Blackbox: Distributed Peer-to-Peer File Storage
and Backup

Payut Pantawongdecha
Isabella Tromba
Chelsea Voss
Gary Wang

Instructor: Ron Rivest

May 14, 2014

Abstract

This paper presents the design of Blackbox, a distributed P2P file storage and backup
that ensures security, fairness and reliability. Blackbox works as a client on a computer that has
an access to the internet but doesn’t need a centralized server. The client assumes that a
fraction of users are adversaries who might abuse the system, but still promises a secure and
uninterrupted operation.

Key aspects of Blackbox’s design include applications of cryptographic schemes to
ensure security, network structure among clients to ensure reliability of connections, and rules
for fairness.

Page 1 of 18



Introduction

Blackbox is a peer-to-peer distributed backup file system. Backing up files is an
important task for any computer user, to make sure that data is not lost in the event of disk crash
or other accident. Services like Dropbox, Carbonite and CrashPlan offer backup space, but often
at monetary cost. On the other hand, each computer user usually has plenty of free disk space.
A survey conducted by Butt et. al. [5] before 2004 shows that there are 8GB to 60GB available
disk space on 500 instructional machines at Purdue University. Moreover, for systems with more
than 40GB disk space, over 90% of the local disk space is unused. Since disk space has
become cheaper over the years, the amount of free disk space today is proportionally higher. In
this project, we design a backup file system that allows users to store files on their peers extra
disk space, achieving fault tolerance without requiring users to pay a third-party service.

We begin by describing the set of goals that we want our client to achieve. These goals
will ensure that Blackbox is safe and reliable for users to backup their crucial and secret data.
We utilize a wide range of concepts from common cryptographic schemes in order to ensure
the security and confidentiality of users data while using Blackbox. Our system hopes to
achieve the following:

1. Confidentiality
When files are stored in another computer, other users must not be able to obtain
any information about the file except some primitive data such as the file size,
even though the file is on their computers.

2. Integrity
Files should not be able to be modified by others. If they are, then the owner must
be able to detect it and will not accept the files. This feature can prevent malware
to enter another user’s computer.

3. Reliability
Users should be able to obtain the backup of their files with reliability. Practically,
peers are not online indefinitely and adversaries exists, but users should be able
to obtain their files within reasonable time window.

4. Fairness
The amount of space that users can backup their data to should be the same as
the amount of space they allow others to store data on. This problem goes
beyond just specifying the amount of space. It also involves analyzing individual
online time and resolving potential problems such as hard disk drive failure where
a user lose all data from their peers, but still want to retrieve his backup.

There are related projects and products that are related to Blackbox such as Freenet [2],
a peer-to-peer platform for censorship-resistant communication, BitTorrent Sync [1], a client for
syncing data between multiple trusted peers who share a secret key, Tahoe-LAFS [3], a
distributed file system which stores files on multiple computers to protect against hardware

Page 2 of 18


http://www.google.com/url?q=http%3A%2F%2Fwww.andrew.cmu.edu%2Fuser%2Fgnychis%2FDS%2Fp2peur.pdf&sa=D&sntz=1&usg=AFQjCNFEvJE2ZXUUuGTf-hPIeLxhI_USUw
http://www.google.com/url?q=http%3A%2F%2Fwww.andrew.cmu.edu%2Fuser%2Fgnychis%2FDS%2Fp2peur.pdf&sa=D&sntz=1&usg=AFQjCNFEvJE2ZXUUuGTf-hPIeLxhI_USUw

failures, and PAST [4], a large scale, persistent peer-to-peer storage utility. However, we still
cannot find a peer-to-peer distributed backup file system that satisfies all of our goals. For
example, Tahoe-LAFS has an unclear policy on “fairness.” In response to the shortcomings of
previous systems, we propose Blackbox as a secure, fair, and fault tolerant distributed
peer-to-peer file system.

First, we will describe the methods for file storage and encryption. Next, we describe the
structure of the decentralized network of peers. Finally, we conclude with protocols and tactics
for preventing leeching of space by untrustworthy users.

