Outline

- Voting technology survey
- What is being used now?
- Voting Requirements
- Security Threats
- Security Strategies and Principles
- New voting systems proposals: “Twin” and “Scantegrity II”
Voting Tech Survey

- Public voting
- Paper ballots
- Lever machines
- Punch cards
- Optical scan
- DRE (Touch-screen)
- DRE + VVPAT (paper audit trail)
- Vote by mail (absentee voting)
- Internet voting (?)
- New voting methods (“end-to-end”), involving invisible ink, multiple ballots, scratch-off, cryptography, and other innovations...
Public Voting

The County Election. Bingham. 1846.
Paper Ballots

- Lincoln ballot, 1860, San Francisco
- “Australian ballot”, 1893, Iowa city
Lever Machines

- Invented in 1892.
- Production ceased in 1982.
- See "Behind the Freedom Curtain" (1957)
Punch card voting

- Invented 1960’s, based on computerized punch card.
- Now illegal, by HAVA (Help America Vote Act) of 2002.
The famous “butterfly ballot”
A “dimpled chad” ???
Optical scan ("opscan")

First used in 1962
DRE (“Touchscreen”)

- Direct Recording by Electronics
- First used in 1970’s
- Essentially, a stand-alone computer
DRE + VVPAT

- DRE+Voter-Verified Paper Audit Trail.
- First used in 2003.
Vote By Mail

- Often used for absentee voting, but some states use it as default.
- Typically uses opscan ballots.
Internet voting (?)

- Risks combining the worst features of vote-by-mail (voter coercion) with the problems of DRE’s (software security) and then adding new vulnerabilities (DDOS attacks from foreign powers?)...

- Why?? Because we can ????

- Still, interesting experiments being carried out (e.g. Helios [Adida], Civitas [Clarkson/Chong/Myers]).
What is being used?
Type of Voting Equipment by County - 1980

Percent of Counties	Percent of Registered Voters
Punchcard | 16.9% | 28.0%
DataVote | 1.1% | 3.0%
Lever | 36.9% | 42.9%
Paper | 41.0% | 10.8%
Optical | 0.8% | 2.1%
Electronic | 2% | 0.7%
Mixed Systems | 3.0% | 12.5%
Type of Voting Equipment by County - 2004

- Punchcard: 9.0% of Counties, 12.3% of Registered Voters
- DataVote: .8% of Counties, 1.4% of Registered Voters
- Lever: 8.6% of Counties, 13.9% of Registered Voters
- Paper: 9.6% of Counties, .7% of Registered Voters
- Optical: 45.4% of Counties, 33.7% of Registered Voters
- Electronic: 21.7% of Counties, 30.8% of Registered Voters
- Mixed Systems: 4.8% of Counties, 7.2% of Registered Voters

*Equipment is expected to be used in the November 2004 election as reported by state election officials.
The map shows equipment used at polling places, not necessarily by districts/ballots.

Copyright © 2004 Election Data Services, Inc.
*Contact with attribution available at 309-330-3933

ElectionDataServices
1401 L Street NW, Suite 510
Washington, DC 20036-3417
www.ElectionDataServices.com
November 2006 Voting Equipment Usage by County

Equipment expected to be used in the November 2006 election as reported by state election officials. The map shows equipment used at polling places, not necessarily absentees or disabled balloting.

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Percent of Counties</th>
<th>Percent of Registered Voters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punchcard</td>
<td>.4%</td>
<td>.2%</td>
</tr>
<tr>
<td>Lever</td>
<td>2.0%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Paper</td>
<td>1.8%</td>
<td>.2%</td>
</tr>
<tr>
<td>Optical</td>
<td>56.2%</td>
<td>48.9%</td>
</tr>
<tr>
<td>Electronic</td>
<td>36.6%</td>
<td>38.3%</td>
</tr>
<tr>
<td>Mixed Systems</td>
<td>3.0%</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

Copyright © 2006 Election Data Services, Inc.
Printed with information as of 12/30/2006.
Voting System Requirements
Voting is a hard problem

- **Voter Registration** - each eligible voter votes at most once

- **Voter Privacy** - no one can tell how any voter voted, even if voter wants it; no “receipt” for voter

- **Integrity** - votes can’t be changed, added, or deleted; tally is accurate.

