CertCoin:
A NameCoin Based Decentralized Authentication System
6.857 Class Project

Conner Fromknecht (conner@mit.edu), Dragos Velicanu (velicanu@mit.edu),
Sophia Yakoubov (sonka89@mit.edu)

May 14, 2014

1 Abstract

Authentication is vital to all forms of remote communication. A lack of authentication opens the
door to man-in-the-middle attacks, which, if performed at a key moment, may subvert the entire
interaction. Current approaches to authentication on the internet include certificate authorities
and webs of trust. Both of those approaches have significant drawbacks: the former relies upon
trusted third parties, introducing a central point of failure, and the latter has a high barrier to
entry. We propose Certcoin, an alternative, public and decentralized authentication scheme. The
core idea of Certcoin is maintaining a public ledger of domains and their associated public keys.
We describe the Certcoin scheme, as well as several optimizations to make Certcoin more accessible
to devices with limited storage capacity, such as smartphones. Our optimizations use tools such as
cryptographic accumulators and distributed hash tables.

2 Existing Approaches to Authentication

Prior to the advent of public-key cryptography in 1976, most secure message transfer was accom-
plished by means of symmetric encryption protocols that relied on both parties having previously
shared some secret key K. Since it is highly unlikely that an adversary would be able to guess
the secret key, authentication in these schemes is trivial. Any individual encrypting messages with
K is considered to be an authenticated user. However, exchanging keys before communication is
impractical for dynamic environments such as the Internet, where large numbers of entities must
have the ability to join and leave the network at will, and to securely communicate with any other
entity on the network. Having each pair of entities establish their own shared key quickly becomes
infeasible as the number of entities increases [11].

Public key cryptography addresses this scalability issue; however, it makes authentication much
less trivial. In traditional public key systems, users retrieve the public key of the intended recipient
of their message, encrypt under that key, and sign the message with their own signing key. The
recipient is then the only one able to decrypt the message, since he is the only holder the secret
decryption key. This setup eliminates the need for a priori key agreement, but introduces the
problem of needing to authenticate the sender, since all entities are now equally capable of producing
the encryption. He is able to verify the public key of the sender based on the digital signature, but
a public key alone cannot be used to determine the sender’s identity [21].

The notion of a Public Key Infrastructure (PKI) was born from this necessity to verify the identity
of a message sender. A PKI typically issues certificates attesting to the public key of each entity.
In addition, a PKI has the ability to revoke certificates in the event that a public key becomes
compromised, whether it be by loss of the secret key or implication of the associated individual
as malicious. Currently, the two most commonly employed approaches fall into two categories:
centralized, trusted third-party Certificate Authorities (CA), and decentralized networks of peer-
to-peer certification, often referred to as Webs of Trust (as coined by Phil Zimmerman, the creator
of PGP).

2.1 Certificate Authorities

Typically the more common choice in practice, a Certificate Authority (CA) acts a trusted third
party that is responsible for delivering and managing digital certificates for a network of users. In
order to do so, the CA must have some sort of registration process whereby a user’s identity is
verified, they are assigned a Distinguished Name (DN, e.g. Google or Facebook), and their public
keys are recorded along with their DN. These records contain an expiration date, as well as an
indication of the key’s purpose, whether it be for encrypting data or verifying a signature. The
CA then serves two purposes: it facilitates verification that a user holds a certain public key, and
it facilitates the look-up of public keys corresponding to users. Verification is done by means of a
certificate issued to each user; that certificate is a statement of the form “user x holds public key
PK”, signed by the CA. Look-up is done by allowing any user to request the public keys of any
other individual. The requestor can then verify that the individual holds the corresponding secret
key by executing a zero-knowledge proof of knowledge with that individual. The CA ultimately
acts as an agent of trust for the network, since anyone trusting in the CA should also trust the
certificates it provides [16].

Many entities may wish to have their secret keys securely backed up in the event that a secret key

is lost; the process by which this is done is referred to as key recovery, and is a feature offered by
many of today’s CAs. The loss of a decryption key could result in the permanent loss of sensitive
or otherwise important data. On the other hand, the loss of a signing key is relatively insignificant.
Messages signed in the past can still be verified with the public key (assuming it wasn’t revoked),
and the user can simply obtain a new key pair to continue signing. Additionally, backing up a
signing key with the CA would allow the CA to impersonate the key owner. Thus, it makes most
sense for a CA to back up decryption keys, but not signing keys [13]. This makes it necessary for
every user to create two key pairs - one for encryption and the other for signatures - instead of
using the same key pair for both functionalities.

Recently, there have been numerous incidents showing that too much trust is being placed in
CAs. CAs have been hacked (e.g. the DigiNotar incident), and have even issued subordinate root
certificates to customers (e.g. the TrustWave incident), allowing the customer to themselves issue
certificates.

One approach to preventing such incidents is introducing transparency into the workings of the
CAs. The Google Certificate Transparency project [3] attempts to do exactly this. They propose
maintaining public, append-only logs on a number (e.g. < 1000) of independent servers world-wide.
Each such log server might be run by a separate CA, for instance. These logs would then monitored
for suspicious certificates by other, publicly-run servers, and audited for consistent behavior by
lightweight auditor software which can be run by anyone. This would ensure that the owner of a
domain would be able to see all certificates issued for his domain, and thus would be able to spot
any erroneous certificates.