References

[1] http://www.bittorrent.com/sync

[2] http://en.wikipedia.org/wiki/Freenet

[3] https://tahoe-lafs.org/trac/tahoe-lafs

[4] http://research.microsoft.com/en-us/um/people/antr/past/hotos.pdf

[5] Butt, A. R, Johnson, T. A,, Zheng, Y., Hu & Y. C. (2004). Kosha: A peer-to-peer enhancement
for the network file system. ACM/IEEE SC2004: High Performance Computing, Networking and
Storage Conference, November 2004. (http://people.cs.vt.edu/butta/docs/sc04.pdf)

File Storage

File Redundancy Scheme (Reliability)

In order to achieve a reliable file distributed file system, we need a way in which to split files in
such a way to ensure that not all nodes that are storing our data are required to be online at the
time we request a file. There are two main ways in which to achieve this goal. The first is the
most straightforward which is a simple replication scheme. The second scheme involves a
concept known as erasure coding. We begin by describing erasure coding.

Erasure Coding

The benefit of erasure codes is that they provide redundancy without strict replication. Erasure
coding works by taking a file and splitting it first into m chunks. Then, those chunks are used to
create n total chunks (n >m). The resulting erasure coding scheme is an m of n scheme which
means that only m chunks are needed in order to recover the entire file. Because we do not want
to rely on the peer having enough space for a large file, we always have a constant chunk size.
So m, the number of chunks needed to recover a file, depends on the size of the file.

For instance, a 10MB file could be split into 500KB size chunks. We want to split the file
into a chunk size that reduces the number of superfluous ‘padding bits’ needed. This
means that the chunk size will depend on the file size. So with a 10MB file and “chunks”
of 500KB results in a 20 chunks for a particular file. Alice will then specify the amount of
redundancy that they would like for her file. The higher the redundancy, the less peers
she needs online to recover an entire file, but also the less space that she has available
to store other files on the system. For instance, if the 20 chunks are then converted into

Page 3 of 18


http://www.google.com/url?q=http%3A%2F%2Fwww.bittorrent.com%2Fsync&sa=D&sntz=1&usg=AFQjCNGWdurnmk8gjvXxnxIWeME7TY0CQg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFreenet&sa=D&sntz=1&usg=AFQjCNElj318xyqi3aF04k6oeB1O8pB8wA
https://www.google.com/url?q=https%3A%2F%2Ftahoe-lafs.org%2Ftrac%2Ftahoe-lafs&sa=D&sntz=1&usg=AFQjCNEmZAVCnKMLV4wWWOM21T0A8wuyUg
http://www.google.com/url?q=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fantr%2Fpast%2Fhotos.pdf&sa=D&sntz=1&usg=AFQjCNH-UV2dwq-4za_M4n_e-uLz3lWMAQ
http://www.google.com/url?q=http%3A%2F%2Fpeople.cs.vt.edu%2Fbutta%2Fdocs%2Fsc04.pdf&sa=D&sntz=1&usg=AFQjCNFgusR-Mq2U8fHkwdauGvNIs8eSlg

50 chunks and stored throughout the system, only 20 of these peers must be online at a
particular time in order for Alice to recover her entire 1GB file.

Note: Nychis et. al. [2] pointed out that a file cannot be decrypted until all n out of m chunks of the
file have been recovered. The reason for this is that the file is encrypted before the chunking
phase. So in order to decrypt, the chunks need to be reassembled (via an interpolation algorithm
that works similar to polynomial interpolation as presented in Adi Shamir’s secret sharing
scheme).

Replication versus Erasure coding [2]

A study by Rodrigues and Liscov [3] compared erasure coding and replication schemes in peer
to peer networks and found that replication was a better scheme if peer availability is high,
whereas in networks where peer availability is low, erasure coding is preferred.

In a study by Weatherspoon and Kubiatovicz [4], they found that erasure coding results in an
order of magnitude less bandwidth and storage as compared with replication.

Overall, the academic literature seems to agree when it comes to the advantages of using
erasure coding as opposed to replication in P2P file systems where nodes are unreliable
(unavailable), whereas replication is preferred in networks with high node availability.