- **Availability** - voting system is available for use when needed

- **Ease of Use**

- **Accessibility** - for voters with disabilities

- **Assurance** - verifiable integrity
Security threats
Who are potential adversaries?

- Political zealots (want to fix result)
- Voters (may wish to sell their votes)
- Election officials (may be partisan)
- Vendors (may have evil “insider”)
- Foreign powers (result affects them too!)

Really almost anybody!
Threats to Voting Security

- Dead people voting
- Ballot-box stuffing
- Coercion/Intimidation/Buying votes
- Replacing votes or memory cards
- Mis-counting
- Malicious software
- Viruses on voting machines
 - California top-to-bottom review found serious problems of this sort...
- ... See Brennan Center Report, “The Machinery of Democracy”...
Some possible strategies...
Can’t voter have a “receipt”?

◆ Why not let voter take home a “receipt” confirming how she voted?
◆ A receipt showing her choices would allow a voter to sell her vote (or to be coerced).
◆ Not acceptable!
◆ Note weakness in vote-by-mail...
◆ Need to ban cell-phone cameras!
Why not all-electronic voting?

- DRE’s contain large amounts of software (e.g. 500,000 lines of code, not counting code for Windows CE, etc.)
- Software is exceedingly hard to build, test, and evaluate. Particularly if someone malicious is trying to hide their tracks.
- In the end, hard to provide assurance that votes are recorded as the voter intended.
Voter-Verified Paper Audit Trails

- Examples: opscan, DRE+VVPAT, electronic ballot markers
- Allow voter to verify, without depending on software, that at least one (paper) record of her vote is correct. This paper record is, of course, not taken home, but cast.
- Paper trail allows for recounts and audits.
- Post-election audit can compare statistical sample of paper ballots with corresponding electronic records.
Auditing (APR08 - Negexp)

- Margin of victory is M
- Precinct i has v_i voters?
- Adversary wants to pick precincts to corrupt with total size M
- Auditor wants $1 - \alpha$ chance of finding corruption of this size or larger.
- Audit precinct i with probability $1 - \alpha^{v_i/M}$
- Hand-count paper in precincts picked
Software Independence

- Notion introduced by TGDC for new voting system standards ("VVSG") for the EAC.
- TGDC = Technical Guidelines Development Committee
- VVSG = Voluntary Voting System Guidelines = federal certification standards
- EAC = Election Assistance Commission
- Proposed standard mandates that all voting systems be software independent.
Software Independence

◆ A voting system is “software dependent” if an undetected error in the software can cause an undetectable change in the reported election outcome.
◆ A voting system is “software independent” (SI) if it is not software dependent.
◆ With SI system, you can’t rig election just by changing the software.
◆ VVPAT systems are SI.
◆ There are others (e.g. “end-to-end”)
New voting system proposals
New voting systems: “end to end”

- Uses web so voter can check that her ballot was counted as she intended (this is hard to do right---she shouldn’t be able to “sell her vote”).
- May use math (crypto) to enable such verification without violating voter privacy.
New voting systems: “end-to-end”

- Provide “end-to-end” integrity:
 - Votes verifiably “cast as intended”
 - Votes verifiably “collected as cast”
 - Votes verifiably “counted as collected”

- VVPAT only gets the first of these; once ballot is cast, what happens thereafter depends on integrity of “chain of custody” of ballots.

- “End-to-end” systems provide SI + verifiable chain of custody and tally.
“Twin” (Rivest & Smith)

- “academic” proposal
- NYT op-ed 1/7/08 by Poundstone in favor
- Each paper ballot has a copy ("twin") made that is put in “mixer bin”
- Voter casts original paper ballot (which is scanned and published on web), and takes home from mixer bin a copy of some previous voter’s ballot as a “receipt”.
- Voter may check that receipt is on web.
Twin integrity

◆ Verifiably cast as intended
◆ Verifiably collected as cast: voters check that earlier voter’s ballot is posted
◆ Verifiably counted as collected: anyone can tally posted ballots
◆ Usability ... dubious...
Scantegrity II (Chaum, et al.)

