Today’s Topic

“Optimist pays off!”

a.k.a. The ubiquity and usefulness of **dictionaries**
Dictionaries

- It is a set containing **items**; each item has a **key**
- what keys and items are is quite flexible
- Supported Operations:
 - Insert(*item*): add given *item* to set
 - Delete(*item*): delete given *item* to set
 - Search(*key*): return the item corresponding to the given *key*, if such an item exists
- **Assumption**: every item has its own key (or that inserting new item clobbers old)
- Application (and origin of name): Dictionaries
 - *Key* is word in English, *item* is word in French
Dictionaries are everywhere

• Spelling correction
 – *Key* is misspelled word, *item* is correct spelling

• Python Interpreter
 – Executing program, see a variable name (*key*)
 – Need to look up its current assignment (*item*)

• Web server
 – Thousands of network connections open
 – When a packet arrives, must give to right process
 – *Key* is source IP address of packet, *item* is handler
Implementation

- use BSTs!
 - can keep keys in a BST, keeping a pointer from each key to its value
 - $O(\log n)$ time per operation
- Often not fast enough for these applications!
- Can we beat BSTs?

if only we could do all operations in $O(1)$...
[A parenthesis: DNA Matching]
Application: DNA matching

- Given two DNA sequences
 - Strings over 4-letter alphabet
- Find largest substring that appears in both
 - Algorithm vs. Arithmetic
 - Algorithm vs. Arithmetic
- Also useful in plagiarism detection

- Say strings S and T of length n
Naïve Algorithm

- For $L = n$ downto 1
- for all length L substrings $X1$ of S
- for all length L substrings $X2$ of T
 - if $X1=X2$, return L

- Runtime analysis
 - n candidate lengths
 - n strings of that length in each of $X1$, $X2$
 - L time to compare the strings
 - Total runtime: $\Omega(n^4)$
Improvement 1: binary search

- Start with $L = n/2$
- for all length L substrings X_1 of S
- for all length L substrings X_2 of T
 - if $X_1 = X_2$, success, try larger L
 - if failed, try smaller L

- Runtime analysis
 $\Omega(n^4) \Rightarrow \Omega(n^3 \log n)$
Improvement 2: Dictionary

- For every possible length $L = n, \ldots, 1$
 - Insert all length L substrings of S into a dictionary
 - For each length L substring of T, check if it exists in dictionary

- Possible lengths for outer loop: n
- For each length:
 - at most n substrings of S inserted into dictionary, each insertion takes time $O(1) \cdot L$ (L is paid because we have to read string to insert it)
 - at most n substrings of T checked for existence inside dictionary, each check takes time $O(1) \cdot L$
 - Overall time spent to deal with a particular length L is $O(Ln)$
- Hence overall $O(n^3)$
- With binary search on length, total is $O(n^2 \log n)$
- “Rolling hash” dictionaries improve to $O(n \log n)$ (next time)
...end of parenthesis]
Dictionaries: Attempt #1

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>key1</td>
<td>item1</td>
<td></td>
</tr>
<tr>
<td>key2</td>
<td>item2</td>
<td></td>
</tr>
<tr>
<td>key3</td>
<td>item3</td>
<td></td>
</tr>
</tbody>
</table>

- Forget about BSTs..
- Use table, indexed by keys!
Problems...

- What if keys aren’t numbers?

 How can I then index a table?
Problems...

- What if keys aren’t numbers?

How can I then index a table?
Problems...

- What if keys aren’t numbers?

 “Everything is number.”

 - Anything in the computer is a sequence of bits
 - So we can pretend it’s a number

- Example: English words
 - 26 letters in alphabet
 ⇒ can represent each with 5 bits
 - Antidisestablishmentarianism has 28 letters
 - $28 \times 5 = 140$ bits
 - So, store in array of size 2^{140} oops

- Isn’t this too much space for 100,000 words?
Hash Functions

- Exploit sparsity
 - Huge universe U of possible keys
 - But only n keys actually present
 - Want to store in table (array) of size $m \sim n$

- Define **hash function** $h: U \rightarrow \{1..m\}$
 - Filter key k through $h(\)$ to find table position
 - Table entries are called **buckets**

- Time to insert/find key is
 - Time to compute h (generally length of key)
 - Plus one time step to look in array
\(U \) : universe of all possible keys; huge set

\(K \) : actual keys; small set but not known in advance
\(u\) : universe of all possible keys