2.2 Web of Trust

The second major PKI used in practice is the PGP Web of Trust (WoT). In this system, authentica-
tion is entirely decentralized; users are able designate others as trustworthy by signing their public
keys. By doing so, a user accumulates a certificate containing his public key and digital signatures
from entities that have deemed him trustworthy. The certificate is then trusted by a party if they
are able to verify that the certificate contains the signature of someone he or she trusts [21].

This system benefits from its distributed nature because it removes any central point of failure.
However, it makes it difficult for new or remote users to join the network, since they must typically
meet with someone in person to have their identity verified and public key signed for the first
time. Also, unlike a CA, the WoT also has no way to deal with key recovery. A user is limited to
choosing another user to be their ”designated revoker”, tasked with revoking their certificate when
the private key is lost or compromised. Despite these set backs, the Web of Trust has successfully
been in operation for almost a quarter century without significant modification.

2.3 Certcoin: the Best of Both Worlds

We introduce Certcoin, a system that incorporates the best aspects of transparent Certificate
Authorities and of the Web of Trust. Like Google’s Certificate Transparency project, Certcoin is
completely public and auditable. Like the WoT, Certcoin is decentralized, and does not have a
single point of failure. We provide the details of the Certcoin protocol in Section 3.

3 The Fundamental Certcoin Protocol

We propose a new, decentralized alternative public key infrastructure, based on Bitcoin. The ability
to publish a public key corresponding to a given identity or domain in a reliable, permanent way
would provide a trivial way to authenticate. Bitcoin and other cryptocurrencies implement exactly
such a bulletin board.

We propose to build Certcoin on top of Namecoin [2] by branching the project and taking advantage
of the merged mining protocol to ensure that Certcoin transactions are constructed properly in its
blockchain. Namecoin is a cryptocurrency designed to act as a decentralized DNS for .bit addresses.
It has three types of transactions, which support the registration and update of domains: name_new,
name_firstupdate and name_update. name_new generally costs 0.01 units of Namecoin, while the
others are free.

Throughout this paper, we treat the Namecoin blockchain as a public ”bulletin boards”, to which
information can be posted in a permanent way. Certcoin transactions are posted to that bulletin
board. A transaction fee is paid for every such post, much like in Bitcoin, as an incentive for block
miners to include Certcoin information.

3.1 Registering a Domain with Certcoin

When a domain is initially registered in Namecoin, the transaction contains signed information
about two public keys that will be associated with the site bought. The first public key belongs to
the “online” key pair, while the second belongs to the “offline” key pair.

The “online” secret key is used to authenticate messages to and from the server hosting the website.
This secret key is also the primary key used to authenticate the website in Certcoin; a proof on
knowledge of that key will be required as part of authentication.

The “offline” secret key is stored in a secure place offline that won’t be vulnerable to the same
security threats that the online key might face as a result of being stored on a device connected to
the internet. This offline key is to be used primarily to sign or revoke new keys in case of a security
break or key compromise. This will be explained in further detail in Section 4.2.

When a new key is to created for the domain, it will be signed with the old key of the same type.
This way, at any point, both valid keys registered to the domain can be traced back through a
series of signed statements to the initial two key pairs registered to the domain.

3.2 Updating a Public Key Corresponding to a Domain

Changing the public key pk,q to a new public key pkyew (of the same online / offline type) corre-
sponding to domain d is done by posting

(da U((d7 pknew)v Skold))

to our bulletin board, where ¢ is a secure digital signature algorithm. We leverage digital signatures
here to ensure that a new public key can only be posted by the holder of the secret key corresponding
to the old public key. This update transaction will only be processed if the signature verifies with

Pkold-

3.3 Verifying / Looking Up a Public Key

Verifying that a public key pk (of either the offline or online type) corresponds to a domain d
involves traversing the block chain, and checking that:

e the domain d has been registered exactly once,

e all signatures in subsequent updates to the public key corresponding to d verify with d’s
previous public key,

e the last update resulted in pk being the public key corresponding to d, and

e the user claiming to be the owner of domain d knows the secret key sk corresponding to pk,
using a zero-knowledge proof of knowledge.

Looking up a public key pk (of either the offline or online type) corresponding to a domain d
involves traversing the block chain and doing the following:

e Check that the domain d has been registered exactly once.

e Check that all signatures in subsequent updates to the public key corresponding to d verify
with d’s previous public key.

e Find the last update to the public key corresponding to d, and store the public key pk that
update resulted in.

e Check that the user claiming to be the owner of domain d knows the secret key sk corre-
sponding to pk, using a zero-knowledge proof of knowledge. If the zero-knowledge proof of
knowledge is valid, then return pk. Else, return L.

4 Key Recovery and Revocation

A fully functional certificate system must provide some functionality for revoking and recovering
keys. A certain secret key may be compromised or stolen, or simply expire, in which case the owner
of the key would need to revoke the old key and instate a new key. Similarly, a password could be
forgotten and certain methods of recovery would be necessary. In a traditional certificate authority
system, one could simply call customer support to achieve either of these objectives; however, in our
decentralized system, a mechanism for revocation and recovery must be built into the machinery
from the start.

