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ABSTRACT 
 

Quick Response codes are 2-dimensional barcodes that visually encode bits of 
information represented as black square dots placed on a white square grid. Because 
QR codes are a way to transmit information, this paper examines QR codes for 
security flaws that could pose a danger to the average user and presents potential 
fixes to these security flaws. We propose new security protocols for QR code creation 
that involve encoding bits that are encrypted or digitally signed via traditional 
security protocols. We then attempt to compare the efficacy of QR code phishing 
attempts to that of short URL phishing attempts using a social experiment. Finally, 
we perform a bug search on two existing QR code applications, the popular 
open-source QR code scanner ZXing and an open-source QR code payments library 
called SPayD.  
 

We successfully applied security standards to QR codes and produced various 
forms of secure QR codes. However, each comes at a cost of either space or 
computation time, and therefore should be used only when needed. The social 
experiment was inconclusive because not enough people followed either the QR code 
or the shortened URL. Lastly, the bug search showed that both scanners had 
vulnerabilities involving code injection, unauthorized actions, and information 
leaking. 
  

3 



INTRODUCTION 
 

Quick Response codes, commonly abbreviated as QR codes, started out as an 
extension of the standard UPC barcode commonly used in retail and production. 
Unlike a 1-D barcode, a QR code is a 2-D matrix code that conveys information by the 
arrangement of its dark and light elements in columns and rows [1]. The data in a QR 
code can be accessed by taking a picture of the QR code and processing it with a QR 
code reader. 
 
The QR code itself is simply an array of bits to be identified by a scanner. Bits are 
reserved for the scanner to be able to identify and orient the image, as well as for 
version and format information (Figure 1). The remaining bits are used to encode the 
message, and the specific amount of available space leftover is dependent on the 
version of the QR code, which indicates the number of bits per row/column, and the 
level of error correction, which introduces redundancy. The most information dense 
QR codes used today can store just under 3,000 bytes of raw data [2].  
 

 
Figure 1. QR code structure [2] 

 
 
Capable of encoding the same amount of data in about one-tenth the space of 
traditional 1-D barcodes, QR codes present a much more space-efficient way of 
presenting scannable data. Initially invented for use in automotive factories in Japan, 
QR codes were used to programmatically identify and track car parts quickly in order 
to speed up production. However, they soon began to see more widespread use as 
convenient methods of sharing and transmitting data. Popular commercial uses of 
QR codes now include URL redirection, payment information exchange, and 
electronic flight tickets [3]. 
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With the increase in usage of QR codes in the general public, it is necessary to ensure 
that the data conveyed through the QR code is not harmful to the user. There are 
currently two major attack vectors for potential vulnerabilities: attacks on human 
interactions and automated attacks [2]. 

 
Attacks on human interactions rely on the fact that humans by themselves are unable 
to interpret what information is encoded in QR codes, and thus rely on QR code 
readers to decode the information. Since the information in the QR code is 
completely obfuscated, it is possible to trick and attack users via phishing, pharming, 
and other social engineering attacks by putting up fake QR codes. It is also possible 
to attack users by manipulating and exploiting existing QR code readers that users 
use via command injection or traditional buffer overflows [2]. 

 
Automated attacks often result from the assumption that the encoded 

information in QR codes is sanitized. However, it is known that QR codes themselves 
can easily be manipulated in order to change encoded information, potentially 
producing attacks on backend software. Without QR code input sanitation, it is 
possible to produce attacks such as SQL injection, command injection, and fraud. 

 
In this paper, we propose potential solutions to these QR code attacks. We introduce 
security protocols for QR codes that allow the QR code creator to protect the 
information stored in the QR code by encrypting it and allow the user to verify that 
the message was not previously tampered with. We also attempt to compare the 
effectiveness of a QR code phishing attempt to that of a short URL phishing attempt 
in order to see whether a user is more likely to inherently trust a QR code or not. 
Finally, we search through existing QR code software to find bugs because user input 
is left unsanitized. 
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QR CODE SECURITY PROTOCOLS 
 

Background 
 
A QR code is simply a string of bits visually encoded as black and white squares on a 
grid. In most uses of QR codes where the intent is to have maximum accessibility, 
such as the common URL redirection, there are no security standards. Therefore, 
anybody can read or write QR code messages with impunity. However, certain 
applications may require restricted access or verification of QR codes, and thus there 
is a need to design QR codes that meet various security specifications. 

