
Computing with Encrypted Data
6.857 Lecture 26

M

Message M

Encryption

All-or-nothing

Have Private Key, Can Decrypt

No Private Key, No Go

for Secure Communication

– cf. Non-malleable Encryption

Encryption
for Cloud Computing

Data

Cloud

Enc(Data)
Compute Function F

Medical, Financial and
other Personal Information

Data Analysis & Statistics, Classification,
Search, Image Processing, …

+ FunctionalityNeed: Privacy

Enc(F(Data))

Fully Homomorphic Encryption

Compute arbitrary
functions

on encrypted data?

Enc(data), F → Enc(F(data))

Outline

 Homomorphic Encryption

– Multiplicative Homomorphism: El Gamal

– Additive Homomorphism: Goldwasser-Micali

– Fully Homomorphic Encryption: based on NTRU

 Computing on Secret Shares
– Secure Multiparty Computation: the “BGW” protocol

[Ben Or-Goldwasser-Wigderson’88]

 What I didn’t tell you (and how to learn more)

FHE: The Big Picture

+



If we had:

• Enc(x1), Enc(x2)  Enc(x1+x2)

• Enc(x1), Enc(x2)  Enc(x1∙x2)

then we are done.

(x1+x2)∙x3

x1 x2

x3

Function Arithmetic Circuit

Multiplicative Homomorphism

El Gamal Encryption

Setup: Group G of prime order p
(e.g., set of quadratic residues mod q where q = 2p+1)

Multiplicative Homomorphism

El Gamal Encryption

Setup: Group G of prime order p
(e.g., set of quadratic residues mod q where q = 2p+1)

X

is an encryption of the product m1m2

Additive Homomorphism

Goldwasser Micali Encryption

Public key: N, y: non-square mod N

Enc(0): r2 mod N, Enc(1): y * r2 mod N

Secret key: factorization of N

XOR-homomorphic:

square (0) * square (0) = square (0)

non-square (1) * square (0) = non-square (1)

non-square (1) * non-square (1) = non-square (0)

square (0) * non-square (1) = square (1)

Just multiply the ciphertexts

Other HE Schemes

•Additively Homomorphic:
– Paillier
– Damgard-Jurik (both addition of large numbers)

•Additions + a single Multiplication:
– Boneh-Goh-Nissim (based on gap groups)
– Gentry-Halevi-V. (based on lattices)

•HE with Large ciphertext blowup:
– Sander-Young-Yung

How to Construct
an FHE Scheme

The Big Picture
STEP 1 “Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth d = ε log n *

[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]

* (0 < ε < 1 is a constant, and n is the security parameter)

d
=

 ε
 lo

g
n

C

EVAL

The Big Picture

“Bootstrapping” Theorem [Gen09] (Qualitative)

“Homomorphic enough” Encryption * FHE

Homomorphic enough =
Can evaluate its own Dec Circuit (plus some)

Dec

CT sk

msg

Decryption Circuit

C

EVAL

STEP 2

The Big Picture

“Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth d = ε log n

[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]

Depth Boosting / Modulus Reduction [BV11b]

Boost the SwHE to depth d = nε

“Bootstrapping” Method

“Homomorphic enough” Encryption * FHE

Homomorphic enough =
Can evaluate its own Dec Circuit (plus some)

STEP 1

STEP 2

STEP 3

The NTRU Encryption Scheme

Central characters: Polynomials mod q

[Hofstein-Pipher-Silverman’97]

Ring (xn+1 cyclotomic, q = 1 mod 2n prime)

– Polynomials of degree less than n (think n = 256)
– Coefficients over Zq (think q = small prime)

– Addition: coefficient-wise
(6x2+5x+10) + (5x2+x+2) = 6x+1 (mod 11)

– Multiplication: polynomial mult, modulo an irreducible
(6x2+5x+10) X (5x2+x+2) = 9x3+x2+9x+9
(mod 11, x4+1)

The NTRU Encryption Scheme
•KeyGen:

– Sample “small” polynomials f, g  Rq (s.t. f=1 mod 2)

– Secret key SK=f and Public key PK=h=2g/f

•Encryption Encpk(m), where m  {0,1}

– Sample “small” polynomials s, e  Rq,
– output C = hs + 2e + m (mod q, xn+1)

Multiplying by f “kills” h

•Decryption Decsk(C): Output (fC (mod q,xn+1)) mod 2.

–Correctness: fC = f(hs+2e+m) = 2(gs+fe) + fm (mod q, xn+1)

coefficients ≤ B

If |2(gs+fe) + fm| < q/2, taking mod 2 gives m.

The “Small Polynomial Ratios” (SPR) Assumption:
Choose two polynomials f and g with “small” coefficients (of magnitude at
most B). Then,

g/f c uniform over Rq

Theorem: The encryption scheme is secure under the
SPR assumption

The key security parameter: The signal-to-noise ratio q/B

The NTRU Encryption Scheme

If q/B is too large (> 2n), we can break NTRU in poly time.

c1 = hs1+2e1+m1

Add the ciphertexts: cadd = c1 + c2 (over Rq)

 f.c1 = 2E1 + fm1

 f.c2 = 2E2 + fm2

f.(c1+c2) = 2(E1+E2) + f.(m1+m2)

Decf(cadd) = 2E’+ f.(m1+m2) (mod 2) = f. (m1+m2) (mod 2)

 = m1+m2 (mod 2)

+

E’

Additive Homomorphism

f.c1 = 2E1 + fm1

c2 = hs2+2e2+m2

f.c2 = 2E2 + fm2

c1 = hs1+2e1+m1

Multiply the ciphertexts: cmlt = c1.c2 (over Rq)

 f.c1 = 2E1 + fm1

 f.c2 = 2E2 + fm2

f2.(c1c2) = 2(E1m2+E2m1+2E1E2) + f2(m1m2)

Decf^2 (cmlt) = 2E’+ f2m1m2 (mod 2) = f2m1m2 (mod 2)

 = m1m2 (mod 2)

X

E’

Multiplicative Homomorphism

f.c1 = 2E1 + fm1

c2 = hs2+2e2+m2

f.c2 = 2E2 + fm2

Noise Growth

– Assume the input ciphertext noise is at most B.