For these reasons, we chose to go with an erasure coding scheme. This will allow our system to
store more data at a lower storage cost. Because our system relies on available disk space as
opposed to a distributed file system in a data center which has SSD dedicated to file storage,
lower storage costs are crucial for the usability of Blackbox. The main complication with
erasure coding comes into play when a node fails. We discuss that in the next section.

Node failure and redistribution of the Erasure Coded Chunks [1]

Suppose we have 10 chunks of a file distributed across the network and only 8 of these chunks
are needed to recover the file. Now, 2 nodes leave the network. We now rely on all 8 of these
nodes to recover our files. Even worse, suppose 3 nodes leave the network. Now, we do not
have enough redundancy to recover our files. The way in which our system detects nodes
leaving the network will be described in later sections. Here, we describe the ‘chunk’ node failure
protocol to ensure that we maintain the invariant that 8 chunks are needed to recover a file.

The main drawback with erasure codes is that in order to regenerate a chunk when a node
leaves the network, you need the entire file. There are several approaches that we considered:

1. Alice- whose file chunk was lost is notified that one chunk was lost and now she must
recompute a chunk to send out to a new peer

Page 4 of 18



2. The nodes in the network handle the re-chunking. i.e. when a node leaves the network,
the remaining nodes are responsible for chunk redistribution

The first approach is the naive approach. Alice simply receives a notification that she must
re-generate a chunk. Assuming that Blackbox operates a file backup system as opposed to a
remote file store, she can easily recompute a chunk and send it out to the new peer.

The second approach does not require Alice to store the file on her own computer. This allows
for more flexibility in our design. As mentioned previously, the entire file needs to be recovered in
order to generate a new chunk. When a node leaves the network, a notification is sent to all
nodes that this file has disappeared. Then, nodes with available storage agree to store a chunk
from a file that is now below its necessary chunk count.

The following occurs on the node that agrees to store an additional chunk:

1. The node will broadcast a request for all other chunks that combine with the chunk it
has, to reconstruct the file.

2. Once the node reconstructs the file, the node computes a new chunk for themselves
and then deletes all other chunks it collected.

A notable problem with this strategy is the huge overhead in bandwidth. All chunks of the file
must be sent over the network for all files that a particular node was storing. Consider the
following scenario:

For a node that stores 10GB (a reasonable assumption given that average computers
have 10-60GB available storage space) lets say that the average chunk size is 100KB,
so the node stores 100,000 chunks (each chunk corresponding to a file). So now
100,000 files need to be recovered. Lets assume a file is 500KB (all text files). The loss
of this node causes an additional 6GB of data to be sent over the network.

Because we assume that node failure is infrequent, the increased bandwidth caused by
re-chunking is not crippling for the system.

Page 5 of 18



oo (N -,
_>

.
i
u

AES key B - \ ‘
password L_®_‘ ‘i

encrypted
on users File Chunks generated using
devices Erasure Coding

and Digitally Signed using
Alice’s Private Digital
Signature Key

Figure 1. Encryption of a file and subsequent chunking using Erasure Coding

Chunk Validation (Integrity)

Each chunk is digitally signed by Alice to ensure that no malicious party has altered the contents
of any chunk. Each peer that receives a chunk from Alice will verify that the chunk is in fact from
Alice by verifying that the digital signature is correct.

In order to ensure that all chunks sent out were not modified in transit or maliciously changed by
an adversary, we use a digital signature scheme. Each chunk that is sent from Alice’s computer
is digitally signed. Upon receiving a chunk, a peer will verify that the chunk is in fact from Alice by
verifying that the digital signature is in fact Alice’s. The public keys for each participant in
Blackbox is publicly available. Of course the digital signature must be used to verify the
‘encrypted’ form of the chunk because your peers will never actually know what the original files
contents are. This means that Alice will first encrypt the file and then sign it.

Page 6 of 18



Figure 2. File Validation using a digital signature scheme.

Implementation of Digital Signature Scheme [6]

If we were to implement Blackbox, we would use one of the digital signature algorithms provided
by the OpenSSL open source library. For instance, OpenSSL provides an implementation for
DSA (digital signature algorithm) which is approved by the US Federal Information Processing
Standard FIPS 186 (Digital Signature Standard, DSS), ANSI X9.30.