4.1 Key Recovery

When a user creates a secret / public key pair for a domain, Certcoin requires them to set up a
recovery system where the secret key is secret shared (e.g. using the Shamir secret sharing paradigm
[22]) among at least three trusted “friends”, with a threshold of at least two for reconstruction.
Furthermore, for improved security, each trusted friend should not know the identities of the others.
A user who really does not want to trust anyone but themselves can still achieve these security

goals by naming their “friends” to be several Certcoin accounts they themselves created. A similar
technique is used by the Bitcoin wallet management platform Armory [12], where the key to the
wallet is secret shared to enable recovery.

4.2 Key Revocation

In traditional public key infrastructures, certificates either expire at a certain age or are revoked
either by being added to a Certificate Revocation List (CRL) [10] or by means of the Online
Certificate Status Protocol (OCSP) [14].

Certcoin can establish a lifetime value; each public key will have an associated timestamp, and if a
public key was created more than a lifetime ago, it should rejected based on age alone. The public
key can also be manually revoked with a reason code, much like in a traditional PKI. Reason codes
can be one of “Unspecified” , “Key Compromise” , “CA Compromise” , “Affiliation Changed” |,
“Superseded” , or “Cessation of Operation”.

At all times, each domain has two associated secret keys - one online, and one offline. Different
states of compromise can be responded to in separate ways. We make distinctions between the
adversary gaining access to a key, and the adversary stealing a key (i.e., taking access to the key
away from the domain owner).

e If the adversary obtains access to only one secret key: the real domain owner still
has access to both of his secret keys, and can use both keys to sign statetments revoking the
sole compropised key and any other keys it may have tried to sign. Next, the domain owner
will update the compromised key using the current two key pairs. Lastly, both the old secret
keys will be used to sign a statement invalidating all future operations of the compromised
key. This way, the real domain owner is again the sole owner of two uncompromised keys,
and the adversary only has access to an invalidated key. All these statements are posted
as transactions in the blockchain, and are publicly verifiable. Due to the fact that many
statements can appear in one block, all new keys signed by a key which is being revoked in
the same block (and not signed by its sister key) are automatically invalid regardless of their
timestamp within the block. This is done so that the adversary can’t sneak in a new key that
it controls right as the old one is being revoked.

o If the adversary steals the online secret key: The domain owner loses all access to the
online secret key, and the adversary manages to prevent the domain owner from recovering
the key through the key recovery system. All is not lost, because the offline secret key always
has veto power over any signatures produced by the online secret key. The domain owner can
use the offline secret key to sign a statement invalidating all keys signed by the compromised
online key, and revoking the compromised key itself. Next, the domain owner can use the
offline secret key to create a new online secret key. He then returns the offline secret key to
secure offline storage.

e If the adversary obtains access to both the online and offline keys: The domain
owner still has access to both keys, he can use both to sign a statement invalidating all
present and future statements signed by these keys, since there is now no way to distinguish
the adversary from the real domain owner.

e If the adversary steals both secret keys: The domain owner no longer has access to his
keys, and there is no way to address such a situation within the Certcoin protocol.

Note that in order to address secret key compromises in the manners described above, compromises
must be detected first.

5 Cutting Down on Storage: Accumulators for Key Verification

One major challenge in deploying Certcoin would be the necessity for every Certcoin user to store
the entire blockchain. The Bitcoin blockchain is currently at 16GB, and it appears to be growing
at a rate of approximately 1GB a month [1]. A naive implementation of Certcoin would require
any device or entity performing verification to have a large storage capacity. However, that is
not always possible; for instance, a browser on a smartphone might not have that much storage
available to it.

We can do slightly better by only maintaining the current state of the registered domains and keys
(i.e., a map from domain to current key). This still requires storage space that is linear in the
number of registered domains, but it only requires constant time per check, unlike a traversal of
the entire blockchain. We would also need to store the last few blocks of the block chain, so as to
be able to verify further blocks using the Bitcoin protocol [20]. The rest of the blocks would be
thrown away, after any public key updates they contain are verified, and after their contents are
used to update the stored state. However, storage space linear in the number of registered domains
is still wildly impractical - a browser on a smart phone would not be able to support this.

We propose the use of accumulators [15] to lower the Certcoin storage requirements. An accumu-
lator is a digital object used for testing membership in a set. The accumulator would store tuples
of the form (d,pk) or of the form (d,pk,exp), where d is a domain, pk is a public key, and exp
is an optional expiration date. The accumulator could then be used to determine whether pk is
registered to d; knowledge of the corresponding secret key sk would still need to be proven via a
zero-knowledge proof. In this section, we describe cryptographic accumulators and how they could
be used in Certcoin.

