Admin:

Pset #4 out.

Quiz in-class Wed 4/16. Open notes (No laptops or books)

Projects: Next week: meet with TA to review progress.

Presentation schedule out soon (let us know if conflict)

Today:

- Digital signatures
- Security defn for digital signatures
- Hash & Sign
- RSA - PKCS
- RSA - PSS
- El Gamal dig. sigs.
- DSA - (NIST standard)
Digital Signatures (compare "electronic signature", "cryptographic signature")

- Invented by Diffie & Hellman in 1976
 ("New Directions in Cryptography")
- First implementation: RSA (1977)
- Initial idea: switch PK/SK
 (enc with secret key \Rightarrow signature)
 (if PK decrypt; it & looks ok then sig ok??)

Current way of describing digital signatures

- $\text{Keygen}(1^l) \rightarrow (\text{PK}, \text{SK})$
 \[\text{verification key} \rightarrow \text{signing key} \]
- $\text{Sign}(\text{SK}, m) \rightarrow \sigma_{\text{SK}}(m)$ \[\text{signature} \quad \text{[may be randomized]}\]
- $\text{Verify}(\text{PK}, m, \sigma) = \text{True/False (accept/reject)}$

Correctness:

$(\forall m) \text{Verify}(\text{PK}, m, \text{Sign}(\text{SK}, m)) = \text{True}$
Security of digital signature schemes:

Def: (weak) existential unforgeability under adaptive chosen message attack.

1. Challenger obtains \((PK, SK)\) from Keygen(\(\lambda\)).
 Challenger sends \(PK\) to Adversary.

2. Adversary obtains signatures to a sequence \(m_1, m_2, \ldots, m_g\) of messages of his choice. Here \(g = \text{poly}(\lambda)\), and \(m_i\) may depend on signatures to \(m_1, m_2, \ldots, m_{i-1}\).
 Let \(\sigma_i = \text{Sign}(SK, m_i)\).

3. Adversary outputs pair \((m, \sigma_x)\).

Adversary wins if \(\text{Verify}(PK, m, \sigma_x) = \text{True}\) and \(m \notin \{m_1, m_2, \ldots, m_g\}\).

Scheme is secure (i.e., weakly existentially unforgeable under adaptive chosen message attack) if
\[
\text{Prob}[\text{Adv wins}] = \text{negligible}
\]
Scheme is strongly secure if adversary can't even produce new signature for a message that was previously signed for him. I.e. Adv wins if \(\text{Verify}(PK, m, \sigma_{\text{Adv}}) = \text{True} \)
and \((m, \sigma_{\text{Adv}}) \notin \{(m_1, \sigma_1), (m_2, \sigma_2), \ldots, (m_g, \sigma_g)\}\).
Digital signatures

- Def of digital signature scheme
- Def of weak/strong existential unforgeability \{ see notes \}
 under adaptive chosen message attack, \{ from last lecture \}

Hash & Sign:

For efficiency reasons, usually best to sign

cryptographic hash \(h(M) \) of message, rather
than signing \(M \). Modular exponentiations are slow compared to (say) SHA-256.

Hash function \(h \) should be collision-resistant.
Signing with RSA - PKCS

- PKCS = "Public key cryptography standard"
 (early industry standard)
- Hash & sign method. Let \(H \) be CR hash fn.
- Given message \(M \) to sign:

 Let \(m = H(M) \)

Define \(\text{pad}(m) = \)

\[
\text{Ox } 00 \text{ 01 FF } \ldots \text{FF 00 || hash-name || m}
\]

where \# FF bytes enough to make \(|\text{pad}(m)| = |n| \) in bytes.
where hash-name is given in ASN.1 syntax (ugh!)

- Seems secure, but no proofs (even assuming \(H \) is CR
 and RSA is hard to invert)

\[
\sigma(M) = (\text{pad}(m))^d \pmod{n}
\]
PSS - Probabilistic Signature Scheme [Bellare & Rogaway, 1996]

- RSA-based
- "Probabilistic" = randomized [one M has many sigs]

\[
\sigma(M) = y^d \pmod{n}
\]

Sign(M):

\[
\begin{align*}
& r \leftarrow \mathcal{R}_{\mathbb{Z}_n} \\
& w \leftarrow h(M || r) \\
& r^* \leftarrow g_1(w) \oplus r \quad |r^*| = k_0 \\
& y \leftarrow \mathcal{O}(w||r^*||g_2(w)) \quad |y| = |n| \\
& \text{output } \sigma(M) = y^d \pmod{n}
\end{align*}
\]

Verify(M, \sigma):

\[
y \leftarrow \sigma^e \pmod{n}
\]

Parse \(y \) as \(b || w || r^* || \gamma \)

\[
\begin{align*}
& b = 0 & h(M || r) = w & g_2(w) = \gamma \\
& r^* \leftarrow r^* \oplus g_1(w)
\end{align*}
\]

return True iff \(b = 0 \& h(M || r) = w \& g_2(w) = \gamma \)
• We can model h, g_1, and g_2 as random oracles.