References

[1] Dimakis, A. G., Godfrey, P. B., Wainwright, M. J., & Ramchandran, K. (2007). The benefits of
network coding for peer-to-peer storage systems. In Third Workshop on Network Coding,
Theory, and Applications.

[2] Nychis, D. G., Andreou, A., Chheda, D., & Giamas, A. (2008). Analysis of erasure coding in a
peer to peer backup system. Information Networking Institute, Carnegie Mellon University.

[3] R. Rodrigues and B. Liskov, High availibility in DHTs: Erasure coding vs. replication.
Proceedings of the 1st International Workshop on Peer- to-Peer systems (IPTPS), March 2002.
[4] H. Weatherspoon and J.D. Kubiatowicz, Erasure Coding vs. Replication: A Quantitative
Comparison. Peer-to-Peer Systems: First International Workshop, IPTPS 2002, LNCS 2429, pp.
328-337, 2002

[5] http://en.wikipedia.org/wiki/Erasure_code

[6] https://www.openssl.org/docs/crypto/dsa.html

Page 7 of 18


http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FErasure_code&sa=D&sntz=1&usg=AFQjCNEzi7YSSqzMXVoBqY_n6ZBl0UTb4A
https://www.google.com/url?q=https%3A%2F%2Fwww.openssl.org%2Fdocs%2Fcrypto%2Fdsa.html&sa=D&sntz=1&usg=AFQjCNFeq1u3HaGleQcVW9Yc2egXz_QDYg

File Encryption

Encryption Method (Confidentiality)

Recall our goal of confidentiality: when files are stored in another computer, other users must not
be able to obtain any information about the file except some primitive data such as the file size.
In order to achieve this goal, every file is encrypted by the owner of the file before it is distributed
to peers in the network. Each user will store their AES key on their own computer and/or on a
USB drive in the case that their computer’s hard drive is compromised. It is essential that the
user does not lose their AES encryption/decryption key (symmetric cryptosystem where
encryption and decryption keys are the same). If they do, they will no longer have the ability to
access their files. Instead of storing Alice’s AES key in plaintext on her computer, we further
encrypt her key using a password that Alice specifies. This insures that if someone gains
access to Alice’s computer, they would need to know her password for her AES key in order to
recover the key. This additional encryption step adds another layer of security to Blackbox.

Background on AES

AES stands for Advanced Encryption Standard and is based on the Rijndael cipher. It was
adopted by the U.S. government in 2001. AES is a symmetric key encryption.[1] This is good for
our use purpose because we want only the person whose file it is to be able to encrypt/decrypt it.
Our application has no need for asymmetric encryption.

Security of AES

As of 2009, the only successful attacks on AES so far have been side-channel attacks[1]. AES
relies on a block cipher mode of operation. We chose to use AES in Cipher Block Chaining
mode.

Performance of AES

AES performs well on devices ranging from 8-bit smart cards to high performance
processors[1]. The following is a figure showing the performance metrics of AES encryption in
CBC mode with varying key sizes.

Page 8 of 18



Rijndael (AES) Block Cipher Speed

Time [Microseconds]

AES-CBC (128 bit key, 128 bit blocksize)
AES-CBC (192 bit key, 128 bit blocksize)

AES-CBC (256 bit key, 128 bit blocksize) \l ”]Jﬂlf\‘mﬂ

100 150 200 250
Data [Byte]

Figure 3. AES in CBC mode performance analysis for varying key sizes

Implementation of AES

Implementation of AES can be done using the OpenSSL library. OpenSSI provides an
implementation of AES. The following is an excerpt from the OpenSSL documentation [2]:

aes
aes
aes
aes
aes
aes
aes

12811921256]-cbc
12811921256]
12811921256]-cfb
1281192|256]-cfbl
1281192|256]-cfb8
12811921256]-ecb
12811921256]-ofb

128/192/256 bit AES in CBC mode

Alias for aes-[128]192|256]-cbc
128/192/256 bit AES in 128 bit CFB mode
128/192/256 bit AES in 1 bit CFB mode
128/192/256 bit AES in 8 bit CFB mode
128/192/256 bit AES in ECB mode
128/192/256 bit AES in OFB mode