 
In this section of the paper, we shall discuss the implementation of a few security 
standards for QR codes, their costs, and some examples of use cases for each.  The 
first is a standard that allows the creator of a QR code to encrypt the message for a 
specific reader.  The second is a standard that allows the reader to verify the origin of 
the QR code.  Lastly, we shall discuss a few other attempts we made at security 
protocols, where they fall short, and what future work could be made in those areas. 

 

Encryption 
 
The first security standard for QR codes is Encrypted QR codes, or EQRs.  We will 
propose two kinds of EQRs: Symmetric EQRs (SEQR) and Public Key EQRs (PKEQR). 
In SEQRs we use a symmetric encryption scheme where both the reader and the 
writer of the EQR share a secret key.  The encryption scheme is extremely 
straightforward: encrypt the bits of the message using AES block cipher with the 
shared secret key.  In PKEQRs we use the RSA public key encryption scheme 
combined with AES, using a public RSA key to encrypt the AES key and including the 
encrypted key in the message.  The only thing to note with these two methods is that 
the error correction bits should correct errors on the encrypted message, not the 
message itself, in order to avoid leaking information of the original message.  
 
This is not the first time SEQRs have been done; Google did an experiment involving 
SEQRs being used for login in 2011 [4].  Their method is the same as our first use case, 
namely using a QR code reader on a “verified” mobile device to verify another device. 
The idea is as follows.  Assume a user has a mobile device on which they are logged in, 
which shares some secret key (e.g. a password) with Google, or any other service 
requiring login credentials.  The user wishes to login on a new device, one on which he 
or she has not logged in before.  Instead of typing in their password on the new 
device, which can put them at risk to keyloggers if they are doing this on a public 
computer, they are presented with an SEQR which can be read using only the secret 
key.  The verified mobile device can then decrypt this SEQR, which contains a URL 
that, when hit by a request from the mobile device, logs in the user on the new device. 
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This URL is uniquely generated for the new device and expires within a few minutes. 
In this way, the user does not need to remember their password or type it in on 
untrusted devices.  
 
PKEQRs have not, as far as we have seen, been put into practice.  This is probably 
because they have few applications, as commercial bar codes are mostly intended to 
get some data to a lot of people easily, not to encrypt data for only a single person. 
There are, however, non-commercial applications which can be found by going back 
to the QR code’s roots as a identifier for parts in manufacturing plants.  Some 
companies, such as Apple or Google, wish to keep their operations secret.  When they 
receive a shipment of parts for a new, secret product, they are able to see if the 
packaging has been tampered with and inspected, but cannot stop intermediaries 
such as the shipping company to inspect the labeling on the shipment.  Therefore, 
they are unable to keep their supply of parts a secret.  The solution is to publish a 
public key, and have the part manufacturer label the shipment using PKEQRs, 
thereby hiding the information from third parties while still allowing the recipient to 
read the label efficiently, with their same QR code reading technology.  
 
As with any layer of security, these modifications to the QR code standard come at a 
cost.  The encoded messages with SEQRs are of the same length of the original 
messages (as long as the message does not need to be padded), and therefore the only 
cost involved is the extra computation time when creating or reading the codes. 
Most of the uses of SEQRs don’t need to be fast to write, but users usually desire the 
readers to produce a result quickly.  Therefore, by using cipher modes like CBC where 
decryption is parallelizable, the decryption time can be minimized.  Since these 
messages are usually only URLs a couple of bytes long, the decryption time should be 
negligible in most cases. 
 