Theorem:

PSS is (weakly) existentially unforgeable against a chosen message attack in random oracle model if RSA is not invertible on random inputs.
El Gamal digital signatures

Public system parameters: prime p

generator g of \mathbb{Z}_p^*

Keygen: $x \leftarrow \mathbb{Z}_{p-1}$, $y = g^x \pmod{p}$, $SK = x$, $PK = y$

$Sign(M)$:

$m = \text{hash}(M)$

Pick $k \leftarrow \mathbb{Z}_{p-1}$, $r = g^k$

$s = \frac{m-\text{hash}(M) \cdot r}{k} \pmod{p-1}$

$\sigma(M) = (r, s)$

$Verify(M, x, (r, s))$:

Check that $0 < r < p$ (else reject)

Check that $y^r r^s = g^m \pmod{p}$

where $m = \text{hash}(M)$
Correctness of El Gamal signatures:

\[y^r s = g^{rx} g^{sk} = g^{rx+sk} \equiv g^m \pmod{p} \]

\[\equiv\]

\[rx + ks \equiv m \pmod{p-1} \]

or

\[s \equiv (m-rx) \pmod{p-1} \]

(assuming \(k \in \mathbb{Z}_{p-1}^* \))
Theorem: El Gamal signatures are existentially forgeable
(without h, or h=identity (note: this is CR!))

Proofs Let $e \leftarrow \mathbb{Z}_{p-1}$

$r \leftarrow g^e \cdot y \pmod{p}$

$s \leftarrow -r \pmod{p}$

Then (r,s) is valid El Gamal sig. for message $m=e \cdot s \pmod{p-1}$.

Check:

$y^r r^s \equiv g^m$

$g^{xr} (g^e)^{r^e} = g^{-er} = g^{es} = g^m \checkmark$

But: It is easy to fix.

Modified El Gamal (Pointcheval & Stern 1996)

Sign (M): $k \leftarrow \mathbb{Z}^*_p$

$r = g^k \pmod{p}$

$m = h(M \| r)$

$s = (m-rx)/k \pmod{p-1}$

$\sigma(M) = (r,s)$

Verify: check $0 < r < p$ and $y^r r^s = g^m$ where $m = h(M \| r)$.

Theorem: Modified El Gamal is existentially unforgeable
against adaptive chosen message attack, in ROM,
assuming DLP is hard.
Digital Signature Standard (DSS - NIST 1991)

Public parameters (same for everyone):

- \(q \) prime, \(|q| = 160 \text{ bits} \)
- \(p = nq + 1 \) prime, \(|p| = 1024 \text{ bits} \)
- \(g_0 \) generates \(\mathbb{Z}_p^* \)
- \(g = g_0^k \) generates subgroup \(G_q \) of \(\mathbb{Z}_p^* \) of order \(q \)

Keygen:

- \(x \leftarrow \mathbb{Z}_q \) SK \(|x| = 160 \text{ bits} \)
- \(y \leftarrow g^x \mod p \) PK \(|y| = 1024 \text{ bits} \)

Sign(\(m \)):

- \(k \leftarrow \mathbb{Z}_q^* \) (i.e. \(1 \leq k < q \))
- \(r = (g^k \mod p) \mod q \) \(|r| = 160 \text{ bits} \)
- \(m = h(M) \)
- \(s = (m + rx) / k \mod q \) \(|s| = 160 \text{ bits} \)

Note: if \(k \) is reused for different messages \(m \), one could solve for \(x \) so it is not secure.

If \(k \) is reused for the same \(m \), we obtain the same signature so this is not a problem. If \(k \) is different for the same \(m \), it should be random and unknown (any known relation between the two \(k \)-s allows to solve for \(x \)).

Bottomline: All of the above are enforced by \(k \) chosen at random from \(\mathbb{Z}_q^{\omega} \) for large enough \(q \).
Verify:

Check $0 < r < q$ & $0 < s < q$

Check $y^{r/s} m^s (mod \ p)(mod \ q) = r$

where $m = h(M)$

Correctness:

$g^{(rx+m)/s} \equiv r (mod \ p)(mod \ q)$

$\equiv g^k \equiv r (mod \ p)(mod \ q)$ \ \checkmark

As it stands, existentially forgeable for $h = \text{identity}$. Provably secure (as with Modified El Gamal)

if we replace $m = h(M)$ by $m = h(M || r)$, as before.

Note: As with El Gamal, secrecy & uniqueness of k

is essential to security.