5.1 Cryptographic Accumulator Definitions

The use of cryptographic accumulators as a decentralized alternative to digital signatures was first
described in 1994 by Benaloh and de Mare [5]. An accumulator is a constant-sized representation
of a set of elements. Upon the addition of an element into the accumulator, a witness is generated
that can then be used to prove that the element in question has been added. More formally, an
accumulator scheme consists of four polynomial-time algorithms:

e Gen(1¥) — a generates the initial value of the empty accumulator, as well as any additional
parameters, given the security parameter k.

e Add(a,y) — (a’,w) takes in the current state of the accumulator a and the value to be added
y, and returns the new state of the accumulator o’ as well as the corresponding witness w.

e WitAdd(w,y) — w’ takes in the current state of a witness w and the new value y being added
to the accumulator, and returns an updated witness w’'.

e Ver(a,y,w) — {0,1} takes in the current state of the accumulator a, the value y whose

membership in a is being checked, and the witness w that ¥ is in a, and returns 1 if y appears
to be in a, and 0 otherwise.

An accumulator is secure if it has the following properties:

e Correctness: An up-to-date witness corresponding to value y can always be used on an
up-to-date accumulator to verify the membership of y.

More formally, for all valid values y and additional sets of valid values [y1, ...,y], [Y1s-- - Yio)s

Prla + Gen(1%);
(@, Wnew) < Add(a,y;) for i € [1,...,1];
(a,w) « Add(a,) (1)
((a, Wnew), w) < (Add(a,y;), WitAdd(w, y;)) for i € [1,...,1] :
Ver(a,y,w) =1] =1

e Soundness: It is hard to fabricate a witness w for a value y that has not been added to the
accumulator in such a way that the verification of y’s membership succeeds.

More formally, for any probabilistic polynomial-time adversary A with black-box access to
Add and WitAdd oracles on a,

Pr((y,w) ¢ AAHWIAL (). o)
y has not been added to a : (2)
Ver(a,y,w) = 1] = negl

Where y is an element A has not called Add on, a is the state of the accumulator after
the adversary made all of his calls to Add, and negl is a negligible function in the security
parameter.

Some additional properties might be desired from accumulators.

e Compactness: A desirable property of accumulators is that they remain small, no matter
how many items are added to them. An accumulator is compact if its size is constant (i.e.,
independent of the number of elements it contains). Some accumulators grow logarithmically
with the number of elements they contain.

e Dynamism: In 2002, Jan Camenisch and Anna Lysyanskaya [9] introduced the notion of
dynamic accumulators, which support deletion of elements from the accumulator by means
of a deletion algorithm Del, and a witness update algorithm WitDel.

e Universality: In 2007, Jiangtao Li, Ninghui Li and Rui Xue [18] introduced the notion of
universal accumulators, which are accumulators supporting non-membership proofs in addi-
tion to membership proofs.

e Strength: In 2008, Philippe Camacho, Alejandro Hevia, Marcos Kiwi and Roberto Opazo [7]
introduced the notion of strong accumulators, which are accumulators that do not assume that
the accumulator manager is trusted. Strong accumulators cannot use trapdoor information
in the creation or maintenance of the accumulator, as done in the RSA accumulator described
in Section 5.2.1. The Merkle Hash Tree accumulator described in Section 5.2.2 is an example
of a strong accumulator.

5.2 Cryptographic Accumulator Constructions

There are several known accumulator constructions, including the RSA construction, the Bilinear
Map construction, and the Merkle Hash Tree construction. Since the properties of the Bilinear
Map construction are similar to those of the RSA construction, we do not provide details about it
in this paper. In addition to these accumulators, we also consider the Bloom Filter, which, while
technically not a cryptographic accumulator since it does not leverage witnesses, can also be used
for efficient membership testing. The table in Figure 1 summarizes some properties of all of these
constructions.

Accumulator Accumulator | Witness | Witness | Dynamic? | Universal? | Strong?
Size Size -Free?
RSA [5] O(1) o) no yes yes [18] no
Bilinear Map 8] O(1) O(1) no no no no
Merkle [7] O(log(n)) O(log(n)) no yes yes' yes
Bloom Filter [6] O(n) N/A yes no N/A yes

Figure 1: Various Accumulators and their Properties

5.2.1 The RSA Accumulator

Benaloh and de Mare [5] proposed constructing accumulators from quasi-commutative hash func-
tions, which are hash functions i : X x Y — X such that, for all x € X and y1,y2 € Y, it holds
that

h(h(z,y1),y2) = h(h(z,y2),y1).

Since order does not matter in the application of this hash function, we let h(x,{y1,y2,...,yn})
denote h(h(...h(h(z,y1),y2)---)s Yn)-

An accumulator can be built by starting with a fixed x, and applying h repeatedly as values y; are
added to the set. If h is one-way, then membership of a value y; in the set can be tested in the
accumulator a = h(x, {y1,¥y2,...,Yn}) given a witness w = h(x, {y;} j=i) by checking that h(w,y;) =
a. This is clearly correct: if the value y; was legitimately added to a, a valid w = h(z, {y;};-i)
would have been maintained. It is also sound; since h is one-way, the values w and y; would be
hard to obtain given only a.

Exponentiation in Z; is one-way and quasi-commutative, and can be used to construct a crypto-
graphic accumulator as follows:

Let v be a collision-resistant hash function.