– Addition: norm of E1+E2 is at most 2B

– Multiplication: noise ≈ E1E2

• Norm of E1E2 is at most nB2

How Homomorphic is this:
The Reservoir Analogy

noise=0

noise=q/2
Additive Homomorphism: B → 2B

initial noise=B

Multiplicative Homomorphism: B → nB2

2B

nB2

AFTER d LEVELS:

noise B → (worst case)

Correctness

SPR with q/B ratio 2n^ε

noise=0

noise=q/2
Additive Homomorphism: B → 2B

initial noise=B

Multiplicative Homomorphism: B → nB2

nB2

AFTER d LEVELS:

noise B → (worst case)

How Homomorphic is this:
The Reservoir Analogy

The Big Picture

“Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth d = ε log n

[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]

Depth Boosting / Modulus Reduction [BV11b]

Boost the SwHE to depth d = nε

“Bootstrapping” Method

“Homomorphic enough” Encryption * FHE

Homomorphic enough =
Can evaluate its own Dec Circuit (plus some)

STEP 1

STEP 2

STEP 3

Bootstrapping

Bootstrapping Theorem [Gen09]
– If you can homomorphically evaluate depth d circuits and

– the depth of your decryption cicuit < d

* FHE

Bootstrapping

“Homomorphic enough” Encryption  FHE

Bootstrapping Theorem [Gen09]

d-HE with decryption depth < d * FHE

Bootstrapping = “Valve” at a fixed height

noise=0

noise=q/2

(that depends on decryption depth)

noise=Bdec

Say n(Bdec)2 < q/2

Bootstrapping

“Homomorphic enough” Encryption  FHE

Bootstrapping Theorem [Gen09]

d-HE with decryption depth < d * FHE

Bootstrapping = “Valve” at a fixed height

noise=0

noise=q/2

(that depends on decryption depth)

noise=Bdec

Say n(Bdec)2 < q/2

Bootstrapping: How

“Best Possible” Noise Reduction = Decryption!

Dec

CT SK

m

Decryption Circuit

“Very Noisy” ciphertext

“Noiseless ciphertext”

But the evaluator
(cloud)

does not have SK!

Bootstrapping, Concretely

Next Best = Homomorphic Decryption!

EncPK(m)

Dec

CT EncPK(SK)

Assume Enc(SK) is public.

(OK assuming the scheme is “circular secure”)

*

Noise = Binput

Noise = Bdec

Bdec Independent of Binput

g

Assume Circular Security:

Wrap Up: Bootstrapping
Function f

Public key contains EncSK(SK)

g

Each Gate g → Gadget G:

g

Assume Circular Security:

Dec Dec

g

ca skcb

a b

g(a,b)

sk

a b

g(a,b)

Wrap Up: Bootstrapping
Function f

Public key contains EncSK(SK)

Each Gate g → Gadget G:

g

Assume Circular Security:

Dec Dec

g

Enc(SK)
a b

g(a,b)

Enc(SK)

Enc(g(a,b))

Wrap Up: Bootstrapping

Public key contains EncSK(SK)

g

Function f

ca cb

Wrap-up: FHE

“Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth d = ε log n

[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]

Depth Boosting / Modulus Reduction [BV11b]

Boost the SwHE to depth d = nε

“Bootstrapping” Method

“Homomorphic enough” Encryption * FHE

Homomorphic enough =
Can evaluate its own Dec Circuit (plus some)

STEP 1

STEP 2

STEP 3

Boosting Depth from log n to nε

(in one slide)

Wrap-up: FHE

“Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth d = ε log n

[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]

Depth Boosting / Modulus Reduction [BV11b]

Boost the SwHE to depth d = nε

“Bootstrapping” Method

“Homomorphic enough” Encryption * FHE

Homomorphic enough =
Can evaluate its own Dec Circuit (plus some)

STEP 1

STEP 2

STEP 3

What We Didn’t Do
A Lot!

– Functional Encryption

– Software Obfuscation: how to encrypt programs

– Practical techniques for computing on encrypted data:
searchable encryption, deterministic encryption,…

– Secure Multiparty protocols, …

Come to 6.892!

Thanks!

Good luck with the project write-ups!

	PowerPoint Presentation
	Encryption
	Slide 3
	Fully Homomorphic Encryption
	Outline
	FHE: The Big Picture
	Multiplicative Homomorphism
	Slide 8
	Additive Homomorphism
	Other HE Schemes
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	The NTRU Encryption Scheme
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	How Homomorphic is this: The Reservoir Analogy
	Slide 22
	Slide 23
	Bootstrapping
	Slide 25
	Slide 26
	Bootstrapping: How
	Bootstrapping, Concretely
	Wrap Up: Bootstrapping
	Slide 30
	Slide 31
	Slide 33
	Boosting Depth from log n to nε
	Slide 35
	What We Didn’t Do
	Thanks!

