 + h·(26) + e
 = 19·(676) + 8·(26) + 5
 = 334157
• Note: hash time is length of string, not O(1) (wait a few slides)
Longest Common Substring

• Strings S, T of length n, want to find longest common substring

• Algorithms from last time:
 \(O(n^4) \rightarrow O(n^3 \log n) \rightarrow O(n^2 \log n) \)

• Winner algorithm used a hash table of size n:
 Binary search on maximum match length L; to check if a length works:
 – Insert all length-L substrings of S in hash table
 – For each length-L substring x of T
 • Look in bucket \(h(x) \) to see if x is in S
Runtime Analysis

• Binary search cost: $O(\log n)$ length values L tested
• For each length value L, here are the costly operations:
 – Inserting all L-length substrings of S: $n-L$ hashes
 • Each hash takes L time, so total work $\Theta((n-L)L)=\Theta(n^2)$
 – Hashing all L-length substrings of T: $n-L$ hashes
 • another $\Theta(n^2)$
 – Time for comparing substrings of T to substrings of S:
 • How many comparisons?
 • Under SUHA, each substring of T is compared to an expected $O(1)$ of substrings of S found in its bucket
 • Each comparison takes $O(L)$
 • Hence, time for all comparisons: $\Theta(nL)=\Theta(n^2)$

• So $\Theta(n^2)$ work for each length
• Hence $\Theta(n^2 \log n)$ including binary search
Faster?

• Amdahl’s law: if one part of the code takes 20% of the time, then no matter how much you improve it, you only get 20% speedup

• Corollary: must improve all asymptotically worst parts to change asymptotic runtime

• In our case
 – Must compute sequence of n hashes faster
 – Must reduce cost of comparing in bucket
FASTER COMPARISON
Faster Comparison

- **First Idea:** when we find a match for some length, we can stop and go to the next value of length in our binary search.

- **But,** the real problem is “false positives”
 - Strings in same bucket that don’t match, but we waste time on

- **Analysis:**
 - n substrings to size-n table: average load 1
 - SUHA: for every substring x of T, there is 1 other string in x’s bucket (in expectation)
 - Comparison work: L per string (in expectation)
 - So total work for all strings of T: $nL = \Theta(n^2)$
Solution: Bigger table!

• What size?
• Table size $m = n^2$
 – n substrings to size-m table: average load $1/n$
 – SUHA: for every substring x of T, there is $1/n$ other strings in x’s bucket (in expectation)
 – Comparison work: L/n per string (in expectation)
 – So total work for all strings of T: $n(L/n) = L = O(n)$

• Downside?
 – Bigger table
 – $(n^2$ isn’t realistic for large n)
Signatures

• Note n^2 table isn’t needed for fast lookup
 – Size n enough for that
 – n^2 is to reduce cost of false positive compares
• So don’t bother making the n^2 table
 – Just compute for each string another hash value in the larger range 1..n^2
 – Called a signature
 – If two signatures differ, strings differ
 – $Pr[\text{same sig for two different strings}] = 1/n^2$
 • (simple uniform hashing)
Application

• Hash substrings to size n table
• But store a signature with each substring
 – Using a second hash function to $[1..n^2]$
• Check each T-string against its bucket
 – First check signature, if match then compare strings
 – Signature is a small number, so comparing them is $O(1)$

strictly speaking $O(\log n)$; but if $n^2 < 2^{32}$ the signature fits inside a word of the computer; in this case, the comparison takes $O(1)$
Application

• Runtime Analysis:
 – for each T-string:
 \[O(\text{bucket size}) = O(1) \] work to compare signatures;
 – so overall \(O(n) \) time in signature comparisons
 – Time spent in string comparisons?
 \[L \times (\text{Expected Total Number of False-Signature Collisions}) \]
 - \(n \) out of the \(n^2 \) values in \([1..n^2]\) are used by S-strings
 - so probability of a T-string signature-colliding with some S-string: \(n/n^2 \)
 - hence total expected number of collisions 1
 so total time spent in String Comparisons is \(L \)

fine print: we didn’t take into account the time needed to compute signatures; we can compute all signatures in \(O(n) \) time using trick described next...
FASTER HASHING
Rolling Hash

• We make a sequence of n substring hashes
 – Substring lengths L
 – Total time $O(nL) = O(n^2)$

• Can we do better?
 – For our particular application, yes!
Rolling Hash Idea

- e.g. hash all 3-substrings of “there”
- Recall division hash: \(x \mod m \)
- Recall string to number:
 - First substring “the” = \(t \cdot (26)^2 + h \cdot (26) + e \)
- If we have “the”, can we compute “her”?

 \[
 \text{“her”} = h \cdot (26)^2 + e \cdot (26) + r \\
 = 26 \cdot \left(h \cdot (26) + e \right) + r \\
 = 26 \cdot \left(t \cdot (26)^2 + h \cdot (26) + e - t \cdot (26)^2 \right) + r \\
 = 26 \cdot \left(\text{“the”} - t \cdot (26)^2 \right) + r
 \]
- i.e. subtract first letter’s contribution to number, shift, and add last letter
General rule

- **Strings = base-b numbers**
- **Current substring S[i … i+L-1]**

\[
S[i] \cdot b^{L-1} + S[i+1] \cdot b^{L-2} + S[i+2] \cdot b^{L-3} \ldots + S[i+L-1] - S[i] \cdot b^{L-1} \\
=S[i+1] \cdot b^{L-2} + S[i+2] \cdot b^{L-3} \ldots + S[i+L-1] \\
=b \\
=S[i+1] \cdot b^{L-1} + S[i+2] \cdot b^{L-2} \ldots + S[i+L-1] \cdot b + S[i+L] = S[i+1 \ldots i+L]
\]
Mod Magic 1

- So: \(S[i+1 \ldots i+L] = b S[i \ldots i+L-1] - b^L S[i] + S[i+L] \)
- where
 \[
 S[i \ldots i+L-1] = S[i] \cdot b^{L-1} + S[i+1] \cdot b^{L-2} + \ldots + S[i+L-1] \quad (*)
 \]
- But \(S[i \ldots i+L-1] \) may be a huge number (so huge that we may not even be able to store in the computer, e.g. \(L=50, b=26 \))
- Solution only keep its division hash: \(S[\ldots] \mod m \)
- This can be computed without computing \(S[\ldots] \), using mod magic!
- Recall: \((ab) \mod m = (a \mod m)(b \mod m)(\mod m)\)
 \((a+b) \mod m = (a \mod m) + (b \mod m)(\mod m)\)
- With a clever parenthesization of \((*)\): \(O(L)\) to hash string!
Mod Magic 2

• Recall: $S[i+1 \ldots i+L] = b \cdot S[i \ldots i+L-1] - b^L \cdot S[i] + S[i+L]$
• Say we have hash of $S[i \ldots i+L-1]$, can we still compute hash of $S[i+1 \ldots i+L]$?
• Still mod magic to the rescue!
• Job done in $O(1)$ operations, if we know $b^L \mod m$

Computing $n-L$ hashes costs $O(n)$
- $O(L)$ time for the first hash
- $+O(L)$ to compute $b^L \mod m$
- $+ O(1)$ for each additional hash
Summary

• Reduced compare cost to $O(n)/\text{length}$
 – By using a big hash table
 – Or signatures in a small table
• Reduced hash computation to $O(n)/\text{length}$
 – Rolling hash function
• Total cost of phases: $O(n \log n)$

• Not the end: suffix tree achieves $O(n)$