Available modes of operation in the OpenSSL AES implementation include CBC, ECB, and CFB
modes. The ECB mode of operation does not provide the security we want, namely, identical
plaintext blocks are encrypted as identical ciphertext blocks. CBC is encryption parallelizable but
not decryption parallelizable whereas CFB is not encryption parallelizable but decryption

parallelizable. [1][2]

References

[1] AES http://en.wikipedia.org/wiki/Advanced_Encryption_Standard]

[2] OpenSSL AES https://www.openssl.org/docs/apps/enc.html

Page 9 of 18


http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw

File Identification

Each file chunk stores in its metadata the hash of its parent file (filelD). This way, when Alice
broadcasts a request to recover a file with a specific filelD, all nodes that receive the request will
look at the chunks they are storing and check if they have chunks for that particular filelD.

Each client stores a hash table mapping the filelD to the chunks location on their file system.
This way, when Alice requests a filelD, the peers can quickly refer to this hash table to check if
they are storing any of Alice’s chunks. If they are, they will retrieve the chunk and send it out on

the network.

filelD, ChunkLocation Key-Value Store

Koy Valua

filelD chunklLocation
SHA-256 hash of encrypted File fUserstrombadlackboxfohunkiD]

filelD chunkLocation
SHA-258 hash of encrypted File AUsersfromba/blackboxfchunkiD]

filelD chunklLocation
SHA-256 hash of encrypted File fUserstrombasblackboxfchunkiD]

filelD chunklocation
SHA-256 hash of encrypted File fUseratrombarblackboxfohunkiD]

Figure 4. Dictionary storing mapping between fileIDs and
chunkLocations

Security
If we choose an appropriate hash function h : {0,1} — {0,1}¢, it will have the following properties

[2]:

1. One-way (pre-image resistance)
It is hard for an adversary, given y=h(x) (where x is picked uniformly at random from

{0,1}" to find any x’ such that h(x’) =y.
2. Weak Collision-Resistance

Page 10 of 18



Infeasible given x € {0,1} to find x’#x such that h(x) = h(x’).
3. Pseudo-Randomness
Hash function h is indistinguishable under black-box access from a random oracle. For
this property to be satisfied, we need a family of hash functions.
4. Non-malleability
It is infeasible given h(x) to produce h(x’) where x and x’ are related. (e.g. X’ = x+1).

In choosing a hash function, we must be careful to verify that it is secure (according to the
security requirements provided above). The following summarizes the security of widely-used
hash functions:

Table color key
No known successful attacks
Theoretical break
Attack demonstrated in practice

Hash | Security Attack
Best attack Comment
function | claim date
2013-03- This attack takes seconds on a regular PC. Two-block collisions in 218,
MD5 204 218 time 1 : o4 =
25(1] single-block collisions in 24
2005-08-
SHA-1 (280 261 1712 Attack is feasible with large amounts of computation power.[!
24 of 64 rounds 2008-11-
128
SHA256 |2 2285, sl
GHAsip p26  |240180rounds 2008-11-

{232.5) o5(4]

Figure 4. Hash Function security summary[1]. For more information on the available hash
functions refer to the Appendix.

We chose to use SHA-256 as there is no theoretical break yet compromising the security of this
hash function.

References

[1] Hash Function Summary, Wikipedia
http://en.wikipedia.org/wiki/Hash_function_security summary

[2] 6.857 Course Notes

http://courses.csail.mit.edu/6.857/2014/files/L 04-hash-functions-introduction.pdf

Page 11 of 18


http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHash_function_security_summary&sa=D&sntz=1&usg=AFQjCNE1U9hESYfuU_6yuAc4QGp2iCDdxw
http://www.google.com/url?q=http%3A%2F%2Fcourses.csail.mit.edu%2F6.857%2F2014%2Ffiles%2FL04-hash-functions-introduction.pdf&sa=D&sntz=1&usg=AFQjCNFoP9nBwxjIv0QkDMCBZHTflObM_g

Network Structure

We use a decentralized network structure where each node maintains information about the
state of the network. We use a decentralized network because individual nodes may go offline
at any time. Each node keeps track of the identities and properties of every node in the network.

