
Problem Set 2 6.857 Problem 1 Rainbow Tables
Ben Bitdiddle, Alyssa P. Hacker April 11, 2014

(a) We desire a pseudorandom mapping from {0, 1}256 to S. First, we note that S is effi-
ciently enumerable. In particular, S follows standard lexicographic order, where each of
the 62 possible characters follows the ordering 0...1← A−Z ← a− z. Then, of the 6210

possible values in S, the ith value is easily attainable by computing the base 62 repre-
sentation of i − 1. Now, we want a psuedorandom reduction function, R, which maps
2256 possible values to 6210. One possible function is simply R(hv) = sha256(hv)%6210.
In other words, we use a hash function on the item from {0, 1}256 to map to another item
from {0, 1}256 and then take the value mod 6210. This function is very nearly uniform,
since 2256

6210
≥ 1059, assuming the the hash function is sufficiently random.

(b) The general idea is that given some hash hv, we can run it through a similar chain
process k times. If any of the intermediate hashes match the last hash of some chain in
the table, we obtain the corresponding start of the chain s. We start with s, and walk
through the chain again, until we reach some segment hash(pl) = hv, where pl is our
desired plain text. Given that each iteration of hashing or reducing takes O(1) time, and
that look up takes O(1) time, we have an O(k) algorithm for inverting any hash that
occurs in some chain.

(c) We can use the scheme from before, the table can be represented as a hashtable or
sorted, to allow for lookup via binary search. Then for every query hash, hv, we repeat
the process from part B, but lookups will take O(|S|

k
) or O(1) depending on whether the

table is implemented as a sorted list of entries or a hashtable, respectively. In practice,
this is not always true. First, hv might be part of a chain that shares an endpoint
with another chain, but is not present in the table. Additionally, chains can merge on
collision. A query might need to search through all such chains that share the endpoint
before finding the chain that contains hv.

One might guess that each chain may store k unique passwords, and that therefore
|S|
k

chains would store |S| distinct passwords. In practice, this is not true. Given |S|
k

chains of length k, the number of distinct passwords will be much lower than |S| with
high probability. The issue is the presence of collisions. For example, let’s consider the
optimistic situation where the first |S|

4k
chains all contained completely unique passwords.

In other words, one fourth of the password space has been successfully encoded without
collision. Now, we want to lower bound the expected number of lost passwords. Consider
the remaining 3|S|

4k
= t rows. For each row, i we analyze the probability that one of the

first k
2

elements in chain i collides with some element in the first half of a previous chain.
In particular, if some collision occurs in the first half of chain i with an element in the
first half of a preexisting chain, then at least k

2
passwords in chain i are lost by merging.

It’s easy to see this is a lowerbound on the losses, since this case only represents a subset
of the cases where passwords are lost.

E[lost passwords in chain i] ≥ k
2
Pr(element in first half of chain i

collides with element in the first half of existing chain) ≥ k
2
(1− 1

4·2)
k
2 . This follows from

1

the fact that at least |S|
4

unique passwords exist already and (naturally) half are in the
first half of their chains. There are k

2
elements in the first half of chain i, and the

probability that at least one of them collides is the complement of the probability that
none of them do.

Finally, the total number of expected passwords lost in the remaining chains will be:

3|S|
k∑
i

E[lost passwords in chain i] ≥ 3|S|
4k

k

2
(1− 1

8
)
k
2

Given k ≥ 1000, which is highly reasonable, since otherwise the table would need at
least 8.39 · 1014 entries, the above formula yields that at least 3|S|

8
passwords will not be

unique due to merges. This follows from 3|S|
8
≥ 3|S|

4
, since we assumed that we had at

least one fourth of all passwords in the table.

(d) Using a family of pseudorandom functions fi, for each step in the chain greatly decreases
the probability of merges. In particular, for a merge to occur, the collision must occur
on the same step j of the chain. If you have length l chains, then any given collision
has roughly a 1

l
probability of causing a merge. With sufficiently large l (l should be

quite large, otherwise the table’s size will be unrealistic) using a family of pseudoran-
dom functions significantly decreases the number of merges, and therefore increases the
number of distinct passwords.

(e) One defense against rainbow tables is the use of salts. Instead of storing a passwords
as hash(pw), Ben would store it as hash(pw + salt) where salt is a randomly generated
string of greater than 48 bits. The salt can be stored in plainview, with the password
hashes. The additional defense comes from the fact that Eve would need a rainbow table
for each salt in order to obtain the passwords for every password in the database.

2