Gen(1%):

— choose a large integer n = pq where p and ¢ are both safe primes
— select a generator g of Z

— return x = g

e Add(a,y):

—set w=a

— set ' = a*¥) mod n

— return (a/, w)
e WitAdd(w,y):

— return v’ = w’® mod n
e Ver(a,y,w):

— if w'®) = q: return 1

— else: return 0

The use of v is necessary to prevent the obvious witness fabrication attack for y = y;y;, where y;
and y; have been legitimately added to the accumulator.

Note that this construction is only secure if the factorization of n is not known to the adversary;
that is, the factorization of n is a trap door. However, this trap door is only necessary to create
the accumulator, not to use the accumulator; the Add, WitAdd and Ver algorithms can all be
carried out without knowing the factorization of n. So, while the RSA accumulator is not a strong
accumulator because Gen uses trap-door information, it can be made strong by performing Gen
in a secure fashion (possibly via multi-party computation), and only then giving the resulting
accumulator to the accumulator manager.

Jan Camenisch and Anna Lysyanskaya [9] give a way to make the RSA accumulator dynamic. They
describe a deletion algorithm Del and an additional witness update algorithm WitDel, as follows:

e Del(a,y):

— compute 3 = y~! mod ¢(n), where ¢p(n) = (p — 1)(q — 1)
— set @/ =a¥ mod n

— return a’
e WitDel(w, y):

— compute 3 = y~! mod ¢(n), where ¢(n) = (p —1)(g — 1)
— set w’ = w?Y mod n

— return w’

Note that Del and WitDel require the knowledge of the trap door, just like Gen.

10

5.2.2 The Merkle Hash Tree Accumulator

Jiangtao Li, Ninghui Li and Rui Xue [18] proposed constructing accumulators in a way similar to the
building of Merkle Hash Trees. The construction given in their paper is made more complicated,
and somewhat less efficient, by the fact that they designed it to be universal. Because we do
not think that universality is a very important property for Certcoin accumulators, we informally
present a slightly different, simpler version of the Merkle Hash Tree construction.

Let h be a collision-resistant hash function. This accumulator maintains a list of log(n) balanced
Merkle Hash Tree roots, at most one with associated tree depth ¢ for i € [1,...,log(n)] where n
is the number of elements in the accumulator. Let a = [ryq,... ,nog(n)}. A witness for y consists
of d and elements e, ...,eq_1 such that h(h(...(h(h(y)|le1)|le2)...)|lea—1) = rq, where || denotes
concatenation. In other words, a witness is a Merkle Hash Tree path to one of the log(n) tree roots
stored in the accumulator.

e Gen(1%):
— set a = [1]

e Add(a,y): Modify the set of Merkle Tree roots in the accumulator to include y, while main-
taining the property that there are at most log(n) roots, and all of the associated trees are
balanced. More formally,

— set w = |]
—seti=1

— set e = h(y)

— while afi] # L:

x if a has fewer than 7 + 1 elements: append L to the end of a
x set e = h(el|ali])
* append a[i] to the end of w
* set afi] = L
x seti=1+1

— set afi] = e

— return (a,w)

e WitAdd(ayq, w,y): informally, execute Add, and modify the witness path w accordingly. This

will only involve appending an element to w. (Note that unlike the RSA construction, Add
takes in the state of the accumulator before the addition.)

e Ver(a,y,w):

— parse [d,e1,...,e4-1] = w
— if h(h(...(h(h(y)|le1)|le2) - .)||eq—1) = a[d]: return 1

— else: return 0

Note that the Gen and Add functions described above are publicly checkable. Gen is simply by
looking at the added element and the accumulator state before and after an addition, anyone can
verify that addition was performed correctly.

11

Note also that this accumulator can be made dynamic by introducing another publicly checkable
algorithm Del(a,y,w) that replaces the node in the tree corresponding to y with L, and updates
the corresponding Merkle Hash Tree path. WitDel can be implemented by updating the witness
Merkle Hash Tree path to make it consistent with the new tree, which can be done given the deleted
element witness. By keeping a list of deletions and their corresponding Merkle Hash Tree paths,
the space vacated by deletions can even be reclaimed in subsequent additions!

5.2.3 The Bloom Filter

An alternative accumulator to consider is the Bloom Filter. It is not a typical cryptographic
accumulator, in that it does not use witnesses, and the probability of erroneous verification goes
up with the number of elements that are added. A Bloom Filter works as follows:

e Gen(1%):

— instantiate BF = 0™

— select k hash functions hq, ..., hx
e Add(y):

— fori e {1,...,k}, set BF[hi(y)] =1
e Ver(BF,y):

— if for i € {1,...,k}, BF[hi(y)] = 1: return 1

— else: return 0

Note that bloom filters have no false negatives, but they do have false positives. The probability
of a false positive in the testing of membership in a Bloom Filter is:

L\ knk
=1-(1-—=)"
p=(01-00=—)")
Where m is the number of bits used, n is the number of elements added, and k is the number of

hash functions.

Figure 2 shows the probability of false positives in Bloom Filter checks for various values of m and
n, with the optimal k£ already taken into account. The number of bits required for the bloom filter
to remain secure is linear in the number n of elements added; however, only 10 bits per element
are required, while the elements themselves can be arbitrarily large.

