Computing with Encrypted Data

6.857 Lecture 26
Encryption for Secure Communication

- All-or-nothing
 - Have Private Key, Can Decrypt
 - No Private Key, No Go
 - cf. Non-malleable Encryption
Encryption for Cloud Computing

Data Analysis & Statistics, Classification, Search, Image Processing, ...

Cloud

Compute Function F

Enc(F(Data))

Medical, Financial and other Personal Information

Need: Privacy + Functionality
Fully Homomorphic Encryption

Compute arbitrary functions on encrypted data?

Enc(data), F → Enc(F(data))

(fully = any function F)
(additive = only additions)
(multiplicative = only mult)
(somewhat = circuits of small depth)

[Rivest, Adleman and Dertouzos’78]

[ON DATA BANKS AND PRIVACY HOMOMORPHISMS]

Ronald L. Rivest
Len Adleman
Michael L. Dertouzos

Massachusetts Institute of Technology
Cambridge, Massachusetts

[Gentry’09, BV’11, LTV’12]: Constructions of FHE
Outline

◆ Homomorphic Encryption
 – Multiplicative Homomorphism: El Gamal
 – Additive Homomorphism: Goldwasser-Micali
 – Fully Homomorphic Encryption: based on NTRU

◆ What I didn’t tell you (and how to learn more)
If we had:

• Enc(x₁), Enc(x₂) ⇒ Enc(x₁ + x₂)
• Enc(x₁), Enc(x₂) ⇒ Enc(x₁ · x₂)

then we are done.
Multiplicative Homomorphism

El Gamal Encryption

Setup: Group G of prime order p
(e.g., set of quadratic residues mod q where q = 2p+1)

Private key: \(x \in \mathbb{Z}_p \)

Public key: generator \(g \), \(y = g^x \in G \)

\[\text{Enc}(m_1): \ (g^{r_1}, y^{r_1} \cdot m_1) \]

\[\text{Dec}(m): \text{Observe that } (g^{r_1})^x = y^{r_1} \]
Multiplicative Homomorphism

<table>
<thead>
<tr>
<th>El Gamal Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup: Group G of prime order p</td>
</tr>
<tr>
<td>(e.g., set of quadratic residues mod q where $q = 2p+1$)</td>
</tr>
<tr>
<td>Private key: $x \in \mathbb{Z}_p$</td>
</tr>
<tr>
<td>Public key: generator g, $y = g^x \in G$</td>
</tr>
<tr>
<td>$\text{Enc}(m_1)$: $(g^{r_1}, y^{r_1} \cdot m_1)$</td>
</tr>
<tr>
<td>$\text{Enc}(m_2)$: $(g^{r_2}, y^{r_2} \cdot m_2)$</td>
</tr>
<tr>
<td>$\overline{(g^{r_1+r_2}, y^{r_1+r_2} \cdot m_1m_2)}$</td>
</tr>
</tbody>
</table>

is an encryption of the product m_1m_2
Additive Homomorphism

Goldwasser Micali Encryption

Public key: N, y: non-square mod N

Secret key: factorization of N

$\text{Enc}(0): r^2 \mod N, \quad \text{Enc}(1): y \cdot r^2 \mod N$

\[
\begin{align*}
\text{square (0) } \cdot \text{ square (0)} &= \text{ square (0)} \\
\text{non-square (1) } \cdot \text{ square (0)} &= \text{ non-square (1)} \\
\text{square (0) } \cdot \text{ non-square (1)} &= \text{ square (1)} \\
\text{non-square (1) } \cdot \text{ non-square (1)} &= \text{ non-square (0)}
\end{align*}
\]

XOR-homomorphic: Just multiply the ciphertexts
Other HE Schemes

• **Additively Homomorphic:**
 – Paillier
 – Damgard-Jurik (both addition of large numbers)

• **Additions + a single Multiplication:**
 – Boneh-Goh-Nissim (based on gap groups)
 – Gentry-Halevi-V. (based on lattices)

• **HE with Large ciphertext blowup:**
 – Sander-Young-Yung
How to Construct an FHE Scheme
The Big Picture

STEP 1

“Somewhat Homomorphic” (SwHE) Encryption
[Gen09, DGHV10, SV10, BV11a, BV11b, BGV12, LTV12, GHS’12]

Evaluate arithmetic circuits of depth $d = \varepsilon \log n$ *

* (0 < ε < 1 is a constant, and n is the security parameter)
The Big Picture

STEP 2

“Bootstrapping” Theorem [Gen09] (Qualitative)

“Homomorphic enough” Encryption \Rightarrow^* FHE

Homomorphic enough = Can evaluate its own Dec Circuit (plus some)

Decryption Circuit

$$\epsilon^{(\cdot)}$$

EVAL
The Big Picture

STEP 1

“Somewhat Homomorphic” (SwHE) Encryption
[Gen09, DGHV10, SV10, BV11a, BV11b, BV12, LTV12, GHS’12]

Evaluate arithmetic circuits of depth $d = \varepsilon \log n$

STEP 2

“Bootstrapping” Method

“Homomorphic enough” Encryption \Rightarrow* FHE

Homomorphic enough =
Can evaluate its own Dec Circuit (plus some)