Codes encrypted with PKEQRs, however, come at a greater cost, as encrypting 
messages this way adds additional data, namely the bits of the encrypted secret key, 
increasing the length of the sent message.  Message length is extremely important in 
QR codes; longer messages require denser QR codes, which can make readers more 
error-prone.  Even the smallest AES key size is 128 bits, or 16 QR code blocks. 
Therefore, a message that could be encrypted with a version 1 QR code (the most 
common QR code size, 21x21) must be encrypted with a version 3 PKQR code (29x29) 
[2], even at the lowest level of error correction!  Therefore, in order to achieve the 
same level of readability, the new PKQR code would need to have nearly twice the 
area of the unencrypted QR code.  This cost is infeasible for QR codes printed in 
magazines or newspapers where the publisher of the code is charged per square inch. 
Therefore, the use of the PKQR code must be limited to situations in which size is not 
a factor, such as the labelling of shipments of top secret parts. 
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Signing 
 
The next security standard we have devised is Signed QR codes, or SQRs.  The purpose 
of this encoding is to allow the reader to verify the source of the SQR before any 
action is performed.  If the verified source is trusted, the user can proceed to open 
the URL or perform any other action the QR code initiates without fear of a security 
breach.  The SQR standard requires more modification than the previous encryption 
methods, as the code must contain the message, the signature, and a way to identify 
the public key of the signer.  The new standard is described in the image below: 

 
Figure 2. SQR code standard for version 1. 

 
We have made several changes.  First, there are now double the number of blocks 
devoted to relaying the message length, in order to also provide the signature length. 
Second, the signature bits are appended to the end of the message, and the error 
correction bits correct these signature bits as well. (Note that the length of the 
signature in this image is completely unrealistic, and only serves a demonstrative 
purpose.)  Lastly, regardless of the QR code size, 24 bits adjacent to the existing 
formatting bits are devoted to a unique identifier for the signer, which can be used to 
retrieve the public key used to verify the signature.  24 bits allows for the unique 
identification of over 16 million signers; if this number is insufficient in the future the 
design can be scaled up and additional identification bits added. 
 
The scheme depends on a trusted third party that can be accessed at a known URL 
which can provide the public keys used to verify the SQRs.  Like any certificate 
authority, this TTP assumes the burden of performing due diligence on those that it 
provides public keys for.  A party wishing to produce an SQR needs to first consult 
the TTP and, after it is verified, publishing a RSA-PSS public key on the trusted 
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server.  Then, using their RSA-PSS secret key, they sign the message they wish to 
send, append the signature to the message, and produce the QR code, adding the 
lengths of the message and signature as well as their unique identifier provided by the 
TTP.  The reader for this QR code then requests the public key from the TTP using 
their identifier, and uses it to verify the message with traditional the RSA-PSS 
verification algorithm. 

 
This cryptosystem clearly has many practical applications.  Companies, clubs, or 
groups of any kind can use the scheme to send trusted QR codes to their members. 
For example, a company can impose the rule that all QR codes in their offices must be 
SQRs signed by them, thereby enabling them to filter all the QR codes and avoiding 
problems caused by arbitrary URLs being opened on the company network.  The user 
also has a lot to gain, as URLs and other data read from promotional posters or other 
public sources can be certified before being read, resulting in less phishing scams.  

 
As with SEQRs and PKEQRs, there are costs associated with SQRs.  There is a 
significant overhead in terms of space: from 1 byte for the bits specifying the length 
of the signature, 3 bytes for the signature identifier, and usually 128 bytes for the 
signature.  Therefore, as many as 261 additional bytes are needed beyond the 
message length, meaning a message that would use a version 1 QR would need a 
version 7 SQR code, which is over 4 times as large [2].  The size difference is large 
enough that it is probably preferable to not increase the size and sacrifice some 
readability.  This is reasonable if using the highest level of error correction, as any 
loss in readability should be capable of being corrected in this case.  
 