5.3 Using Accumulators in Certcoin

There are two possible ways to integrate the use of accumulators into Certcoin: either each Certcoin
user can maintain their own accumulator, or there can be a single accumulator maintained in the
Certcoin blockchain.

If each user maintains their own accumulator locally, witnesses cannot be used; if each Certcoin
verifier issues each public key holder a witness, that simply shifts the storage burden from the

12

1.0
0.8
0.6
0.4
0.2
0.0}
-0.2 : : : : : : : :
10 10° 10' 102 10° 10* 10° 10° 10" 10%® 107 10'° 10% 10%
m

e*es N=1000000
n=10000000
*»*s N=100000000
e*s N=1000000000
e*s N=10000000000

Figure 2: Probability of False Positives in a Bloom Filter Check

verifiers to the key holders. The witness-free requirement naturally suggests the use of Bloom
Filters.

Assuming that no more than 107 certificates exist at any given point in time, only 10%5 = 1.16G
of storage is required to guarantee negligible probability of false positives. This is ten bits per
certificate - much less than storing an outright list.

However, there is one major issue with locally stored accumulators: the validity of a new entry
cannot be checked. Because the accumulator has no look-up feature, a duplicate entry for a single
domain cannot be screened.

Because of this issue, we propose storing one global accumulator on the blockchain. We assume
that entities participating in mining blocks are not computationally bounded; so, we can assume
that they have the entire blockchain on hand, and can check that all broadcast values are either
public keys for previously unregistered domains or are valid updates to registered domains before
adding them to the accumulator.

Each time a public key is created or updated, the tuple to be added to the accumulator is broadcast,
much like a transaction in Bitcoin. A single accumulator can be stored and maintained in the block
chain; each time a Certcoin user is the one to mine a block, he will update the accumulator and
include its updated value in the block (in addition to all new values he incorporated into it). All
Certcoin users can check that the updated accumulator correctly incorporates the new values, and
the individuals who broadcast the values can then compute their witnesses themselves, since all
modifications to the accumulator are public and thus locally repeatable.

If a single accumulator is stored and maintained in the block chain, then it is important that the

13

accumulator be strong, so that parties instantiating or updating the accumulator cannot cheat. So,
we can either use the RSA accumulator with multi-party computation to secure the instantiation
process, or we can use the Merkle Hash Tree accumulator.

e RSA The RSA accumulator, discussed in Section 5.2.1, is not strong because it is instan-
tiated with a trapdoor: the factorization of n. However, this can be circumvented by using
multi-party computation to instantiate the accumulator. If we use a t-threshold multi-party
computation scheme, the accumulator will remain secure as long as fewer than ¢ parties in-
volved in the instantiation are malicious. For ¢t = %, a polylogarithmic set of parties such that
fewer than % of them are malicious can be chosen by using the scalable leader election algo-
rithm of [17]. This protocol involves n participating parties each talking to at most polylog(n)
other parties in polylog(n) rounds, to elect a committee of size O(log(n)). It guarantees that
with overwhelming probability, the elected committee will have fewer than % malicious parties

if the set of participating parties had fewer that % malicious parties. Once the committee

is elected, it can perform multi-party computation (say, the protocol of [4] which is secure

against ¢t < % malicious adversaries) to instantiate the accumulator.

Note that using the dynamic accumulators from [9] requires knowledge of the trapdoor for
performing deletions. Performing multi-party computation for each deletion is impractical.
Instead, we propose implementing deletions by keeping a blacklist of revoked public keys.
Periodically, the accumulator would be recomputed from scratch, taking the blacklist into
account. However, we aim to keep the recomputations as infrequent as we can.

e Merkle Hash Tree The Merkle Hash Tree accumulator, discussed in Section 5.2.2, is strong
and can thus be used with no modifications. Deletions can also be implemented efficiently
via the original protocol. However, the Merkle Hash Tree accumulator is not compact; the
accumulator will be of logarithmic size instead of constant size, making it slightly less easy
to store.

We believe that the Merkle Hash Tree accumulator is the best bet for Certcoin, even though it is
not compact.

6 Cutting Down on Storage: Distributed Hash Tables for Key
Lookup

Cryptographic accumulators address the problem of verifying a public key without incurring a large
storage overhead; now, we move to the problem of retrieving a public key with similar limitations.
We first note that Certcoin’s design creates a clear separation between authentication and distri-
bution; domain purchases and public keys are stored in a blockchain, creating a publicly verifiable
source for credentials. Unfortunately, blockchains do not inherently support key-value retrieval,
which makes them a poor medium for facilitating dynamic queries. Traditional CAs typically also
serve as self-authenticated keyservers, allowing a network to query it to retrieve other users’ public
keys. In order to be a practical PKI, it is clear Certcoin must also provide its own interface for
efficiently retrieving public keys for a chosen identity. To accomplish this, our solution proposes the
use of an authenticated DHT, effectively creating a resilient, decentralized keyserver maintained
by the collection of purchased domains. Hence, Certcoin’s distribution mechanism exploits some
of the unique properties of a Kademlia DHT [19] to create a self-sustaining key-delivery service.