STEP 3

Depth Boosting / Modulus Reduction [BV11b]
Boost the SwHE to depth $d = n^\varepsilon$
The NTRU Encryption Scheme
[Hofstein-Pipher-Silverman’97]

Central characters: Polynomials mod \(q \)

- Polynomials of degree less than \(n \) (think \(n = 256 \))
- Coefficients over \(\mathbb{Z}_q \) (think \(q = \) small prime)

- Addition: coefficient-wise
 \[
 (6x^2+5x+10) + (5x^2+x+2) = 6x+1 \quad \text{(mod 11)}
 \]

- Multiplication: polynomial mult, modulo an irreducible
 \[
 (6x^2+5x+10) \times (5x^2+x+2) = 9x^3+x^2+9x+1
 \quad \text{(mod 11, } x^4+1)\]

Ring \(R_q := \mathbb{Z}_q[x] / (x^n+1) \) \((x^n+1 \text{ cyclotomic, } q = 1 \text{ mod } 2n \text{ prime}) \)
The NTRU Encryption Scheme

• **KeyGen:**
 - Sample “small” polynomials \(f, g \in \mathbb{R}_q \) (s.t. \(f=1 \text{ mod } 2 \))
 - Secret key \(SK=f \) and Public key \(PK=h=2g/f \)

• **Encryption** \(Enc_{pk}(m) \):
 - Sample “small” polynomials \(s, e \in \mathbb{R}_q \),
 - output \(C = hs + 2e + m \pmod{q, x^{n+1}} \)

• **Decryption** \(Dec_{sk}(C) \): Output \(fC \pmod{q,x^{n+1}} \) mod 2.

 • **Correctness:** \(fC = f(hs+2e+m) = 2(gs+fe) + fm \pmod{q, x^{n+1}} \)

 If \(|2(gs+fe) + fm| < q/2 \), taking mod 2 gives \(m \).
The NTRU Encryption Scheme

The "Small Polynomial Ratios" (SPR) Assumption:
Choose two polynomials f and g with "small" coefficients (of magnitude at most B). Then,

$$\frac{g}{f} \approx_c \text{uniform over } R_q$$

The key security parameter: The signal-to-noise ratio q/B

If q/B is too large ($> 2^n$), we can break NTRU in poly time.

Therefore, typical setting: $q/B = 2^{n^\varepsilon}$ (for some $\varepsilon << 1$)

Theorem: The encryption scheme is secure under the SPR assumption
Additive Homomorphism

\[c_1 = h s_1 + 2e_1 + m_1 \]
\[f.c_1 = 2E_1 + f m_1 \]

\[c_2 = h s_2 + 2e_2 + m_2 \]
\[f.c_2 = 2E_2 + f m_2 \]

Add the ciphertexts:
\[c_{\text{add}} = c_1 + c_2 \text{ (over } R_q \text{)} \]

\[
\begin{align*}
& f.c_1 = 2E_1 + fm_1 \\
+ & f.c_2 = 2E_2 + fm_2 \\
& f.(c_1+c_2) = 2(E_1+E_2) + f.(m_1+m_2) \\
\Rightarrow & \text{Dec}_f(c_{\text{add}}) = 2E' + f.(m_1+m_2) \text{ (mod 2)} = f. (m_1+m_2) \text{ (mod 2)} \\
& = m_1 + m_2 \text{ (mod 2)}
\end{align*}
\]
Multiplicative Homomorphism

<table>
<thead>
<tr>
<th>$c_1 = hs_1 + 2e_1 + m_1$</th>
<th>$c_2 = hs_2 + 2e_2 + m_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f.c_1 = 2E_1 + fm_1$</td>
<td>$f.c_2 = 2E_2 + fm_2$</td>
</tr>
</tbody>
</table>

Multiply the ciphertexts: $c_{\text{mlt}} = c_1.c_2$ (over R_q)

$$
\begin{align*}
 f.c_1 &= 2E_1 + fm_1 \\
 \times \\
 f.c_2 &= 2E_2 + fm_2 \\
 f^2.(c_1c_2) &= 2(E_1m_2 + E_2m_1 + 2E_1E_2) + f^2(m_1m_2) \\
 \Rightarrow \text{Dec}_{f^2}(c_{\text{mlt}}) &= 2E' + f^2m_1m_2 \pmod{2} = f^2m_1m_2 \pmod{2} = m_1m_2 \pmod{2}
\end{align*}
$$
Noise Growth

- Assume the input ciphertext noise is at most B.

