### 6.006- Introduction to Algorithms



Prof. Constantinos Daskalakis CLRS: Chapter 17 and 32.2.

## LAST TIME...

## Dictionaries, Hash Tables

- Dictionary: Insert, Delete, Find a key
- can associate a whole item with each key
- Hash table
- implements a dictionary, by spreading items over an array
- uses hash function
h: Universe of keys (huge) $\rightarrow$ Buckets (small)
- Collisions: Multiple items may fall in same bucket
- Chaining Solution: Place colliding items in linked list, then scan to search
- Simple Uniform Hashing Assumption (SUHA):
$h$ is "random", uniform on buckets
- Hashing n items into m buckets $\rightarrow$ expected "load" per bucket: $\mathrm{n} / \mathrm{m}$
- If chaining used, expected search time $\mathrm{O}(1+\mathrm{n} / \mathrm{m})$


## Hash Table with Chaining


$\mathcal{U}$ : universe of all possible keys-huge set
$K$ : actual keys-small set, but not known when
designing data structure

## Hash Functions?

- Division hash
$-h(k)=k \bmod m$
- Fast if $m$ is a power of 2 , slow otherwise
- Bad if e.g. keys are regular
- Multiplication hash
- a an odd integer
$-\mathrm{h}(\mathrm{k})=\left(\mathrm{a} \cdot \mathrm{k} \bmod 2^{\mathrm{w}}\right) \gg \mathrm{w}-\mathrm{r}$
- Better on regular sets of keys


## Non-numbers?

- What if we want to hash e.g. strings?
- Any data is bits, and bits are a number
- E.g., strings:
- Letters a..z can be "digits" base 26.
$-" t h e "=t \cdot(26)^{2}+h \cdot(26)+e$

$$
\begin{aligned}
& =19 \cdot(676)+8 \cdot(26)+5 \\
& =334157
\end{aligned}
$$

- Note: hash time is length of string, not $\mathrm{O}(1)$ (wait a few slides)


## Longest Common Substring

- Strings $S$,T of length $n$, want to find longest common substring
- Algorithms from last time:

$$
\mathrm{O}\left(\mathrm{n}^{4}\right) \rightarrow \mathrm{O}\left(\mathrm{n}^{3} \log \mathrm{n}\right) \rightarrow \mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)
$$

- Winner algorithm used a hash table of size n :

Binary search on maximum match length $L$; to check if a length works:

- Insert all length-L substrings of S in hash table
- For each length-L substring x of T
- Look in bucket $h(x)$ to see if $x$ is in $S$


## Runtime Analysis

- Binary search cost: $\mathrm{O}(\log \mathrm{n})$ length values L tested
- For each length value L, here are the costly operations:
- Inserting all L-length substrings of S: n-L hashes
- Each hash takes L time, so total work $\Theta((n-L) L)=\Theta\left(n^{2}\right)$
- Hashing all L-length substrings of T: n-L hashes
- another $\Theta\left(\mathrm{n}^{2}\right)$
- Time for comparing substrings of $T$ to substrings of $S$ :
- How many comparisons?
- Under SUHA, each substring of $T$ is compared to an expected $O(1)$ of substrings of S found in its bucket
- Each comparison takes O(L)
- Hence, time for all comparisons: $\Theta(n L)=\Theta\left(n^{2}\right)$
- So $\Theta\left(n^{2}\right)$ work for each length
- Hence $\Theta\left(n^{2} \log n\right)$ including binary search


## Faster?

- Amdahl's law: if one part of the code takes $20 \%$ of the time, then no matter how much you improve it, you only get $20 \%$ speedup
- Corollary: must improve all asymptotically worst parts to change asymptotic runtime
- In our case
- Must compute sequence of $n$ hashes faster
- Must reduce cost of comparing in bucket


## FASTER COMPARISON

## Faster Comparison

- First Idea: when we find a match for some length, we can stop and go to the next value of length in our binary search.
- But, the real problem is "false positives"
- Strings in same bucket that don't match, but we waste time on
- Analysis:
- n substrings to size-n table: average load 1
- SUHA: for every substring x of T, there is $\mathbf{1}$ other string in x's bucket (in expectation)
- Comparison work: L per string (in expectation)
- So total work for all strings of $T: \mathbf{n L}=\Theta\left(\mathbf{n}^{\mathbf{2}}\right)$


## Solution: Bigger table!

- What size?
- Table size $\mathbf{m}=\mathbf{n}^{2}$
- n substrings to size -m table: average load $1 / n$
- SUHA: for every substring x of T , there is $\mathbf{1 / n}$ other strings in x's bucket (in expectation)
- Comparison work: $\mathbf{L} / \mathbf{n}$ per string (in expectation)
- So total work for all strings of T: $\mathbf{n}(\mathrm{L} / \mathbf{n})=\mathrm{L}=\mathbf{O}(\mathbf{n})$
- Downside?
- Bigger table
- ( $n^{2}$ isn't realistic for large $n$ )


## Signatures

- Note $\mathrm{n}^{2}$ table isn't needed for fast lookup
- Size n enough for that
$-n^{2}$ is to reduce cost of false positive compares
- So don't bother making the $\mathrm{n}^{2}$ table
- Just compute for each string another hash value in the larger range $1 . . \mathrm{n}^{2}$
- Called a signature
- If two signatures differ, strings differ
$-\operatorname{Pr}[$ same sig for two different strings $]=1 / \mathrm{n}^{2}$
- (simple uniform hashing)


## Application

- Hash substrings to size n table
- But store a signature with each substring
- Using a second hash function to [1..n²]
- Check each T-string against its bucket
- First check signature, if match then compare strings
- Signature is a small number, so comparing them is $\mathrm{O}(1)$
strictly speaking $O(\operatorname{logn})$; but if $n^{2}<2^{32}$ the signature fits inside a word of the computer; in this case, the comparison takes $\mathrm{O}(1)$


## Application

- Runtime Analysis:
- for each T-string:

O (bucket size) $=\mathrm{O}(1)$ work to compare signatures;

- so overall $O(n)$ time in signature comparisons
- Time spent in string comparisons?

