MASSACHVSETTS INSTITVTE OF TECHNOLOGY

NARWHAL

An Implementation of Zero Knowledge Authentication

Authors:

Ryan Cheu
ryancheu@mit.edu

Patrick Yang
pbyang@mit.edu

Alexander Lin
ajlin@mit.edu

Alexander Jaffe
asjaffe@mit.edu

May 14, 2014

1 Abstract

In this paper, we discuss our implementation of an alternative login system for websites that utilizes
a challenge-response model based on zero knowledge proofs. Our system, called NARWHAL, aims
to strengthen a website’s authentication system against several common vulnerabilities in current
login systems. We outline these weaknesses, provide a sketch of the protocol (which was originally
posed by Lum Jia Jun), discuss several implementation obstacles we discovered, talk about tradeoffs
we made, and comment on potential remaining vulnerabilities.

2 Introduction

Zero knowledge authentication schemes explore the use of zero knowledge interactive proofs as an
alternative model for user authentication. There are several potential weaknesses of the current
canonical model of web authentication, and zero knowledge authentication schemes solve some of
these problems cleanly. We have implemented such a scheme as a system called NARWHAL; our
server runs Ruby on Rails and we use JavaScript for client-side computation.

In the course of implementing NARWHAL, we determined that zero knowledge authentication
schemes and most challenge-response authentication schemes could be implemented with little
detriment to the user experience. Still, we also discovered several obstacles that impeded our
implementation. In particular, NARWHAL relies heavily on users having JavaScript enabled in
their browsers; even then, we lacked the desired functionality for some cryptographic operations
due to a lack of available JavaScript libraries. In this paper, we outline the system we implemented
on both a theoretical and practical level, discussing both advantages and disadvantages of zero
knowledge authentication.

3 Issues with the Current Hashed-Password System

Most current web authentication solutions use a login form, which sends the username and password
to the server as a HTTP request. In most cases, the password is sent in plain text; sometimes, this
plain text password is sent through an SSL connection. On the server, the password is hashed and
compared to a stored hash. Most systems also use a process called salting in which random bits
are added to the end of the password before it is hashed to prevent attacks through pre-computed
hash tables[7]. There are several major attack vectors for this current system.

The first major vector is brute-force hash cracking[4]. In this attack, the adversary has gained access
to the hash of the password, usually by compromising the server storing the password hashes. Once
the adversary has access to the password hashes, he hashes many common passwords to see which
hash matches and thus determines the original plaintext password. A user can protect against this
attack by choosing a password that is difficult to guess, and the server can protect against attacks

by choosing a sufficiently secure hashing algorithm and good salts.

A second possible attack is wire sniffing, where a malicious entity listens in on the client’s connection
to the server and reads the password that’s sent over the network[4]. Most large sites use SSL
for authentication, which encrypts this connection and makes it more difficult for listeniers to
read any data; however, some still do not. For example, as of May 2014, the Forbes website
(http://www.forbes.com/) does not log in over HTTPS. If a user were to authenticate with a
server over HTTP (not HTTPS) on an unsecured network, such as public Wi-Fi, it would be trivial
for an attacker to gain access to the password by sniffing the completely unencrypted packets being
sent on the network.

Additionally, several high-profile password thefts in recent years have occurred when servers stored
passwords insecurely (in particular, in plain text or hashed without salting) and then were compro-
mised. This has been the most publicized form of large-scale password leakage. When a user sends
a password in plaintext and the server does not store this password securely, such catastrophic
scenarios may occur. For example, in January 2013, the servers of dating network Cupid Media
were compromised, resulting in the theft of a staggering 42 million unencrypted passwords. [2]

Finally, the server itself could behave maliciously. Since passwords are almost always sent to the
server without hashing, the server can see all passwords in plaintext. Furthermore, since many users
use the same passwords to access multiple sites, a malicious server can simply take this password
and other identifiable information about a user (like his or her email) and in turn fraudulently
access the victim’s accounts on a wide variety of services.

In order to ameliorate these threats, we implemented a randomized authentication system based on
zero knowledge proofs. This system never transmit information that can be used to easily recover
a user’s password; furthermore, each login attempt will be different, resulting in a system that is,
overall, more secure.

4 Zero Knowledge Proofs and Applications to Authentication

Canonical interactive proof systems involve two parties: a Verifier and a Prover[3]. A Verifier
presents an instance of a problem to a Prover, and the Prover must provide a verifiable solution.
Zero knowledge proofs are a variant on this model, where the Prover provides evidence for the
solution’s existence without giving away any easily computable information about the solution.
Inherently, zero knowledge proofs are probabilistic: in most zero knowledge proof systems, the
Prover can only provide a certificate that demonstrates he is likely to know the solution; in many
instances of these proofs, the Verifier obtains confidence through repeated iterations.