Other Attempts 
 
We dedicated quite a bit of time thinking about alternative security protocols for QR 
codes that utilize the nature of the QR code itself instead of performing encryption 
operations on the bits.  The schemes above are more viable simply because the 
algorithms involved are known, proven to work, and have been optimized over many 
years.  However, our other efforts are, still worth noting in case future researchers 
wish to investigate further.  
 
One attempt made was for a “proof of work” QR code.  In this scheme, which takes its 
idea from Bitcoin, a QR code contains a message, a series of random bits, and the hash 
of the concatenation of those two.  The catch is that the bits containing the hash are 
located in regions usually reserved for fixed orientation patterns, namely the squares 
at the corners of the QR code.  If the hash does not form the proper orientation 
patterns, the code will be unreadable.  Much like how Bitcoin miners must compute 
for a long time to produce a hash ending in multiple 0’s, creators of the “proof of 
work” QR code must compute for a long time to produce a hash which is both valid 
for the encoded message and contains the correct orientation bits.  
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This is more space efficient than forcing the creator to produce a hash ending in 0’s 
and having them use the message space to contain the hash, as our method frees up 
more room for the message by moving much of the hash into normally reserved bits. 
We could not, however, come up with a scenario in which such a scheme would be 
useful. 

 
The second attempt we made was to take advantage of the optical nature of the QR 
code to produce a more space-efficient security encoding.  Since QR codes are always 
read by an optical sensor, if given a high fidelity sensor, there is no reason to restrict 
the code to black or white binary squares.  Shades of gray (or other colors) could 
conceivably be used, allowing each square to contain more than one bit of data.  For 
example, assume two parties share a secret key and wish to share a secret message via 
QR code.  The secret key could be used to generate a series of chromatic ranges, with 
each ranged assigned either 0 or 1, such that every color identifiable to the optical 
sensor can be identified as a 0 or a 1 (if the reader also knows the secret key).  The 
writer of the QR code then encrypts the message by randomly selecting an 
appropriate color or shade for each bit.  The reader, knowing the color assignments, 
just reads each color in and converts it to its assigned bit value.  Any third party 
reading the QR code cannot distinguish which colors are a 1 and which are a 0.  
 
We did not follow through with this scheme for two reasons.  First, it is difficult to 
get a value for the number of distinguishable colors in optical sensors, and the 
variation between sensors on different reader devices is enormous.  Second, 
providing a cryptographically secure method for producing the color to bit 
assignments is troublesome, and there is no reason to believe that this method could 
be more secure than known algorithms such as RSA or AES.  It could be interesting, 
however, for those interested in the topic to delve deeper and come up with new 
ways to take advantage of the optical nature of QR codes. 
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QR CODE SOCIAL EXPERIMENT 

 

Background 
 
Because QR codes are designed to be read by a machine, humans cannot easily read 
the encoded message with the naked eye. Thus, QR codes can often be used to hide 
their contents from the user.  This makes them potent as a vector to redirect 
unsuspecting users to malicious websites, among other forms of attacks. 
 
In April 2012, GreenSQL CTO David Maman performed an experiment at the Infosec 
UK Security Conference to observe how many people would scan a QR code that 
could potentially redirect users to a malicious website [5]. He created a poster with a 
QR code and a logo of a real security company that advertised to “just scan to win an 
iPad”. Scanning the QR code redirected users to a webpage that contained just a 
harmless smiley face, but in theory, could have had more malicious intentions. 
Maman found that over three days, there were a total of 455 scans of the QR code: 
142 via iPhone, 211 via Android, 61 via Blackberrys, and 41 via unknown devices. 
Despite the security conference setting, Maman has demonstrate that a significant 
number of users fall prey to this attack. 
 
Building on Maman’s results, we were interested to see how effective a malicious QR 
code redirection is compared to a malicious shortened URL misdirection. Both 
methods obscure the final malicious landing page, with QR codes using visual bits to 
encode the URL and shortened URLs using a different URL. However, the methods to 
reach the malicious landing page are different: a QR code requires a QR code scanner, 
a shortened URL requires the user to enter in that URL into a browser. We conducted 
this experiment to gain insight into which attack vector was more effective. 