Nodes

Nodes in our network are computers running our program that are willing to share hard drive
space. Nodes form two-node “partnerships” with other nodes where each node in the
partnership agrees to let the other node use some amount of space on its hard drive.

Each node in the network has an RSA public/private keypair. The public key is used to identify
nodes, and the keypair is used when sending messages (see next section).

Each node must be added to the network by an existing node in the network. The node that
added the new node vouches for the trustworthiness of the new node. If a large number of
nodes added by the same node are found to be malevolent or uncooperative, the network will
distrust the node that added these nodes. This prevents an adversary from creating new nodes
whenever his existing nodes are found to be untrustworthy.

If a prospective user does not know any nodes that are willing to add him to their network, the
user can start a new network and invite other nodes to join it. By limiting networks to users who
know each other in real life, we prevent networks from becoming too large and running into
scaling issues.

An existing node adds a new node to the network by signing his public key. The signed public
key is distributed to all the nodes in the network. Under this system, the public key of each node
in the network is signed by the node that invited it, so any node in the network can check that the
public keys of every other node are correct, as long as they have the public key of the first node
in the network. In addition, every node can determine which node invited any given node, so
nodes that invite too many malicious nodes can be punished.

Each node in the network keeps track of the state of the network. This state includes the public
keys and signatures described above, in addition to various statistics about each node in the
network. These statistics include uptime, amount of space available, and how often each node
is online at the same time as this node.

Message Passing

Sometimes, two nodes in the network need to send messages to each other when they are not
online at the same time. This might be necessary to recover files or to verify that a node has the

Page 12 of 18



files that it promised to store. Our network accomplishes this by sending the message to
intermediary nodes to pass on to the destination.

Suppose Alice needs to send a message to Bob, but Bob is not currently online and Alice is
about to go offline. Alice picks an ordering of the nodes in the network, and sends the message
to the first MESSAGE_DUPLICATES nodes in the ordering. Whenever less than
MESSAGE_DUPLICATES nodes have the message, a node with the message copies it to the
next node in Alice’s ordering. When Bob eventually comes online, Bob polls all the nodes in the
network for messages addressed to him. When Bob receives the message, the copies of the
message are deleted.

To prevent other nodes from reading the message, Alice encrypts the message with Bob’s
public key. Since only Bob has access to his private key, only Bob can read the message. In
addition, Alice signs the encrypted message with her public key, so adversaries cannot forge
messages without Alice’s private key. The message destination and the ordering of backup
nodes are signed along with the message. Messages are encrypted using RSA-OEAP.
Messages are signed using RSA-PSS.

The network tries to ensure that at least MESSAGE_DUPLICATES online nodes have the
message, to decrease the probability that all nodes with the message go offline at the same
time. In addition, the order in which nodes are chosen to get copies of the message is
determined by Alice, so an adversary can't try to copy the message to his friends until all
MESSAGE_DUPLICATES copies are in his control and delete the copies to prevent the
message from being delivered.

Since this method of sending messages uses much more bandwidth compared to sending the
message directly (by a factor of

MESSAGE_DUPLICATES x (amount of time Alice and Bob are both offline)

amount of time a node is online after getting a copy of a message

), our system tries to avoid using this method. In particular, nodes prefer to share space with
nodes that tend to be online at the same time as itself. In addition, messages have a maximum
lifetime of one day and nodes will refuse to deliver messages from nodes that send too many
messages.

Partnerships

Files are stored in the network via “partnerships”. A partnership consists of two nodes that
agree to store each other’s files. Each node may be part of multiple partnerships. We picked

Page 13 of 18



this design because it simplifies the problem of ensuring fairness, because each node will only
share space with other nodes that promise to share a similar amount of space with the node.

When a partnership is formed, the partners decide how much space to share with each other
and how often they expect to be online. These numbers can be renegotiated later, in case a
node gains or loses hard drive space or change usage patterns.