This difference between zero knowledge proofs and traditional interactive proofs mirrors the differ-
ence between zero knowledge authentication and current login systems. A zero knowledge authen-
tication scheme would encode the user’s identity (e.g. username and password) as a hard problem,
and use an interactive zero knowledge proof model to authenticate.

http://www.forbes.com/

A server running a zero knowledge web authentication system would provide additional resilience
against an adversary listening in on server-client messages[3]. Furthermore, the probabilistic nature
of zero knowledge proofs is not an issue; in particular, even current client-authentication schemes
are not perfectly error-free, as the adversary can simply guess the right password by chance.

5 Original Protocol

The protocol for zero knowledge authentication that our implementation is based on was described
by Lum Jia Jun[4]. We briefly discuss it here to establish notation and correctness.

5.1 Setup

When the server first loads the authentication system, it generates a public key for itself. This
consists of a cryptographic group G as well as some element gy of G[4].

5.2 Registration

Client Server

user inputs 1gr0up, chosen element
username, password

, | server stores username,
username, public key public key

public key is generated

Figure 1. Registration procedure.

When a user registers by entering a username and password, the client obtains the server’s public
key. Let the hash of the password be z; the client computes Y = g§ and sends the pair (username,
Y') to the server. In particular, the server does not receive the password during registration, and
assuming the difficulty of the discrete logarithm problem in G, does not receive useful information
in determining x. We will refer to Y as the user’s public key.[4]

Client Server

user inputs - challenge a server generates
username, password challenge a
enerate c, z > server verifies ¢, z
9 username, c, z ’

Figure 2. Authentication Procedure.
5.3 Authentication

To authenticate, the server first generates, stores, and sends the user a challenge in the form of a
random number a, tied to the user’s username. The user then inputs a password, and the client
calculates the following values:

e = = hash(password)

e V=ygj

e 1, a private random number specific to this authentication attempt
e T=y5

e ¢ = hash(Y||T||a)

e Z2=7T—CT

The client then sends the pair (¢, z) to the server; we call this pair the user’s response.

To confirm the user’s identity, the server only needs to confirm the computation of c¢. Since the
server knows both Y and a, the server can compute 77 = Y¢g§. If hash(Y||T'||a) matches the value
of ¢ provided by the user, the server accepts the authentication attempt.[4]

5.4 Correctness

For a correctly entered password, T/ = Ygoz = g3~ = g = T, and the server’s value of Y will

match the value computed by the user. Thus, the two values of ¢ will also match and the server
will always authenticate correctly if given valid credentials. Refer to Lum Jia Jun’s original paper
for a more in-depth discussion of correctness and security.

6 Advantages

Earlier, we discussed some of the problems with the current login systems. In this section we’ll
discuss how our system provides solutions to these problems.

The first issue with traditional login systems occurs when the database is compromised. If passwords
are insecurely stored in this database, NARWHAL fares much better; the public keys stored by
NARWHAL are intrinsically hard to invert and less vulnerable to rainbow tables. If passwords are
securely hashed and salted, NARWHAL makes brute forcing the password from the information
stored on the server linearly harder. In a benchmarking test, we used C++ with OpenSSL to
compute SHA256 hashes and GMP to compute modular exponentiation on large numbers. Adding
the modular exponentiation requirement increased the running time by a factor of 8. The source
code for the test can be found at https://gist.github.com/ryancheu/d2e9fa0432c885e0526¢.
Part of this slowdown is due to the use of numbers larger than 64 bits, meaning that we had to use
big number libraries to compute the modular exponentiation.

Another vulnerability of the classical scheme is replay attacks, where an eavesdropper captures
valid authentication credentials over a network and replays them to the server at a later time
to gain access. Zero knowledge authentication, however, is not susceptible to such attacks. The
login process is randomized, so intercepted credentials are only valid once and in turn do not
allow an eavesdropper access with further login attempts. The information sent to login is also not
useful to an adversary without significant computing power. This means that a password cannot be
discovered by intercepting user verification; in contrast, many sites currently send login information
in plain text.

Finally, a user can verify that their information is stored securely, since the server never gains
direct access to the user’s password in the first place. Right now, the user has no way to know
that the server they’re authenticating with is not storing their password insecurely or copying it
for malicious uses. With zero knowledge authentication, however, the user can verify that their
password is never sent in a readable form and thus ascertain that their password is not being stored
or misused.

7 Our Implementation

We implemented a website running NARWHAL. Our server is written in Ruby on Rails and sits on
a sqlite3 database; the client-side processing is done in JavaScript. Our repository lives at http:
//github.com/xanderlin/narwhal. Our demo site is currently online at http://narwhal6857.
herokuapp.con/.