 

Methodology 
 
We created two posters, one containing a TinyURLTM and one containing a QR code 
(Figure 3). The two posters advertised a chance to win a free 25 dollars in TechCASH, 
which can be used to purchase many goods and services across the MIT campus. Like 
the Maman poster, a bogus association (MIT RS Association) was mentioned on the 
poster to create more credibility. 
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Figure 3: TinyURLTM and QR code posters 

 
The TinyURLTM and QR code redirected to different URL’s that visually looked 
identical, and displayed an apologetic message explaining that the 25 dollar 
TechCASH poster was a social experiment, and the only user data collected was the 
number of hits for each of the two posters. (A PHP script tallied the number of users 
that accessed the landing page via TinyURLTM and QR code.) 

 
The posters themselves were placed on the MIT campus at various high-traffic 
locations: Student Center (W20), Building 56, Building 66, and the Stata Center (32) 
(Figure 4). The TinyURLTM poster was sufficiently distanced from its corresponding 
QR code poster. To remain consistent with Maman’s duration of the experiment, the 
number of accesses to the landing page was monitored for a period of 3 days. 
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Figure 4: Locations of Posters on MIT Campus: 

Each blue circle represents a corresponding pair of  
TinyURLTM and QR code posters, placed sufficiently far apart. 

 

Results 
 
After three days, 5 users accessed our “malicious” landing page via TinyURLTM and 3 
users accessed the landing page via the QR code. Because the numbers were so low, 
no significant conclusion can be made to relate the two different vectors of attack. 
 

Discussion 
 
Although our data is not significant enough to draw any conclusions, we can 
postulate a few reasons why our numbers were so low. Our methodology did not 
allow us to collect the number of individuals that noticed the poster but did not elect 
to follow through with the TinyURLTM or QR code. Thus, we have no sense of the 
proportion of users that fell prey to the posters. Our low numbers could be due to 
low number of users noticing the posters or due to low “participation rate”. 

 
Assuming that our numbers are due to a low participation rate, there are several 
possible reasons why individuals did not choose to follow through the link. It is 
possible that the posters did not seem credible or enticing enough to persuade the 
user to use the TinyURLTM or QR code. It is also possible that the MIT community in 
general is more tech savvy and therefore more likely to avoid accessing websites via 
TinyURLTM or a QR code. 

 
There is also the possibility that more people would have scanned the QR code, if only 
more people had QR code scanners previously installed on their devices. 

 
Ultimately, the purpose of this experiment was to attempt to determine which attack 
vector was more effective in luring unsuspecting individuals. Because we collected 
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such low numbers, we cannot make a conclusion that one vector is more effective 
than the other. 

 
For future experiments, researchers should devise a way to collect the number of 
people who noticed the posters but did not follow through to the website. One 
possible way to do this is to gain permission to have a camera recording the number 
of people that actually see the posters. Thus, researchers can acquire the proportion 
of individuals that fell victim to such attacks. Furthermore, we could also collect 
more information of the demographic of the people who do fall prey, and observe 
which groups of individuals are more susceptible. In order for this collected data to 
have any significance, more samples need to be collected. This can be remedied by 
extending the experiment duration or finding higher traffic areas to display the 
posters.  
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QR CODE READER BUG SEARCH 
 

Background 
 
Because QR codes are translated via a QR code reader, security vulnerabilities may 
exist in the QR code software. A malicious QR code can take advantage of a poorly 
coded scanner via some sort of code injection. 
 
We performed a code review of two QR code readers: ZXing and an open-source 
Short Payment Descriptor (SPayD) reader. ZXing is a popular, generic QR code reader 
[6]. The SPayD code reader that we investigated provides a mechanism for exchanging 
payment information [7]. 
 