L x (Expected Total Number of False-Signature Collisions)

- $n$ out of the $n^{2}$ values in [1..n²] are used by S -strings
- so probability of a T -string signature-colliding with some S-string: $\mathrm{n} / \mathrm{n}^{2}$
- hence total expected number of collisions 1 so total time spent in String Comparisons is L fine print: we didn't take into account the time needed to compute signatures; we can compute all signatures in $\mathrm{O}(\mathrm{n})$ time using trick described next...


## FASTER HASHING

## Rolling Hash

- We make a sequence of $n$ substring hashes
- Substring lengths L
- Total time $\mathrm{O}(\mathrm{nL})=\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Can we do better?
- For our particular application, yes!
length n
Verba volant, scripta
manent length L


## Rolling Hash Idea

- e.g. hash all 3-substrings of "there"
- Recall division hash: x mod m
- Recall string to number:
- First substring "the" $=\mathrm{t} \cdot(26)^{2}+\mathrm{h} \cdot(26)+\mathrm{e}$
- If we have "the", can we compute "her"?

$$
\begin{aligned}
\text { "her" } & =h \cdot(26)^{2}+e \cdot(26)+r \\
& =26 \cdot(h \cdot(26)+e)+r \\
& =26 \cdot(\underbrace{\left.(26)^{2}+h \cdot(26)+e-t \cdot(26)^{2}\right)+r} \\
& =26 \cdot\left(\text { "the" }-t \cdot(26)^{2}\right)+r
\end{aligned}
$$

- i.e. subtract first letter's contribution to number, shift, and add last letter


## General rule

- Strings = base-b numbers
- Current substring $\mathrm{S}[\mathrm{i} \ldots \mathrm{i}+\mathrm{L}-1]$
$S[i] \cdot b^{L-1}+S[i+1] \cdot b^{L-2}+S[i+2] \cdot b^{L-3} \ldots+S[i+L-1]$
$-S[i] \cdot b^{L-1}$

$$
\bar{S}[i+1] \cdot b^{L-2}+S[i+2] \cdot b^{L-3} \ldots+S[i+L-1]
$$

$\frac{b}{S[i+1] \cdot b^{L-1}+S[i+2]} \cdot b^{L-2} \ldots+S[i+L-1] \cdot b$

$+\quad$| $\mathrm{S}[i+\mathrm{L}]$ |
| ---: |
| $\mathrm{S}[\mathrm{i}+1] \cdot \mathrm{b}^{\mathrm{L}-1}+\mathrm{S}[i+2]$ |
| $=\mathrm{S}[i+1 \ldots \mathrm{i}+\mathrm{L}]$ |

## Mod Magic 1

- So: $\mathbf{S}[\mathbf{i}+1 \ldots \mathbf{i}+\mathrm{L}]=\mathbf{b} \mathbf{S [ i} \ldots \mathbf{i}+\mathrm{L}-1]-\mathbf{b}^{\mathrm{L}} \mathbf{S}[\mathbf{i}]+\mathrm{S}[\mathbf{i}+\mathrm{L}]$
- where

$$
\mathrm{S}[\mathrm{i} \ldots \mathrm{i}+\mathrm{L}-1]=\mathrm{S}[\mathrm{i}] \cdot \mathrm{b}^{\mathrm{L}-1}+\mathrm{S}[\mathrm{i}+1] \cdot \mathrm{b}^{\mathrm{L}-2}+\ldots+\mathrm{S}[\mathrm{i}+\mathrm{L}-1]\left({ }^{*}\right)
$$

- But S[i ... i+L-1] may be a huge number (so huge that we may not even be able to store in the computer, e.g. $\mathrm{L}=50, \mathrm{~b}=26$ )
- Solution only keep its division hash: $\mathrm{S}[\ldots] \bmod m$
- This can be computed without computing S[...], using mod magic!
- Recall: $(\mathrm{ab}) \bmod \mathrm{m}=(\mathrm{a} \bmod \mathrm{m})(\mathrm{b} \bmod \mathrm{m})(\bmod m)$ $(a+b) \bmod m=(a \bmod m)+(b \bmod m)(\bmod m)$
- With a clever parenthesization of $(*): \mathrm{O}(\mathrm{L})$ to hash string!


## Mod Magic 2

- Recall: $S[i+1 \ldots i+L]=b S[i \ldots i+L-1]-b^{L} S[i]+S[i+L]$
- Say we have hash of $S[i \ldots i+L-1]$, can we still compute hash of $\mathrm{S}[\mathrm{i}+1 \ldots \mathrm{i}+\mathrm{L}]$ ?
- Still mod magic to the rescue!
- Job done in $\mathrm{O}(1)$ operations, if we know $b^{\mathrm{L}} \bmod m$

Computing n-L hashes costs $\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{L})$ time for the first hash
$+\mathrm{O}(\mathrm{L})$ to compute $\mathrm{b}^{\mathrm{L}} \bmod \mathrm{m}$
$+\mathrm{O}(1)$ for each additional hash

## Summary

- Reduced compare cost to $\mathrm{O}(\mathrm{n}) /$ length
- By using a big hash table
- Or signatures in a small table
- Reduced hash computation to $\mathrm{O}(\mathrm{n}) /$ length
- Rolling hash function
- Total cost of phases: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
- Not the end: suffix tree achieves $\mathrm{O}(\mathrm{n})$