Upon installation, NARWHAL selects a random prime number of at least 512 bits. Since the best
known general discrete logarithm algorithms are O(|G|Y/2), where |G| is the size of a group G,
this number provides 256 bits of entropy.[l] NARWHAL uses the multiplicative group modulo this

https://gist.github.com/ryancheu/d2e9fa0432c885e0526c
http://github.com/xanderlin/narwhal
http://github.com/xanderlin/narwhal
http://narwhal6857.herokuapp.com/
http://narwhal6857.herokuapp.com/

prime as its cryptographic group.

7.1 Registration

When the user registers, the generatePublicKey JavaScript function hashes the password and
generates a public key from the user’s password, the user’s username, the website’s public unique
identifier. Each of these three components serves a different function:

e the password adds secrecy, as the other two are public information
e the username prevents two users of a single website from sharing the same public key

e the website’s identifier prevents two users with the same username and password on two
different websites from sharing the same public key.

The client then sends the username and the public key to the server, which stores it into its database
and logs the user in.

Unfortunately, we are still unable to salt our public keys with an additional random string. This
is further discussed in the “Potential Remaining Vulnerabilities” section.

7.2 Logging In

When the user goes to a login page, the server provides the client with a random challenge. The
client runs the addCandZToForm function to calculate the response, and then sends the username
and response to the server. The server verifies these using the stored public key and the random
challenge. The random challenge here is stored in a user’s session tokens. These session tokens
are bound to a single session; the same user logging in from two different computers will therefore
have different session tokens. The ID of a session token is stored in a cookie; when a web request
is made, the server looks at this ID to retrieve the other information in a session token.

Currently, random challenges do not expire with time; instead, the session token stores only the most
recent random challenge. Every authentication attempt - successful or not - resets this challenge,
preventing malicious users from brute forcing a valid response to a randomized challenge.

7.3 Other Features of Note

Another feature we considered but did not implement is rate limiting; that is, if multiple failed login
attempts on a single user occur, we would “lock” a user’s account and prevent it from being accessed
for a short period of time. We decided that this was a negligible risk because the randomized nature

of the challenges would keep the requisite number of iterations to brute force a password very high.
In particular, on a website with limited computation power like ours, any attempt to brute force
a user’s password by repeatedly attempting authorization would result in our server crashing from
high traffic flow.

Furthermore, although our implementation is secure from replay attacks, it is still vulnerable to
session hijacking if the website is not using HTTPS. This type of attack occurs when a malicious
user steals the session ID from a legitimate user and uses sets it in his own cookie to impersonate
the victim.

8 Implementation Issues

NARWHAL requires some form of client-side processing. We had numerous options for this; no-
tably, these come in two flavors: the solutions that integrate into the website (requiring no user
work), and the solutions that make it easier for the user to calculate the response from the challenge.
We ultimately implemented NARWHAL using JavaScript for client side computation, but other
options provided unique potential benefits. A brief summary of each of our options for client-side
computation follows on the next page.

We chose JavaScript as it integrates most seamlessly and requires the least work from the user.
Javascript, although some users disable JavaScript with applications like NoScript. According to
Yahoo in 2010, around 2% of users have JavaScript disabled. [6]

Fortunately, our options for client-side communication are not mutually exclusive; if a user has
JavaScript disabled, they can use a some other method to perform the calculation themselves and
then manually enter their response to the challenge.

Unfortunately, despite being the option we deemed the most attractive for its simplicity, JavaScript
has its own set of difficulties. In the course of our efforts to implement NARWHAL, we discovered
that JavaScript’s library support for cryptographic functions is poorly developed, and often even
some commonly used libraries proved buggy. One functionality NARWHAL required in particular
was support for large integers. The large integer library we found and utilized based on recommen-
dations within the JavaScript user community, available online at http://leemon.com/crypto/
BigInt. js, does not support operations on negative numbers. Such numbers appeared frequently
while computing the client’s response to the challenge, and forced us to perform inelegant hacks to
code ’around’ the library.

http://leemon.com/crypto/BigInt.js
http://leemon.com/crypto/BigInt.js

Technology

Pros

Cons

Javascript Each website could have a
JavaScript script which automatically
processes the challenge, username, and
password to produce a response.

Seamless integration
Transparent to user

Supported by all modern

browsers

Excellent mobile support

Sometimes disabled for secu-
rity reasons

Requires more trust in the
website

Applets This is the approach used by
the original paper, which used an ap-
plet to download a python script which
performed the authentication. We be-
lieve this solution is strictly inferior to
using JavaScript.

No extra work from user

Supported by all modern

browsers

Requires a plugin to be in-
stalled

Very little mobile support

Requires more trust in website

Browser Extension A browser exten-
sion could provide an interface that al-
lows the user to easily calculate the re-
sponse from a challenge, either by man-
ual form entry or by scraping the web

page.