In most cases, readers go through three steps.  First, they read in the raw bits in the 
correct order from the code, applying error correction as needed.  Second, they 
(attempt to) interpret the contents, and put the raw data into a properly formatted 
object.  Lastly, the reader performs an action related to the data, such as opening a 
URL.  Usually the last step requires user confirmation before the action is performed. 

 

Methodology 
 
To search for vulnerabilities in the QR code readers, we focused on the critical points 
in this three step process, namely the second and third steps.  In general, there are 
three common kinds of vulnerabilities possible, shown below.  The first of these 
vulnerabilities can occur on the second step of the reading process, whereas the 
other two can occur on the third step. 

 
1. Code Injection:  Much like SQL injections that occur when SQL queries are 

made with user input text inserted into the query string, QR code readers are 
subject to data injection into their structured objects when they attempt to 
interpret the data of a QR code.  If the contents of a QR code are inserted into 
a data structure with no sanitation done beforehand, a malicious party can 
create a QR code that injects arbitrary strings into a user’s data structures, 
potentially causing harm to the user.   We will see an example of this in the 
open source SPayD reader. 

 
2. Unauthorized actions:  If a reader incorrectly interprets the contents of a QR 

code and attempts to perform an action based on its wrong interpretation, 
there can be resulting security vulnerabilities.  Since the device is performing 
what it interprets as the correct action and asks the user permission to 
perform that, the actual action performed can go unnoticed to the user.  For 
example, a reader can misinterpret some plaintext data as a URI and issue a 
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system call to “open” the URI.  The user will be asked permission to open a 
URL, but since the URI is just plaintext the system might actually do something 
else with it and not do anything else with the browser at all. We will see an 
example of when this can occur in the ZXing reader. 

 
3. Information leaking: If a reader is incapable of performing actions on the QR 

code data itself, it often delegates this responsibility to other applications. 
This can lead to problems in the common publisher-subscriber model, because 
if the reader is not careful, it can leak the contents of the QR code to sniffers 
on the device.  Of the three common problems, this one is the least severe, and 
is very platform based.  We will see an example of this with ZXing where 
careless use of the Android publisher-subscriber model (Intents) leaks 
information on the device. 

 

SPayD 
 

 
Figure 5. In line 83, lack of sanitization in SpayD code reader allows  

the user to overwrite the AM field that was already set in line 80. 

 
The SPayD reader that we analyzed does not have any form of sanitation for the 
inputs that are provided. This, in essence, allows the user to enter variables as inputs 
and inject code to modify values. In the example shown in figure 5, the parameters 
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variable is inputted by the user. Note that the asterisk symbol is a delimiter for 
SPayDs, and does not denote multiplication.  
 
In line 80, the payment amount is set by retrieving metadata from the parameters 
variable. For example, let's assume the user originally set the amount to be 5. If the 
user also passes in a currency parameter equal to “USD * AM: 1,000,000”, the 
currency will be set equal to USD, as intended, but the user will also be able to 
overwrite the value of the amount to be 1,000,000 [7]. Here, code has been injected to 
modify fields in the payment string because there was no sanitation to prevent 
arbitrary values from being entered into the metadata of the parameters.  

 

ZXing 
 
ZXing does very little checking of the URI type that is provided through the QR code. 
Any exploit that can be provided through a browser can be directly passed through 
the QR code as a result. This, in the context of a mobile application, can lead to 
launching arbitrary phone applications or injecting Javascript in browsers ZXing 
attempts to filter out certain malicious attacks via regular expressions by requiring 
the URI to have either: 

1. A period followed by an extension of at least length two 
2. A transport protocol of length at least two followed by a colon in the 

expression 
 
ZXing also requires that the URI have no whitespace. If these conditions are not 
upheld, it will assume that the data presented in the QR code is plaintext rather than 
a URI. After After passing this stage, ZXing takes the given URI and only checks if the 
URI begins with http:// or https://. It assumes that all other transport protocols are 
legitimate and performs no sanitation on them.  
 
