Admin:

Pset #1 due 2/24. Pset #2 out 2/24. (new groups for pset #2)

Project idea:

AEG - Automatic Exploit Generation CACM 2/14 p. 74-84

Discuss:

(The Tech) Tidbit: students/letter/MIT legal aid. 2/18/14

Today:

Cryptographic hash functions
- definitions
- random oracle model
- desirable properties
- applications
- Keccak (SHA-3) overview
(Cryptographic) Hash functions

A cryptographic hash function h maps bit-strings of arbitrary length to a fixed-length output in an efficient, deterministic, public, "random" manner:

$$h : \{0,1\}^* \rightarrow \{0,1\}^d$$

- all strings of length d
- all strings (of any length ≥ 0)

Sometimes called a "message digest" function.

Typical output lengths are $d = 128, 160, 256, 512$ bits.

No secret key. Anyone can compute h from its public description. Computation is efficient (poly-time).

Examples:

- MD4
- MD5
- SHA-1
- SHA-256
- SHA-512
- SHA-3 (coming!)

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD4</td>
<td>128</td>
<td>"broken"</td>
</tr>
<tr>
<td>MD5</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>SHA-1</td>
<td>160</td>
<td>? CR?</td>
</tr>
<tr>
<td>SHA-256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>SHA-512</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>SHA-3</td>
<td>224, 256, 384, 512</td>
<td></td>
</tr>
</tbody>
</table>
"Ideal" Hash Function: Random Oracle (RO)

- Theoretical model - not achievable in practice

Oracle ("in the sky")

- receives inputs x & returns output $h(x)$, for any $x \in \{0,1\}^*$, $|h(x)| = d$ bits.
- On input $x \in \{0,1\}^*$:
 - if x not in book:
 - flip coin d times to determine $h(x)$
 - record $(x, h(x))$ in book
 - else: return y where (x, y) in book.

- Gives random answer every time, but uses book to record previous answers, so h is deterministic.
Many cryptographic schemes are proved secure in ROM ("Random Oracle Model"), which assumes existence of RO. Then RO is replaced by conventional hash function (e.g. SHA-256) in practice, which is hopefully "pseudorandom enough"!?
Hash function desirable properties:

1. "One-way" (pre-image resistance)
 "Infeasible", given $y \in \{0,1\}^d$ to find any x s.t. $h(x) = y$ (x is a "pre-image" of y)

 \[h: \{0,1\}^* \rightarrow \{0,1\}^d \]

 (Note that a "brute-force" approach of trying x's at random requires $\Theta(2^d)$ trials (in ROM).

2. "Collision-resistance" (strong collision resistance)
 "Infeasible" to find x, x' s.t. $x \neq x'$ and $h(x) = h(x')$ (a "collision")

 \[\{0,1\}^* \rightarrow \{0,1\}^d \]

 (In ROM, requires trying about $2^{d/2}$ x's (x_1, x_2, \ldots) before a pair x_i, x_j colliding is found. (This is the "birthday paradox".)

Actually, the correct definition is that is hard for an adversary, given $y = h(x)$ (where x was picked uniformly at random from $\{0,1\}^n$) to find any x' such that $h(x') = y$.

OW

CR
Note that collisions are unavoidable since
\[|\mathcal{Z}_0,1^{d^4}| = \infty \]
\[|\mathcal{Z}_0,1^{d^4}| = 2^{d} \]

Birthday paradox detail:

If we hash \(x_1, x_2, \ldots, x_n\) (distinct strings)

then

\[E(\#\text{collisions}) = \sum_{i \neq j} \Pr(h(x_i) = h(x_j)) \]

\[= \binom{n}{2} \cdot 2^{-d} \quad [\text{if } h \text{ "uniform"}] \]

\[\approx \frac{n^2 \cdot 2^{-d}}{2} \]

This is \(\geq 1\) when \(n \geq 2^{(d+1)/2} = 2^{d/2}\)

The birthday paradox is the reason why hash function outputs are generally twice as big as you might naively expect; you only get 80 bits of security (w.r.t. CR) for a 160-bit output.

With some tricks, memory requirements can be dramatically reduced.
TCR

3. "Weak collision resistance" (target collision resistance, 2nd pre-image resistance)

"Infeasible", given $x \in \mathbb{F}_2^{128}$, to find $x' \neq x$ s.t. $h(x) = h(x')$.

Like CR, but one pre-image given & fixed.

(In ROM, can find x' in time $\Theta(2^d)$ (as for OW, since knowing x doesn't help in ROM).

PRF

4. Pseudo-randomness

"h is indistinguishable under black-box access from a random oracle"

To make this notion workable, really need a family of hash functions, one of which is chosen at random. A single, fixed, public hash function is easy to identify.

NM

5. Non-malleability

"Infeasible", given $h(x)$, to produce $h(x')$ where x and x' are "related"
(e.g. $x' = x + 1$).

These are informal definitions...
Theorem: If h is CR, then h is TCR.
(But converse doesn't hold.)

Theorem: h is OW ↔ h is CR
(neither implication holds)
But if h "compresses", then CR ⇒ OW.

Hash function applications

1. Password storage (for login)
 - Store h(PW), not PW, on computer
 - When user logs in, check hash of his PW against table.
 - Disclosure of h(PW) should not reveal
 PW (or any equivalent pre-image)
 - Need OW

2. File modification detector
 - For each file F, store h(F) securely
 (e.g. on off-line DVD)
 - Can check if F has been modified by
 recomputing h(F)
 - Need WCR (aka TCR)
 (Adversary wants to change F but not h(F).)
 - Hashes of downloadable software = equivalent problem.