14

In standard form, Kademlia is unauthenticated and thus susceptible to poisoning, routing, and
Sybil attacks. However, below we will describe methods of prevention for each, leveraging the
authentication data stored in Certcoin’s blockchain. Of course, we want any party to have access
to Certcoin’s public keys, whether they have purchased a domain or not we do not. Therefore, we
choose not to authenticate key lookup requests. The read-only nature of these requests guarantees
that an outside adversary cannot exploit this RPC to alter key-value pairs. Hence, the remainder
of this section will exclude this operation from authentication concerns.

6.1 Design of the Kademlia Distributed Hash Table

Many of the desirable properties that Kademlia offers are the result of its symmetric routing
protocol which introduces minimal communication overhead in order to update routing tables.
The protocol is designed such that any packet sent over the network contains useful information
about that status of viable nodes and routes. Thus, Kademlia will automatically route around
failures just by continued communication from other nodes and querying from users.

In addition, Kademlia leverages the fact that node failure is inversely related to uptime by attempt-
ing to maintain the oldest active nodes in its routing table, thus guaranteeing that the routes to
the most reliable nodes are propagated into other routing tables in the network as described above.
It then becomes the best interest of a node in the DHT to remain online, that way its presence is
maintained in an ever growing number of other routing tables. Since response time in the DHT
is dependent on the number hops required to reach a destination, an unreliable node will witness
slower query responses for clients wishing to access its public keys. This is enforced by Certcoin’s
modification to Kademlia’s key retrieval protocol discussed further in 6.2.3.

Every node maintains k possible routing values for each possible path. Assuming no entry was
repeated between each of those nodes, the probability of that a node cannot reach a key is roughly
(27F)F = 2*’“2; this would require the £ nodes in the sender’s table all to have k failures in their
own routing tables without any incoming or outgoing messages of any type to any of the nodes.
However, overlap is certainly bound to happen but this is offset by the fact that the network’s
routing tables inherently store the most reliable nodes. As mentioned previously, routing tables
are updated with every message sent or received. Consequently, the network becomes more secure
as more requests are made since the average window in which an adversary would have to create a
hole shrinks proportionally.

Furthermore, Kademlia’s routing protocol can be modified to employ caching mechanisms that
distribute values based on their frequency of access. This would make more popular keys harder
to target by adversaries since greater portions of the network will have replicated the value. The
additional space required to achieve this is minimal and nodes would benefit from participating
because they would see reduced traffic directly to the source as more nodes continue to propagate
the cached value.

6.2 Kademlia for Certcoin

Certcoin’s decentralized keyserver provides both the integrity and availability of public keys by
making three key alterations to the standard Kademlia protocol. The first is the use of digital
signatures to provide authentication and integrity to RPCs. The second is a unique Node ID
assignment process which provides significant resistance Sybil attacks. Finally, we conclude with

15

a modified key retrieval process which creates an incentive for all nodes to support and enforce
the DHT, leading to its self-sustaining nature. To participate in key distribution, each domain
contributes a node to the DHT under its purchased domain name. When a node is admitted to
the network it publishes its (public key, witness) pair using the hash of its corresponding domain
name as the key. For simplicity, in the rest of the section we will refer to the process of retrieving
both the key and witness for a given domain name simply as key retrieval.

6.2.1 Authenticated RPCs

As mentioned before, unauthenticated DHTs suffer from susceptibility to poisoning and routing
attacks. Fortunately, we can easily protect against these by requiring nodes to sign Kademila’s
RPCs. We start by describing how to transform a standard message M originating from node u
into a authenticated message M 4,5 suitable for Certcoin’s DHT as follows

M puin = (M|PK,|Witnesspk,)|Sigsk, (M|PK,|Witnesspk,)-

The inclusion of PK, and Witnesspk, allows the receiver to immediately verify the sender’s
authenticity using its accumulator. It should be noted that a node should never use unauthenticated
messages to update its routing, since this is exactly what leads to poisoning attacks. Thus, when
a node receives an unauthenticated query from outside the DHT for a particular key, it initiates
a recursive, authenticated key retrieval sequence but disregards the message for the purposes of
updating its routing table. Of course, any node in the path to the destination should update their
tables using the verified RPCs.

6.2.2 Node ID Assignment

Even more pressing is defending against the well-known Sybil attack, whereby an adversary can
create a large number ID’s, usually with the ability to target specific areas of the ID space. In
applications that can afford the presence of a Certificate Authority, this is typically addressed by
ensuring a one-to-one mapping of entities to ID’s via a registration process. Since the replacement
of a CA is the ultimate goal of Certcoin, it is clear that this is not a valid solution. Fortunately,
Certcoin’s integration with the blockchain already provides a registration service. The DHT then
creates node IDs which correspond to H(domain name, signing public key, block timestamp)
where H is one-way and collision-resistant.

The inclusion of a timestamp greatly reduces an adversary’s ability to find valid collisions, for even
collisions that hash to the same ID are only valid if there exists a corresponding block with the
same timestamp and public key. Thus an adversary can explore the key space for collisions at will
but is forced to purchase a domain name in order to find collisions that will be admitted by the
DHT.