This mechanism bans simple attacks such as javascript;alert(“You have won 1000 
dollars! Just Click The Open Browser Button”);, but by simply making a few 
changes to the code, ZXing will think that the Javascript call is a normal URI, and 
expose a vulnerability to any browser that doesn’t also have its own defense 
mechanisms against URI attacks (Figure 6). Note additionally that ZXing doesn’t 
immediately open a URI, but rather gives the user the option of looking at the exact 
text before proceeding. This allows provides experienced users with some security 
when receiving links from QR codes, but nevertheless, presents a vulnerability to 
novice users. 
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Figure 6: The left image depicts ZXing’s attempt to filter out simple Javascript attacks, but  

with some slight modification, as seen on the right, vulnerabilities are still present. 

 

 
Figure 7: Opening the URI from the right half of figure in the browser. 

 
ZXing also is vulnerable to intent sniffing. When processing this URI, ZXing 
constructs a new implicit intent using a global action, Intent.ACTION_VIEW [6]. 
Other applications that filter for the same implicit intent can retrieve the same data 
from this intent. Moreover, Intent.ACTION_VIEW is a common action that is used 
by many Android applications. Since any other application that has an event listener 
for this action can obtain information about the URI that is read from the QR code, 
ZXing should first send an a global implicit intent requesting which application can 
open the URI without actually providing the data, and then send the data to the 
correct application with an explicit Intent. Other applications cannot eavesdrop on 
explicit intents, so this mechanism will prevent intent sniffing.  
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CONCLUSIONS 
 
QR codes are by no means a secure standard for data encoding in their current state. 
There is, however, great room for improvement.  New security standards such as 
Symmetric Encrypted QR codes, Public Key Encrypted QR codes, and Signed QR 
codes can be implemented within the existing QR standard.  SEQRs allow for services 
such as login by scanning a QR code on a verified mobile device.  PKEQRs would allow 
secure data to be distributed to a select group of people easily.  SQRs allow users to 
check whether they trust the creators of QR codes before opening their potentially 
dangerous contents.  All these methods come at some cost, either in space or time, 
and therefore should be used only when required, such as when using QR codes to 
share sensitive data within a company, and not in commercial use.  

 
We attempted to gain more insight into whether QR codes or shortened URLs 

was a more effective attack vector to lure unsuspecting individuals to malicious 
websites. We conducted a social experiment with two sets posters, one with a 
TinyURLTM and the other with a QR code, counting the number of individuals that 
assessed each.  However, we found that the numbers observed were too low to make a 
significant conclusion. Future experiments could improve this by also measuring the 
number of individuals who viewed the posters but did not choose to navigate to the 
website, thereby giving the more useful proportion of people who accessed each 
instead of the raw number of people who accessed each. 

 
We searched for implementation vulnerabilities in two QR code readers: Zebra 
Crossing (ZXing) and a Short Payment Descriptor (SPayD). We discovered three 
different kinds of vulnerabilities: code injection, unauthorized actions, and 
information leaking. Code injection allows the users to attack the system and other 
users by manipulating data through invalid inputs. SPayD is vulnerable to code 
injection because it does not filter for escape characters. Unauthorized actions occur 
when the reader misinterprets one form of data as another. This occurs in ZXing due 
to incorrect implementation of the regex that takes in a string and determines the 
type of data provided by the QR code. Information leaking also occurs in ZXing, since 
it uses implicit intents, meaning any application can acquire the data that ZXing 
broadcasts in the intent. We proposed that ZXing use a mixture of implicit and 
explicit intents to tackle this issue and prevent information leakage. 

 
QR codes have various advantages as an information sharing tool.  They allow fast 
and easy distribution of various forms of structured data and have many applications 
in manufacturing and business.  As long as their users are aware of the vulnerabilities 
inherent in the standard, in their particular reader, and the ease of social 
manipulation attacks, QR codes can be used safely.  The key is having awareness of 
the various attacks presented in this paper and implementing preventative measures 
by use of the standards also presented.  If this is done, QR codes can be used globally 
as a secure and efficient standard for many different purposes.  
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