The amount of space partners share with each other is not necessarily symmetrical, if they have
different expected uptimes. We define the expected benefit a node A receives from a
partnership (A, B) to be the amount of space B is willing to share multiplied by B’s expected
uptime. In other words, it is the expected value of the amount of files that A can recover from B
immediately, in the event of A losing his files. When a partnership is formed, the partners decide
how much space each partner shares so that the expected benefit each node receives from the
partnership is equal, i.e.

(space shared by A) % (expected uptime of A)
= (space shared by B) x (expected uptime of B)

When a node wants to save a file to the network, it decides how important the file is and picks a
“replication factor” accordingly. Then, it picks partners with whom to share the file until the sum
of the expected uptimes exceeds the desired replication factor. This ensures that the average
number of nodes with the file that are online at any time is greater than the desired replication
factor. If the node does not have enough partners such that this is possible, it forms new
partnerships.

Each node in the network that is willing to form new partnerships broadcasts how much
unshared space it has and its expected uptime. Each pair of nodes in this set keeps track of
how often they are online at the same time as each other. When a node needs to form new
partnerships, it goes through the nodes in descending order of how often they are online at the
same time, and negotiates partnerships with those nodes until its needs are met.

Ending Partnerships

Nodes in partnerships keep track of the uptime of their partners. Every day, each node sends a
message to its partners. Since messages have a lifetime of 1 day, this allows the node to know
if its partner was online at any point in a 24-hour period. When two nodes enter a partnership,
they decide what proportion of days each partner should be online. If the proportion of days a
node’s partner is online falls below this ratio (plus a grace period of a few days or weeks to allow
a user with a broken computer to get a new one), the relationship is terminated and the node will
refuse to enter more relationships with that node.

Page 14 of 18



Since new relationships are only formed between nodes that are currently online, a node that
has left the network forever will not form any new relationships. Its existing relationships will
eventually be terminated, so it will eventually not be in any relationships.

Nodes in relationships can negotiate new minimum uptimes or end the relationship without
prejudice. This could be useful if a node is going on vacation but will be back.

Anti-Leeching

Leeching occurs when a malicious user attempts to manipulate the layout of the network in order
to unfairly glean backup space on others' computers without providing any in return. In a large
network, we must take some steps against leeching in order to ensure that hard drive space is
used optimally and distributed fairly.

Although there is little that we can do in the short term against a user that is capriciously or
spontaneously malicious — deleting copies of peers' files when those peers wish to restore
backups, for example — we can still try to prevent against long-term leeching by instating a
system of etiquette, and punishing users who deviate from that system of etiquette.

Partnerships

For an individual user, the process of trading storage space on their hard drive for storage space
on others’ hard drives is reduced to the problem of forming 1-on-1 partnerships with other users
of the network. Each user might have many 1-on-1 partnerships with other users, which when
combined create enough space to store all of the user’s files. If one partner proves to be
uncooperative, a user can abandon that partnership and pair up with someone else instead.
Partnerships thus provide a useful abstraction for thinking about the logistics of leeching.

Quizbeats

Potential leeching attack: An untrustworthy user claims to be backing up others’ files,
earning backup space in return, but is actually storing nothing on their computer.
Counter: “Quizbeats.” In order for you, a user, to check that one of your partners is
storing the files that you think they are storing, you sends them periodic quizzes (which
we call ‘quizbeats’). You send a random range of bits that you want your partner to prove
they are storing. Your partner responds back with those bits. Note that your partner is
storing an encrypted version of your file, so in order to check that the bits they reply back
with are accurate, you must encrypt the file.

Page 15 of 18



Collusion

Potential leeching attack: Two of a user’s partners collude to save hard drive space by
storing only a single copy of the user’s file, sharing data with each other in order to
respond to quizbeats and make it seem like they are storing two copies.

Counter: If you are storing multiple backups of the same file across multiple partners, do
not give any two partners the same encryption of a file. Instead, use randomized
encryption to ensure that those partners must store different data. For example, pad the
beginning of each file with a prefix of random bits, which are discarded in decryption.
Thus, a user will not be cheated out of the reliability that multiple copies provides. Note
that this means that to verify a quizbeat, a user's computer must recompute the
randomized encryption each time, and remember the prefix of random bits for each file
and partnership; however, should the user's hard drive crash, files can still be decrypted
without needing the random bits.

