
Computing with Encrypted Data
6.857 Lecture 26



M

Message M

Encryption

All-or-nothing

Have Private Key, Can Decrypt

No Private Key, No Go

for Secure Communication

– cf. Non-malleable Encryption



Encryption
for Cloud Computing

Data

Cloud

Enc(Data)
Compute Function F

Medical, Financial  and 
other Personal Information

Data Analysis & Statistics, Classification, 
Search, Image Processing, …

+ FunctionalityNeed: Privacy

Enc(F(Data))



Fully Homomorphic Encryption

Compute arbitrary 
functions 

on encrypted data?

Enc(data),  F →  Enc(F(data))



Outline

 Homomorphic Encryption

– Multiplicative Homomorphism: El Gamal

– Additive Homomorphism: Goldwasser-Micali

– Fully Homomorphic Encryption: based on NTRU

 Computing on Secret Shares
– Secure Multiparty Computation:  the “BGW” protocol

[Ben Or-Goldwasser-Wigderson’88]

 What I didn’t tell you (and how to learn more)



FHE: The Big Picture

+



If we had:

• Enc(x1), Enc(x2)  Enc(x1+x2)

• Enc(x1), Enc(x2)  Enc(x1∙x2)

then we are done.

(x1+x2)∙x3

x1 x2

x3

Function Arithmetic Circuit



Multiplicative Homomorphism

El Gamal Encryption

Setup: Group G of prime order p
(e.g., set of quadratic residues mod q where q = 2p+1)



Multiplicative Homomorphism

El Gamal Encryption

Setup: Group G of prime order p
(e.g., set of quadratic residues mod q where q = 2p+1)

X

is an encryption of the product m1m2



Additive Homomorphism

Goldwasser Micali Encryption

Public key: N, y: non-square mod N

Enc(0): r2 mod N,    Enc(1): y * r2 mod N

Secret key: factorization of N

XOR-homomorphic:

square (0) * square (0) = square (0)

non-square (1) * square (0) = non-square (1)

non-square (1) * non-square (1) = non-square (0)

square (0) * non-square (1) = square (1)

Just multiply the ciphertexts



Other HE Schemes

•Additively Homomorphic:
– Paillier
– Damgard-Jurik  (both addition of large numbers)

•Additions + a single Multiplication:
– Boneh-Goh-Nissim (based on gap groups)
– Gentry-Halevi-V. (based on lattices)

•HE with Large ciphertext blowup:
– Sander-Young-Yung



How to Construct 
an FHE Scheme



The Big Picture
STEP 1 “Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth d = ε log n *

[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]

* (0 < ε < 1 is a constant, and n is the security parameter) 

d 
=

 ε
 lo

g 
n 

C

EVAL



The Big Picture

“Bootstrapping” Theorem [Gen09] (Qualitative)

“Homomorphic enough” Encryption  *  FHE

Homomorphic enough = 
Can evaluate its own Dec Circuit (plus some)

Dec

CT sk

msg

Decryption Circuit

C

EVAL

STEP 2



The Big Picture

“Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth d = ε log n

[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]

Depth Boosting / Modulus Reduction [BV11b]

Boost the SwHE to depth d = nε

“Bootstrapping” Method

“Homomorphic enough” Encryption  *  FHE

Homomorphic enough = 
Can evaluate its own Dec Circuit (plus some)

STEP 1

STEP 2

STEP 3



The NTRU Encryption Scheme

Central characters: Polynomials mod q

[Hofstein-Pipher-Silverman’97]

Ring (xn+1 cyclotomic, q = 1 mod 2n prime)

– Polynomials of degree less than n  (think n = 256)
– Coefficients over Zq (think q = small prime)

– Addition: coefficient-wise 
(6x2+5x+10) + (5x2+x+2) = 6x+1        (mod 11)  

– Multiplication: polynomial mult, modulo an irreducible 
(6x2+5x+10) X (5x2+x+2) = 9x3+x2+9x+9       
(mod 11, x4+1)  



The NTRU Encryption Scheme
•KeyGen:

– Sample “small” polynomials  f, g  Rq  (s.t. f=1 mod 2)

– Secret key SK=f and Public key PK=h=2g/f 

•Encryption Encpk(m), where m  {0,1}  

– Sample “small” polynomials s, e  Rq, 
– output C = hs + 2e + m   (mod q, xn+1)

Multiplying by f “kills” h 

•Decryption Decsk(C): Output (fC (mod q,xn+1)) mod 2. 

–Correctness:      fC = f(hs+2e+m) = 2(gs+fe) + fm  (mod q, xn+1)

coefficients ≤ B

If |2(gs+fe) + fm| < q/2, taking mod 2 gives m.