(i) insert **item1**, with key \(k_1\)

(ii) insert **item2**, with key \(k_2\)

(iii) insert **item3**, with key \(k_3\)

(iv) suppose we now try to insert **item4**, with key \(k_4\) and \(h(k_4) = h(k_2)\)…
(i) insert item1, with key k1

(ii) insert item2, with key k2

(iii) insert item3, with key k3

(iv) suppose we now try to insert item4, with key k4 and h(k4) = h(k2)…
Collisions

• What went/can go wrong?
 – Distinct keys x and y
 – But $h(x) = h(y)$
 – Called a collision

• This is unavoidable: if table smaller than range, some keys must collide…
 – Pigeonhole principle

• What do you put in the bucket?
Coping with collisions

- **Idea1**: Change to a new “uncolliding” hash function
 - Hard to find, and takes time

- **Idea2**: Chaining
 - Put both items in same bucket (this lecture)

- **Idea3**: Open addressing
 - Find a different, empty bucket for y (next lecture)
Chaining

- Each bucket, linked list of contained items
- Space used is space of table plus one unit per item (size of key and item)

U: universe of all possible keys

K: actual keys, not known in advance
Problem Solved?

- To find key, must scan whole list in key’s bucket
- Length L list costs L key comparisons
- If all keys hash to same bucket, lookup cost $\Theta(n)$
Solution: Optimism

• Assume keys are equally likely to land in every bucket, independently of where other keys land

• Call this the “Simple Uniform Hashing” assumption
 – (why/when can we make this assumption?)
Average Case Analysis under SUHA

- n items in table of m buckets
- Average number of items/bucket is $\alpha = \frac{n}{m}$
- So expected time to find some key x is $1 + \alpha$
- $O(1)$ if $\alpha = O(1)$, i.e. $m = \Omega(n)$
Problem: Reality

- Keys are often very nonrandom
 - Regularity (evenly spaced sequence of keys)
 - All sorts of mysterious patterns
- Solution: pick a hash function whose values “look” random
- Similar to pseudorandom generators
- Whatever function, always some set of keys that is bad
 - but hopefully not your set
Division Hash Function

- $h(k) = k \mod m$
- k_1 and k_2 collide when $k_1 = k_2 \pmod{m}$
 - Unlikely if keys are random
- e.g. if m is a power of 2, just take low order bits of key
 - Very fast (a mask)
 - And people care about very fast in hashing
Problems

• Regularity
 – Suppose keys are \(x, 2x, 3x, 4x, \ldots\)
 – Suppose \(x\) and chosen \(m\) have common divisor \(d\)
 – Then \((m/d)x\) is a multiple of \(m\)
 • so \(i \cdot x = (i + m/d)x \mod m\)
 – Only use \(1/d\) fraction of table
 • E.g., \(m\) power of 2 and all keys are even

• So make \(m\) a prime number
 – But finding a prime number is hard
 – And now you have to divide (slow)
Multiplication Hash Function

- Suppose we’re aiming for table size 2^r
- and keys are w bits long, where $w > r$ is the machine word
- Multiply k with some a (fixed for the hash function)
- then keep certain bits of the result as follows

![Diagram](image_url)
Multiplication Hash Function

- The formula:
 \[h(k) = \left\lfloor (a \times k) \mod 2^w \right\rfloor \gg (w - r) \]

 - Multiply by \(a \)
 - When overflow machine word, wrap
 - Take high \(r \) bits of resulting machine word
 - (Assumes table size smaller than machine word)

Benefit: Multiplying and bit shifts faster than division
Good practice: Make \(a \) an odd integer (why?) \(> 2^{w-1} \)
Python Implementation

- Python objects have a hash method
 - Number, string, tuple, any object implementing `__hash__`
- Maps object to (arbitrarily large) integer
 - So really, should be called prehash
- Take mod m to put in a size-m hash table
- Peculiar details
 - Integers map to themselves
 - Strings that differ by one letter don’t collide
 - "better" than random for common sequences
 - 1, 2, 3, 4, 5 or var_a, var_b, var_c, var_d
Conclusion

- Dictionaries are pervasive
- Hash tables implement them efficiently
 - Under an optimistic assumption of random keys
 - Can be "made true" by choice of hash function
- How did we beat BSTs?
 - Used indexing
 - Sacrificed operations: previous, successor
- Next time: open addressing