Recovery

When hard drives crash, users must be able to retrieve the files that were stored with their
partnerships elsewhere on the network. Requesting a file works the same way that a quizbeat
does, except that the range of requested bits is the entire file. Since a user's hard drive has just
crashed, that user lost their copies of their partners’ files -- ideally, their partners will not mistake
the crash for uncooperativeness, and will not delete your files in retaliation. To prevent this, let
the rules of etiquette decree there will be a window of forgiveness -- fifteen days -- after which
partners delete your files.

Faking Recovery

Potential leeching attack: If partners are too forgiving, an uncooperative user could leech
space off of the system by always pretending to have a crashed hard drive, and taking
advantage of a window of leniency.

Counter: Any user who wishes to recover their files must first reinstate copies of their
partner’s files onto their new blank hard drive, and pass a few quizbeats to prove it,
before the partner allows them to recover their files.

Punishing Unfair Users

If a user’s partner fails any of the anti-leeching etiquette -- flunking a ‘quizbeat’ after fifteen days,
or deleting another user's files before fifteen days are up — then they are broadcast as
‘untrustworthy’ to the trust graph. Anyone dealing with the untrustworthy user is responsible for
forming new partnerships in order to ensure their files are backed up.

Page 16 of 18



Conclusion

Blackbox presents a free alternative to commercial back-up services by creating a
distributed peer-to-peer network. Our system guarantees confidentiality and integrity of stored
files by encrypting and signing all files. Users are able to reliably access their files through our
distributed network. Finally, our system ensures fairness of resource use through our system of
partnerships and anti-leeching measures.

Appendix
Regenerating Codes

A study by Dimakis et. al. [1] studies a different kind of redundancy scheme in peer to peer
networks called regenerating codes. These regenerating codes use slightly larger chunks than
erasure codes but can reduce maintenance bandwidth by 25% or more by requiring a new node
to download less data than the full k chunks needed to reconstruct the file.

[1] Dimakis, A. G., Godfrey, P. B., Wainwright, M. J., & Ramchandran, K. (2007). The benefits of
network coding for peer-to-peer storage systems. In Third Workshop on Network Coding,
Theory, and Applications.

Storage Location

Files that a user wants to be backed up will be stored in a special folder much like Dropbox’s
folder. All files in this folder will be encrypted and distributed to peers to save.

Files that the user is saving for others will also be stored in a database on the computer
depending on the user’s operating system.

The client application running on the users machine will allow a user to input how much space

they want to allow Blackbox to store on their computer. They in turn will be able to store files in
proportion to the amount of space they allocated to storing other people’s files.

Page 17 of 18



Hash Algorithms

Algorithm | Qutput Internal Block Max Word Example
Bitwise |Collisions
and size state size size message size |Rounds operations| found Performance
variant (bits) (bits) (bits) = size (bits) = (bits) i (MiB/s)[14]
MDS (as " and, or,
128 128 512 2% =1 32 64 Yes 335
reference) xor, rot
and, or,
SHA-0 160 160 512 264 _ 1 32 80 Yes -
xor, rot
Theoretical
64 and, or,
SHA-1 160 160 512 2% =1 32 80 attack 182
xor, rot
(251)[15]
SHA-
224 224 64 and, or,
256 512 2% =1 32 64 None 139
SHA- 256 xor, shr, rot
256
SHA-
SHA- 384
2 | SHA- | 384
512 512 128 and, or,
512 1024 2 -1 64 80 None 154
SHA- 224 xor, shr, rot
512/224| 256
SHA-
512/256
SHAS3-
224
SHAS- 224 1152
1600
SHA- 256 256 1088 and, xor,
(5x5 array of 64 24 None
3 SHAS- 384 ) 832 not, rot
B4-bit words)
384 512 576
SHAS-
512

Source: http://en.wikipedia.org/wiki/SHA-2

Message Replication

MESSAGE_DUPLICATES =3

Page 18 of 18


http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSHA-2&sa=D&sntz=1&usg=AFQjCNGSpx1MSHgQDn4JZanfsQM7bEpj0w