The “Small Polynomial Ratios” (SPR) Assumption:
Choose two polynomials f and g with “small” coefficients (of magnitude at 
most B). Then,   

g/f c uniform over Rq

Theorem: The encryption scheme is secure under the 
SPR assumption

The key security parameter: The signal-to-noise ratio q/B

The NTRU Encryption Scheme

If q/B is too large (> 2n), we can break NTRU in poly time.



c1 = hs1+2e1+m1 

Add the ciphertexts:   cadd = c1 + c2  (over Rq)

    f.c1 = 2E1 + fm1

  f.c2 = 2E2 + fm2

f.(c1+c2) = 2(E1+E2) + f.(m1+m2)

Decf(cadd) = 2E’+ f.(m1+m2) (mod 2) = f. (m1+m2) (mod 2)

      = m1+m2  (mod 2)

+

E’

Additive Homomorphism

f.c1 = 2E1 + fm1 

c2 = hs2+2e2+m2 

f.c2 = 2E2 + fm2 



c1 = hs1+2e1+m1 

Multiply the ciphertexts:   cmlt = c1.c2  (over Rq)

    f.c1 = 2E1 + fm1

  f.c2 = 2E2 + fm2

f2.(c1c2) = 2(E1m2+E2m1+2E1E2) + f2(m1m2)

Decf^2 (cmlt) = 2E’+ f2m1m2 (mod 2) = f2m1m2 (mod 2)

     = m1m2 (mod 2)

X

E’

Multiplicative Homomorphism

f.c1 = 2E1 + fm1 

c2 = hs2+2e2+m2 

f.c2 = 2E2 + fm2 



Noise Growth

– Assume the input ciphertext noise is at most B.

– Addition:  norm of E1+E2  is at most 2B

– Multiplication: noise ≈ E1E2

• Norm of E1E2  is at most nB2



How Homomorphic is this:
The Reservoir Analogy

noise=0

noise=q/2
Additive Homomorphism: B → 2B  

initial noise=B

Multiplicative Homomorphism: B → nB2  

2B

nB2

AFTER d LEVELS:

noise B → (worst case)

Correctness

SPR with q/B ratio 2n^ε



noise=0

noise=q/2
Additive Homomorphism: B → 2B  

initial noise=B

Multiplicative Homomorphism: B → nB2  

nB2

AFTER d LEVELS:

noise B → (worst case)

How Homomorphic is this:
The Reservoir Analogy



The Big Picture

“Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth d = ε log n

[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]

Depth Boosting / Modulus Reduction [BV11b]

Boost the SwHE to depth d = nε

“Bootstrapping” Method

“Homomorphic enough” Encryption  *  FHE

Homomorphic enough = 
Can evaluate its own Dec Circuit (plus some)

STEP 1

STEP 2

STEP 3



Bootstrapping

Bootstrapping Theorem [Gen09]
– If you can homomorphically evaluate depth d circuits and 

– the depth of your decryption cicuit < d  

*  FHE



Bootstrapping

“Homomorphic enough” Encryption    FHE

Bootstrapping Theorem [Gen09]

d-HE with decryption depth < d  *  FHE

Bootstrapping = “Valve” at a fixed height

noise=0

noise=q/2

(that depends on decryption depth)

noise=Bdec

Say n(Bdec)2 < q/2



Bootstrapping

“Homomorphic enough” Encryption    FHE

Bootstrapping Theorem [Gen09] 

d-HE with decryption depth < d  *  FHE

Bootstrapping = “Valve” at a fixed height

noise=0

noise=q/2

(that depends on decryption depth)

noise=Bdec

Say n(Bdec)2 < q/2



Bootstrapping: How

“Best Possible” Noise Reduction = Decryption!

Dec

CT SK

m

Decryption Circuit

“Very Noisy” ciphertext

“Noiseless ciphertext”

But the evaluator 
(cloud)

does not have SK! 



Bootstrapping, Concretely

Next Best = Homomorphic Decryption!

EncPK(m)

Dec

CT EncPK(SK)

Assume Enc(SK) is public.

(OK assuming the scheme is “circular secure”)

*

Noise = Binput

Noise = Bdec

Bdec Independent of Binput



g

Assume Circular Security:

Wrap Up: Bootstrapping
Function f

Public key contains EncSK(SK)



g

Each Gate g → Gadget G:

g

Assume Circular Security:

Dec Dec

g

ca skcb

a b

g(a,b)

sk

a b

g(a,b)

Wrap Up: Bootstrapping
Function f

Public key contains EncSK(SK)



Each Gate g → Gadget G:

g

Assume Circular Security:

Dec Dec

g

Enc(SK)
a b

g(a,b)

Enc(SK)

Enc(g(a,b))

Wrap Up: Bootstrapping

Public key contains EncSK(SK)

g

Function f

ca cb



Wrap-up: FHE

“Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth d = ε log n

[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]

Depth Boosting / Modulus Reduction [BV11b]

Boost the SwHE to depth d = nε

“Bootstrapping” Method

“Homomorphic enough” Encryption  *  FHE

Homomorphic enough = 
Can evaluate its own Dec Circuit (plus some)

STEP 1

STEP 2

STEP 3



Boosting Depth from log n to nε

(in one slide)



Wrap-up: FHE

“Somewhat Homomorphic” (SwHE) Encryption

Evaluate arithmetic circuits of depth d = ε log n

[Gen09,DGHV10,SV10,BV11a,BV11b,BGV12,LTV12,GHS’12]

Depth Boosting / Modulus Reduction [BV11b]

Boost the SwHE to depth d = nε

“Bootstrapping” Method

“Homomorphic enough” Encryption  *  FHE

Homomorphic enough = 
Can evaluate its own Dec Circuit (plus some)

STEP 1

STEP 2

STEP 3



What We Didn’t Do
A Lot!

–  Functional Encryption

–  Software Obfuscation: how to encrypt programs

–  Practical techniques for computing on encrypted data:  
searchable encryption, deterministic encryption,…

–  Secure Multiparty protocols, …

Come to 6.892!



Thanks!

Good luck with the project write-ups!
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