6.006- Introduction to Algorithms

Lecture 6

Prof. Constantinos Daskalakis CLRS: Chapter 17 and 32.2.

LAST TIME...

Dictionaries, Hash Tables

- **Dictionary**: Insert, Delete, Find a key
 - can associate a whole item with each key
- Hash table
 - implements a dictionary, by spreading items over an array
 - uses hash function
 - h: Universe of keys (huge) \rightarrow Buckets (small)
 - *Collisions*: Multiple items may fall in same bucket
 - *Chaining Solution*: Place colliding items in linked list, then scan to search
- **Simple Uniform Hashing** Assumption (SUHA):

h is "random", uniform on buckets

- Hashing n items into m buckets \rightarrow expected "load" per bucket: n/m
- If chaining used, expected search time O(1 + n/m)

Hash Table with Chaining

- \mathcal{U} : universe of all possible keys-huge set
- *K* : actual keys-small set, but not known when designing data structure

Hash Functions?

- Division hash
 - $-h(k) = k \mod m$
 - Fast if m is a power of 2, slow otherwise
 - Bad if e.g. keys are regular

Non-numbers?

- What if we want to hash e.g. strings?
- Any data is bits, and bits are a number
- E.g., strings:
 - Letters a..z can be "digits" base 26.

- "the" =
$$t \cdot (26)^2 + h \cdot (26) + e$$

= $19 \cdot (676) + 8 \cdot (26) + 5$
= 334157

• Note: hash time is length of string, not O(1) (wait a few slides)

Longest Common Substring

- Strings S,T of length n, want to find longest common substring
- Algorithms from last time: $O(n^4) \rightarrow O(n^3 \log n) \rightarrow O(n^2 \log n)$
- Winner algorithm used a hash table of size n:

Binary search on maximum match length L; to check if a length works:

- Insert all length-L substrings of S in hash table
- For each length-L substring x of T
 - Look in bucket h(x) to see if x is in S

Runtime Analysis

- Binary search cost: O(log n) length values L tested
- For each length value L, here are the costly operations:
 - Inserting all L-length substrings of S: n-L hashes
 - Each hash takes L time, so total work $\Theta((n-L)L)=\Theta(n^2)$
 - Hashing all L-length substrings of T: n-L hashes
 - another $\Theta(n^2)$
 - Time for comparing substrings of T to substrings of S:
 - How many comparisons?
 - Under SUHA, each substring of T is compared to an expected O(1) of substrings of S found in its bucket
 - Each comparison takes O(L)
 - Hence, time for all comparisons: $\Theta(nL)=\Theta(n^2)$
- So $\Theta(n^2)$ work for each length
- Hence $\Theta(n^2 \log n)$ including binary search

Faster?

- Amdahl's law: if one part of the code takes 20% of the time, then no matter how much you improve it, you only get 20% speedup
- Corollary: must improve all asymptotically worst parts to change asymptotic runtime
- In our case
 - Must compute sequence of n hashes faster
 - Must reduce cost of comparing in bucket

FASTER COMPARISON

Faster Comparison

- **First Idea:** when we find a match for some length, we can stop and go to the next value of length in our binary search.
- **But,** the real problem is "false positives"
 - Strings in same bucket that don't match, but we waste time on
- Analysis:
 - n substrings to size-n table: average load 1
 - SUHA: for every substring x of T, there is 1 other string in x's bucket (in expectation)
 - Comparison work: L per string (in expectation)
 - So total work for all strings of T: $nL = \Theta(n^2)$

Solution: Bigger table!

- What size?
- Table size $m = n^2$
 - n substrings to size-m table: average load 1/n
 - SUHA: for every substring x of T, there is 1/n other strings in x's bucket (in expectation)
 - Comparison work: L/n per string (in expectation)
 - So total work for all strings of T: n(L/n) = L = O(n)
- Downside?
 - Bigger table
 - $-(n^2 isn't realistic for large n)$

Signatures

- Note n² table isn't needed for fast lookup
 - Size n enough for that
 - $-n^2$ is to reduce cost of false positive compares
- So don't bother making the n² table
 - Just compute for each string another hash value in the larger range $1..n^2$
 - Called a signature
 - If two signatures differ, strings differ
 - Pr[same sig for two different strings] = $1/n^2$
 - (simple uniform hashing)