In addition, hashing the signing public key firmly associates the ID of the entities in Kademila
with the identity registered on the blockchain. This provides a form of two-factor authentication,
since nodes are only admitted to the network if they have both a valid digital signature and a
confirmation via the hash.

16

—p RPC outside DHT Certcoin DHT
—» RPC inside DHT

- 3 unauthenticated RPC =
—» authenticated RPC

2 google.com’s certificate?

v 5 google.com’s public key + witness
- - < “ -

Internet User

Figure 3: An example of a Certcoin’s alternate key retrieval protocol, demonstrating the DHT’s
response to a query made by an arbitrary user.

6.2.3 Key Retrieval

In order to prevent nodes from simply removing themselves and leaving the rest of the network
to distribute its keys, we require any node answering a key lookup to respond only if it is able
to receive a response to a heartbeat message (with array bounds checking of course) from the
hostname associated with the key. Nodes have an incentive to perform this check since failure to
do so would allow an entity to leave, placing the burden of answering requests on the remaining
nodes. Furthermore, servers have an obligation to respond to the heartbeat messages, otherwise
users will not be able to retrieve the public key for its site.

We can further increase the security of the key-lookup procedure by requiring query responses
to be delivered outside the DHT to be constructed precisely as other authenticated RPCs. This
allows anyone to report a malicious node by publishing proof the incorrect responses. Once nodes
become aware of this, they should immediately remove the offending node from its routing tables.
In addition, any node responsible for storing values associated with the hostname should fail to
honor requests for said key.

Users outside the network can also make use of Kademlia’s support for parallel asynchronous queries
by requesting the same public key from a handful of different nodes in the DHT and checking for
consistency between the responses. In addition, performance critical applications should also opt
to implement this tactic because they will experience lower expected latencies since it is more likely
to be routed on an uncongested path.

17

7 Conclusion

In conclusion, we believe that Certcoin is a viable PKI, capable of replacing Certificate Authorities
and PGP Webs of Trust. Our construction benefits from an entirely decentralized architecture
offering inherent fault tolerance, redundancy, and transparency. Despite this, Certcoin supports the
expected features of a full-fledged Certificate Authority including certificate creation, revocation,
chaining, and recovery. Domain purchases and transfers are accomplished with simple Bitcoin
transactions to incentivize miners. Certcoin employs cryptographic accumulators to maintain a
constant size storage for authenticating domains, which is becoming ever more critical with recent
trends in internet usage. Finally, our design addresses the need for a self-sustaining, trusted key
distribution mechanism that provides efficient key retrieval, making Certcoin more practical for
performance conscious applications. Moreover, Certcoin addresses many of the issues inherent to
current PKIs, such as the need for a trusted third party and limited accessibility.

We plan to implement Certcoin in the future to explore further optimizations to found our results
empirically and demonstrate its viability.

References

[1] Bitcoin blockchain size, http://blockchain.info/charts/blocks-size.
[2] Namecoin, https://www.namecoin.org/.
[3] Certificate transparency, http://www.certificate-transparency.org/.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC 88, pages 1-10, New York, NY, USA, 1988.
ACM.

[5] Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized alternative to
digital signatures. In Workshop on the Theory and Application of Cryptographic Techniques
on Advances in Cryptology, EUROCRYPT ’93, pages 274-285, Secaucus, NJ, USA, 1994.
Springer-Verlag New York, Inc.

[6] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422-426, July 1970.

[7] Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo. Strong accumula-
tors from collision-resistant hashing. In Tzong-Chen Wu, Chin-Laung Lei, Vincent Rijmen,
and Der-Tsai Lee, editors, Information Security, volume 5222 of Lecture Notes in Computer
Science, pages 471-486. Springer Berlin Heidelberg, 2008.

[8] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear
maps and efficient revocation for anonymous credentials. In Stanisaw Jarecki and Gene Tsudik,
editors, Public Key Cryptography PKC 2009, volume 5443 of Lecture Notes in Computer
Science, pages 481-500. Springer Berlin Heidelberg, 2009.

[9] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In CRYPTO, pages 61-76, 2002.

18

[10]

[11]
[12]
[13]
[14]

[15]
[16]

[17]

[18]

D. et al Cooper. Internet x.509 public key infrastructure certificate and certificate revocation
list (crl) profile, 2008.

Dawid Czagan. Symmetric and asymmetric encryption.
Armory Developers. Version: 0.90-beta (26 nov, 2013).
Entrust. What is PKI?

S. Santesson et al. X.509 internet public key infrastructure online certificate status protocol -
ocsp, 2013.

Nelly Fazio and Antonio Nicolosi. Cryptographic accumulators: Definitions, constructions and
applications.

Walter Goulet. Understanding the public key infrastructure behind SSL secured websites.

Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In Pro-
ceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA 06,
pages 990-999, New York, NY, USA, 2006. ACM.

Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient nonmembership
proofs. In Jonathan Katz and Moti Yung, editors, Applied Cryptography and Network Security,
volume 4521 of Lecture Notes in Computer Science, pages 253—-269. Springer Berlin Heidelberg,
2007.

Peter Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system based
on the XOR metric.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
Konstantin Ryabitsev. PGP web of trust: Core concepts behind trusted communication.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, November 1979.

19