- Addition: norm of $E_1 + E_2$ is at most $2B$

- Multiplication: noise $\approx E_1 E_2$
 - Norm of $E_1 E_2$ is at most nB^2
How Homomorphic is this:
The Reservoir Analogy

- **Additive Homomorphism:** $B \rightarrow 2B$

- **Multiplicative Homomorphism:** $B \rightarrow nB^2$

AFTER d LEVELS:

- Noise: $B \rightarrow (nB)^{2^d}$ (worst case)

Correctness

- SPR with q/B ratio 2^{n^ε}
How Homomorphic is this:
The Reservoir Analogy

Additive Homomorphism: $B \rightarrow 2B$

Multiplicative Homomorphism: $B \rightarrow nB^2$

AFTER d LEVELS:

$\text{noise } B \rightarrow (nB)^{2d}$ (worst case)

\[
(nB)^{2d} \leq \frac{q}{2} \leq B \cdot 2^{n\varepsilon}
\]

\[
d \leq \log(\log q) - \log(\log nB) \\
\leq \varepsilon \log n - \log \log n
\]
“Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth $d = \varepsilon \log n$

Depth Boosting / Modulus Reduction

Boost the SwHE to depth $d = n^\varepsilon$

“Bootstrapping” Method

“Homomorphic enough” Encryption $\Rightarrow^*\text{ FHE}$

Homomorphic enough = Can evaluate its own Dec Circuit (plus some)
Bootstrapping Theorem [Gen09]

- If you can homomorphically evaluate depth d circuits and
- the depth of your decryption circuit $< d$

\Rightarrow FHE
Bootstrapping

Bootstrapping Theorem [Gen09]

\[d\text{-HE with decryption depth} < d \implies^\ast \text{FHE} \]

Bootstrapping = “Valve” at a fixed height
(that depends on decryption depth)

\[\text{Say } n(B_{\text{dec}})^2 < q/2 \]
Bootstrapping

Bootstrapping Theorem [Gen09]

\[d\text{-HE with decryption depth } < d \implies^* \text{ FHE} \]

Bootstrapping = “Valve” at a fixed height
(that depends on decryption depth)

\[
\begin{align*}
\text{noise} &= q/2 \\
\text{noise} &= B_{\text{dec}} \\
\text{noise} &= 0
\end{align*}
\]

Say \(n(B_{\text{dec}})^2 < q/2 \)
But the evaluator (cloud) does not have SK!

“Best Possible” noise reduction = Decryption!

Decryption Circuit

“Very Noisy” ciphertext \rightarrow CT \rightarrow SK

“Noiseless ciphertext”
Bootstrapping, Concretely

Next Best = Homomorphic Decryption!

* Assume $\text{Enc}(SK)$ is public.
(OK assuming the scheme is “circular secure”)

$\text{Enc}_{PK}(m)$

Noise = B_{dec}

B_{dec} Independent of B_{input}

Noise = B_{input}
Wrap Up: Bootstrapping

Assume Circular Security:
Public key contains $\text{Enc}_{SK}(SK)$
Wrap Up: Bootstrapping

Assume Circular Security:
Public key contains $\text{Enc}_{sk}(SK)$

Each Gate $g \rightarrow$ Gadget G:

$$g(a,b)$$

$$\text{Dec}$$

$$a$$

$$c_a$$

$$\text{sk}$$

$$b$$

$$c_b$$

$$\text{sk}$$
Assume Circular Security:
Public key contains $Enc_{SK}(SK)$

Each Gate $g \rightarrow$ Gadget G:

Wrap Up: Bootstrapping

Function f

$Enc(g(a,b))$

Dec

Dec

c_a $Enc(SK)$ c_b $Enc(SK)$
Wrap-up: FHE

STEP 1

“Somewhat Homomorphic” (SwHE) Encryption

[Gen09, DGHV10, SV10, BV11a, BV11b, BGV12, LTV12, GHS’12]

Evaluate arithmetic circuits of depth \(d = \varepsilon \log n \)

STEP 2

“Bootstrapping” Method

“Homomorphic enough” Encryption \(\Rightarrow^* \) FHE

Homomorphic enough =
Can evaluate its own Dec Circuit (plus some)

STEP 3

Depth Boosting / Modulus Reduction [BV11b]

Boost the SwHE to depth \(d = n^\varepsilon \)
Boosting Depth from log n to n^ε
(in one slide)

- The culprit: Multiplication
- Increases noise from B to $nB^2 \gg B$

- Let us pause for a moment. Is $nB^2 > B$?

- … Not if $B < 1$

- Why not scale everything by q, and work over $(0,1)$?
- Quite amazingly, this works out and gives us an error growth of nB (no squaring)
Wrap-up: FHE

| STEP 1 | “Somewhat Homomorphic” (SwHE) Encryption
[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]
Evaluate arithmetic circuits of depth $d = \varepsilon \log n$ |
|---|---|
| STEP 2 | “Bootstrapping” Method
“Homomorphic enough” Encryption $\Rightarrow^* FHE$
Homomorphic enough = Can evaluate its own Dec Circuit (plus some) |
| STEP 3 | Depth Boosting / Modulus Reduction [BV11b]
Boost the SwHE to depth $d = n^\varepsilon$ |
What We Didn’t Do

A Lot!

- Functional Encryption
- Software Obfuscation: how to encrypt programs
- Practical techniques for computing on encrypted data: searchable encryption, deterministic encryption,…
- Secure Multiparty protocols, …

Come to 6.892!
Thanks!

Good luck with the project write-ups!