- Marries traditional opscan with modern cryptographic (end-to-end) methods.
- Uses:
 - Invisible ink for “confirmation codes”
 - Web site
 - Crypto (back end)
- Ballots can be scanned by ordinary scanners.
- Ballots can be recounted by hand as usual.
- Takoma Park 11/03/09.
Scantegrity II details

- Special pen marks oval, but shows previously invisible confirmation code.
- CC’ s are random.
- Voter can copy & take home CC’ s.
- Officials also post revealed CC’ s.
- Voters can confirm posting (uses ballot serial number for lookup), and protest if incorrect.
Officials create two permutations: CC's \rightarrow mid's \rightarrow candidates

CC's mid's Candidates

251
2X Tom
F7 Tom
PN Dick
CA Dick

302
Scantegrity II integrity

- Election officials post commitments to all values and edges on web:

<table>
<thead>
<tr>
<th>CC’s</th>
<th>mid’s</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X</td>
<td>●</td>
<td>Tom</td>
</tr>
<tr>
<td>F7</td>
<td>●</td>
<td>Tom</td>
</tr>
<tr>
<td>PN</td>
<td>●</td>
<td>Dick</td>
</tr>
<tr>
<td>CA</td>
<td>●</td>
<td>Dick</td>
</tr>
</tbody>
</table>

Dimensions: 720.0x540.0
Scantegrity II integrity

- EO’s open chosen CC’s and mark related nodes; post tally; voter checks CC’s and tally.

CC’s **mid’s** **Candidates**

<table>
<thead>
<tr>
<th></th>
<th>2X</th>
<th>F7</th>
<th>PN</th>
<th>CA</th>
<th>Tom</th>
<th>Tom</th>
<th>Dick</th>
<th>Dick</th>
</tr>
</thead>
<tbody>
<tr>
<td>251</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>302</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Scantegrity II integrity

“randomized partial checking” confirms check marks consistent

<table>
<thead>
<tr>
<th>CC’s</th>
<th>mid’s</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X</td>
<td></td>
<td>Tom</td>
</tr>
<tr>
<td>F7</td>
<td></td>
<td>Tom</td>
</tr>
<tr>
<td>PN</td>
<td></td>
<td>Dick</td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td>Dick</td>
</tr>
</tbody>
</table>

251

302

0

2
Scantegrity II integrity

- **Cast as intended**: as in opscan
- **Collected as cast**: voter can check that his CC’s are posted correctly.
- **Counted as cast**: ballot production audit, checkmark consistency check, and public tally of web site give verifiably correct result.
Two races per ward; six wards.

One poll site. 1722 voters. 66 verified on-line.

Election ran smoothly.

Absentee votes; early votes; provisional votes; spoiled ballots; ballot audits; privacy sleeves; write-ins; IRV; external auditors; two scanners; spanish+english; ...
David Chaum + scanner
Ballot and confirmation codes
Scantegrity II team

<table>
<thead>
<tr>
<th>Scantegrity II team</th>
<th>TP officials:</th>
<th>Auditors & survey:</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Chaum</td>
<td>Jessie Carpenter</td>
<td>Ben Adida</td>
</tr>
<tr>
<td>Rick Carback</td>
<td>Anne Sergeant</td>
<td>Lilley Coney</td>
</tr>
<tr>
<td>Jeremy Clark</td>
<td>Jane Johnson</td>
<td>Filip Zagorski</td>
</tr>
<tr>
<td>John Conway</td>
<td>Barrie Hoffman</td>
<td>Lynn Baumeister</td>
</tr>
<tr>
<td>Aleks Essex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alex Florescu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cory Jones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travis Mayberry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stefan Popoveniuc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vivek Relan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ron Rivest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peter Ryan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan Rubio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emily Shen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alan Sherman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bhushan Sonawane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poorvi Vora</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“End-to-end” voting systems promise more verifiable integrity than we have seen to date in voting systems: they “verify the election outcome”, and don’t depend on “verifying the equipment & software”.

These systems have become practical, although more research and development is needed for scalability, accessibility, etc...
The End

Thanks for your attention!