
6.857 Homework Problem Set 1 # 1-3 - Detecting Pad Reuse
April 6, 2014

(a) Suppose the length of the longest substring of both ci, cj is L(i, j). Then, the probability that
the length of the longest repeated substring is larger than log n log lnn is,

P [∃i 6= j s.t. L(i, j) > log n log lnn] ≤
∑
i 6=j

P [L(i, j) > log n log lnn] (1)

Suppose ci, cj has a common substring s with length l , s starts at ci[k] and cj [m] and assume
m ≥ k without loss of generality. Then the substring of ci, ci[k]− ci[k+ l− 1], is the same as
the substring of cj , cj [m]−cj [m+ l−1]. This is equivalent to ci[k : k+ l−1]

⊕
cj [m,m+ l−1]

is all 0, and in consequence, ci
⊕

(cj � (k −m)) has l consecutive 0’s where cj � (k −m)
means shifting cj to left by (k−m) bits. Thus, that ci, cj share a substring with length more
than l is equivalent to that there exists t such that ci

⊕
(cj � t) or (ci � t)

⊕
cj contains

l consecutive 0’s. Since ci and cj are encrypted by independent pads, ci
⊕

(cj � t) and
(ci � t)

⊕
cj are two uniformly randomly chosen bit strings. Thus, according to the result

of longest run of heads, with high probability, the longset run of 0’s in ci
⊕

(cj � t) and
(ci � t)

⊕
cj is less than log n+ log lnn. That is to say,

for all α, there exists some constant cα, such that,

P [the longset run of 0’s in ci
⊕

(cj � t) > log n+ log lnn] <
cα
nα

and
P [the longset run of 0’s in (ci � t)

⊕
cj > log n+ log lnn] <

cα
nα

Thus,

P [L(i, j) > log n+ log lnn]

≤ P [∃t such that the longset run of 0’s in (ci � t)
⊕

cj > log n+ log lnn]

+ P [∃t such that the longset run of 0’s in (ci � t)
⊕

cj > log n+ log lnn]

≤
∑
t

P [the longset run of 0’s in ci
⊕

(cj � t) > log n+ log lnn]

+
∑
t

P [the longset run of 0’s in (ci � t)
⊕

cj > log n+ log lnn]

≤ 2n · cα
nα

=
2cα
nα−1

Pluging the above inequality into (1), we get,

P [∃i 6= j s.t. L(i, j) > log n log lnn] ≤ l(l − 1)

2
· 2cα
nα−1

=
l(l − 1)cα
nα−1

Since it is true for all α and l is poly(n), for any β, there exists cβ such that

P [∃i 6= j s.t. L(i, j) > log n log lnn] ≤
cβ
nβ

Therefore, with high probability, the longest repeated substring has length less than log n+
log lnn.

1



(b) If we interpret the result in bits, each English character is 8 bits, so the length of common
substring will be 8 times the previous data, while log n will be essentially the same. We can
pick some data point to analyze, (5, 1) will become (8, 8), (10, 2.5) will become (13, 20), (15, 5)
will become (18, 40), (20, 8) will become (23, 64). We can easily see that as n gets bigger,
the ratio of the length of longest run and log n is increasing, and will become bigger than 2.2
when n gets larger. That is to say, the length of identical strings in English text will be much
longer than random cyphertext. This might because English text is not randomly chosen and
there is some inference between words and sentences.

(c) Concatenate all strings together while adding a special character $ to separate them. For
example, if we have 1011 and 0011, the concatenated string will be 1011$0011. Denote the
concatenated string by S, We claim that it we can find the longest repeated string in S, we
can solve the problem.

According to the assumption, each pair of plaintexts does share a long common run of identical
characters, and any pair of ciphertexts with independently chosen pads does not. Thus, given
poly(n) n-bit ciphertexts with total length N and one instance of pad reuse, the two ciphertexts
using the same pad will have a common run of identical bits with length more than 2.2 log n
(according to the result of 2). Thus, the longest repeated substring S should be longer than
2.2 log n. Suppose we find the longest repeated substring S and the two identical substring is
a, b.

If a and b is not overlapped, they should both contain $ or both not. If they do contain
$, suppose a is divided to a1, a2 by $ and b is divided to b1, b2 by $. Then, a1, b1 must be
identical and a2, b2 must be identical. At least one group (suppose a1, b1) has length larger
than 1.1 log n, so with high probability, the two ciphertexts containing a1, b1 share the same
key. If both of them do not contain $, for the same reason, the two ciphertexts a and b should
share the same key.

If a and b is ovelapped, they should not contain $, otherwise $ will appear twice within n bits.
So a, b are in the same ciphertext. We claim that this will not happen with high probability.
Suppose the ciphertext is s and the distance between a, b is k. Then, s and s � k share an
identical substring at identical locations, which indicates, s

⊕
(s� k) contains a long run of

0’s. Suppose s is the cyphertext of x encrypted by a key p, then s = x
⊕
p. Thus,

s
⊕

(s� k) = (x
⊕

p)
⊕

((x
⊕

p)� k) = x
⊕

(x� k)
⊕

p
⊕

(p� k)

Suppose p = p1 . . . pn and m = p
⊕

(p� k) = m1 . . .mn, then

mi = pi
⊕

pi−k

We can see that P [mi = 0|p1, . . . , pi − 1] = 0.5 for all i since pi is independent of all pj ,
j < i. Thus, m is uniformly distributed on all bit strings with length n. According to part
a), with high probability, the longest run of 0’s in (x

⊕
(x� k))

⊕
m should be shorter than

log n+ log lnn, which indicates that a and b is overlapped and longer than 2.2 log n happens
with very low probability.

Therefore, we have shown how to transfer the original problem into finding the longest re-
peated substring in S. Finding the longest repeated substring in S is easy using suffix tree.
We just need to find the internal node which has longest path from the root, which can
be done just by traversing the suffix tree. Building the suffix tree for S takes Õ(N) time,
traversing it also takes O(N) time. Thus, the whole algorithm takes Õ(N) time.

2