Can easily be verified as secure
(it can only be changed with
the client’s knowledge)

Can integrate nicely with web-
page

Potentially requires more work
by user

Needs to be installed for every
browser and computer

Client Side Script This is an alter-
native to a browser extension; the user
could download a script or program
that they can run to manually calcu-
late the response from the challenge.
This would be on either a computer or
a phone that the user will have easy ac-
cess to.

Can easily be verified as secure

Requires more work by user

Needs to be installed on a
device that can be easily
accessed whenever the user
wants to log in.

Third Party Website A trusted third
party website could function as a ser-
vice that calculates responses from
challenges.

Portable

Easily accessible

e Requires more work by user

e Central point of failure.

9 Potential Remaining Vulnerabilities

The protocol as posed by Lum Jia Jun and as we have implemented still shares one weakness
with a traditional hashed-password protocol in which the server does not use salts. An attacker,
targeting a specific server and username, could precompute values of the public key for a list of
common passwords, e.g. as a rainbow table. Then, if the attacker obtained access to the database,
he would instantly be able to determine via lookup what the targeted user’s password was. In
traditional schemes, salting prevents attacks like this. However, since the server retains effectively
no information about the user’s password, the only ways for the client to add a salt in this current
protocol are to receive it from the server every time or to store it locally after receiving it at
registration time. Neither modification is appealing: the first is trivially vulnerable to an attacker
impersonating the user, and the second relies on the user always having access to the registration
device.

Note that this attack doesn’t let the adversary avoid performing the work of cracking the password.
Rather, it allows the majority of this work to be done before the adversary obtains access to the
servers. In this way, a targeted user’s account information can be retrieved more rapidly, which
potentially lets the attacker access user information before an user is alerted of possible database
theft.

However, since these attacks are limited in scope by nature (a separate table must be made for
each user) and require massive computation power (with a random 8-character password, there
are roughly 2% possible passwords which will take storage space in the exabyte range), we do not
expect these attacks to be crippling.

There exist zero knowledge protocols similar to the one used here, but which fix this vulnerability.
For example, the SRP (Secure Remote Password) protocol, developed at Stanford and with exist-
ing implementations, solves the issue. However, the SRP fix comes at the cost of more required
computation as well an additional server request. [5]

10 Conclusion and Future Work

NARWHAL’s simplicity and ease of use for the client demonstrate that, with appropriate setup,
a zero knowledge authentication protocol can be feasibly implemented for websites without detri-
ment to the user experience. Indeed, NARWHAL and other zero knowledge web authentication
schemes provide nontrivial benefits, in particular enabling the user to authenticate without ever
providing the server with the user’s password in plaintext. Implementation issues, particularly
with JavaScript, demonstrated a continued need for improved JavaScript support of cryptographic-
related functionality. Furthermore, NARWHAL more or less requires the user to have JavaScript
enabled, forcing the user to place some initial trust in the website.

The next step for our work with NARWHAL is to package the system as a Rails gem, enabling easy

reuse and distribution. Other future work includes adding a random salt to the server side public
key storage, investigating the existing libraries for JavaScript cryptography and big numbers for
correctness, integrity, and security of cryptographic functions, and possibly updating them to meet
the needs of NARWHAL should further deficiencies be found. Also, we could implement one of the
protocols that secures against the targeted attack described above, integrating it into NARWHAL.
These weaknesses aside, NARWHAL still stands as an effective proof of concept of zero knowledge
authentication.

References

Adleman, Leonard M. “The function field sieve.” Algorithmic number theory (1994): 108-121.

Donohue, Brian. “Cupid Media Spills Database of 42 Million Passwords.” Threatpost. Threat-
post, 20 Nov. 2013. Web. 13 May 2014.

Goldwasser, Shafi, Silvio Micali, and Charles Rackoff. “The knowledge complexity of interactive
proof systems.” STAM Journal on computing 18.1 (1989): 186-208.

Lum Jia Jun, Brandon. “Implementing zero-knowledge authentication with zero knowledge,”
in The Python Papers Monograph 2.9 (2010).

Wu, Thomas D. “The Secure Remote Password Protocol.” NDSS Mar. 1998: 97-111.

Zakas, Nicholas. “How many users have Javascript disabled?” Yahoo. Yahoo, 13 Oct. 2010.
Web. 13 May 2014.

Zhou, Minqi et al. “Services in the cloud computing era: A survey.” Universal Communication
Symposium (IUCS), 2010 4th International 18 Oct. 2010: 40-46.

10

	Abstract
	Introduction
	Issues with the Current Hashed-Password System
	Zero Knowledge Proofs and Applications to Authentication
	Original Protocol
	Setup
	Registration
	Authentication
	Correctness

	Advantages
	Our Implementation
	Registration
	Logging In
	Other Features of Note

	Implementation Issues
	Potential Remaining Vulnerabilities
	Conclusion and Future Work