Application

- Hash substrings to size n table
- But store a signature with each substring
 Using a second hash function to [1..n²]
- Check each T-string against its bucket
 - First check signature, if match then compare strings
 - Signature is a small number, so comparing them is O(1)

strictly speaking O(logn); but if n²<2³² the signature fits inside a word of the computer; in this case, the comparison takes O(1)

Application

- Runtime Analysis:
 - for each T-string:
 - O(bucket size)=O(1) work to compare signatures;
 - so overall O(n) time in signature comparisons
 - Time spent in string comparisons?
 - L x (Expected Total Number of False-Signature Collisions)
 - n out of the n² values in [1..n²] are used by S-strings
 - so probability of a T-string signature-colliding with some S-string: n/n^2
 - hence total expected number of collisions 1
 - so total time spent in String Comparisons is L

fine print: we didn't take into account the time needed to compute signatures; we can compute all signatures in O(n) time using trick described next...

FASTER HASHING

Rolling Hash

- We make a sequence of n substring hashes
 - Substring lengths L
 - Total time $O(nL) = O(n^2)$
- Can we do better?
 - For our particular application, yes!

Rolling Hash Idea

- e.g. hash all 3-substrings of "there"
- Recall division hash: x mod m
- Recall string to number:

- First substring "the" = $t \cdot (26)^2 + h \cdot (26) + e$

• If we have "the", can we compute "her"?

"her"
=
$$h \cdot (26)^2 + e \cdot (26) + r$$

= $26 \cdot (h \cdot (26) + e) + r$
= $26 \cdot (t \cdot (26)^2 + h \cdot (26) + e - t \cdot (26)^2) + r$
= $26 \cdot ("the" - t \cdot (26)^2) + r$

• i.e. subtract first letter's contribution to number, shift, and add last letter

General rule

- Strings = base-b numbers
- Current substring S[i ... i+L-1] S[i] $\cdot b^{L-1} + S[i+1] \cdot b^{L-2} + S[i+2] \cdot b^{L-3} ... + S[i+L-1] - S[i] \cdot b^{L-1}$

 $S[i+1] \cdot b^{L-2} + S[i+2] \cdot b^{L-3} \dots + S[i+L-1]$

b

$$\begin{split} S[i+1] \cdot b^{L-1} + S[i+2] \cdot b^{L-2} \dots + S[i+L-1] \cdot b \\ + & S[i+L] \\ S[i+1] \cdot b^{L-1} + S[i+2] \cdot b^{L-2} \dots + S[i+L-1] \cdot b + S[i+L] \\ = S[i+1 \dots i+L] \end{split}$$

Mod Magic 1

- So: $S[i+1 \dots i+L] = b S[i \dots i+L-1] b^L S[i] + S[i+L]$
- where

 $S[i \dots i+L-1] = S[i] \cdot b^{L-1} + S[i+1] \cdot b^{L-2} + \dots + S[i+L-1] (*)$

- **But** S[i ... i+L-1] may be a huge number (so huge that we may not even be able to store in the computer, e.g. L=50, b=26)
- **Solution** only keep its *division hash*: S[...] mod m
- This can be computed without computing S[...], using mod magic!
- Recall: (ab) mod m = (a mod m) (b mod m) (mod m) (a+b) mod m = (a mod m) + (b mod m) (mod m)
 - With a clever parenthesization of (*): O(L) to hash string!

Mod Magic 2

- Recall: $S[i+1 \dots i+L] = b S[i \dots i+L-1] b^L S[i] + S[i+L]$
- Say we have hash of S[i ... i+L-1], can we still compute hash of S[i+1 ... i+L]?
- Still mod magic to the rescue!
- Job done in O(1) operations, if we know $b^L \mod m$

Computing n-L hashes costs O(n) O(L) time for the first hash +O(L) to compute $b^{L} \mod m$ + O(1) for each additional hash

Summary

- Reduced compare cost to O(n)/length
 - By using a big hash table
 - Or signatures in a small table
- Reduced hash computation to O(n)/length
 Rolling hash function
- Total cost of phases: O(n log n)

• Not the end: suffix tree achieves O(n)