Recitation 1 Notes: Number theory Feb 15, 2013

We covered some number theory background useful for the class. Below I will provide a list of the topics we covered. All this material is presented in detail in Dana Angluin's Lecture Notes on the "Complexity of Some Problems in Number Theory" in Chapters 3-10 http://courses.csail.mit.edu/6.857/2013/files/angluin.ps.

<u>Divisor</u>

We say that "d divides a", written $d \mid a$, if there exists an integer k such that a = kd and that d is a divisor of a.

If d | a and d | b, then d is a common divisor of a and b. Example: What numbers divide 9? 1, 3, 9

Prime number

An integer p > 1 is prime if its only divisors are 1 and p.

<u>Modular arithmetic</u>

For a and b integers, the quotient expression is a = b * q + r, where $r, q \in \mathbb{Z}$ and r < b. We also write: $a \equiv r \pmod{b}$ Example: What is 19 mod 17? 2. What is 181282347* 34 mod 34? 0.

GCD

The greatest common divisor, gcd(a, b), of two integers a and b is the largest of their common divisors.

Example: What is the gcd(12, 18)? 6.

Example: what is gcd(12, 7)? 1.

Integers a and b are relatively prime if gcd(a, b) = 1.

We then covered Euclid's algorithm for computing the gcd together with proof of correctness. This is detailed in Dana Angluin's notes.

Example:

gcd(234, 108) $234 = 108 \cdot 2 + 18$ 108 = 18 * 6gcd = 18 gcd(233, 144): 233 = 144 * 1 + 89 144 = 89 * 1 + 55 89 = 55 * 1 + 34 55 = 34 * 1 + 21 34 = 21 * 1 + 13 21 = 13 * 1 + 8 13 = 8 * 1 + 5... 3 = 2 * 1 + 1 2 = 2 * 1

gcd(233, 144) = 1 so they are relatively primes.

We also looked at the extended Euclid's algorithm that allows us to compute $x, y \in \mathbb{Z}$ such that d = xa + yb, where d = gcd(a, b).

The number of steps in Euclid's algorithm is $O(\log n)$, where $n = \max(a, b)$. Recall that a function f is f = O(g) for another function g, if for all constants C > 0, there exists Nsuch that for all n > N, $f(n) \le Cg(n)$.

Groups

We recalled the definition of groups. A group is a set, G, with an associated operation \cdot such that the following properties hold:

- Closure: For all $a, b \in G$, the result of the operation, $a \cdot b$, is also in G.
- Associativity: For all $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- Identity element or 1: There exists an element $e \in G$, such that for every element $a \in G$, the equation $e \cdot a = a \cdot e = a$ holds. There is a unique such element.
- Inverse element: For each $a \in G$, there exists an element $b \in G$ such that $a \cdot b = b \cdot a = e$.

Multiplicative group mod a prime p $\overline{\mathbb{Z}_p^*} = \{1, \dots, p-1\}$ We argued why \mathbb{Z}_p^* is a group. Example: What is the inverse of 4 mod 7? 2. Example: What is the inverse of 3 mod 13? 9.

Multiplicative group mod n

 $\mathbb{Z}_n^* = \{x : 1 \le x \le n \text{ and } \gcd(x, n) = 1\}$ The totient function $\phi(n) = |\mathbb{Z}_n^*|$ is the size of the group, also called the order of the group.

Any element of a group raised to the power of the order of the group is 1:

Euler's theorem: for any n > 1 and $a \in \mathbb{Z}_n^*$, $a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little theorem: if p is prime and $a \in \mathbb{Z}_p^*$ then $a^{p-1} \equiv 1 \pmod{p}$.

Example: The problem from the signup sheet: $8^{962} \pmod{97} = 8^2 \pmod{97} = 64$. Consequence of Euler, we have $a^d \equiv a^{\hat{d} \mod \phi(p)} \mod p$. Example: $7^{78} \mod 11 = 7^1 \mod 11 = 7$ If gcd(m, n) = 1 then $\phi(mn) = \phi(m)\phi(n)$. So if n = pq, we have $\phi(n) = (p-1)(q-1)$.

Fast exponentiation We covered the algorithm for repeated squaring that computes $a^b \mod n$ by performing log b squarings. See Dana Angluin's notes (page 12) for the algorithm.

Generators

A finite group (G, \cdot) may be cyclic, which means that it contains a generator g such that every group element $h \in S$ is a power $h = g^k$ of g for some $k \ge 0$.

The group \mathbb{Z}_5^* is generated by g = 2, since the powers of 2 (mod 5) are: 2, 4, 3, 1.

Chinese remainder theorem (CRT) See page 11 of Dana Angluin's notes for CRT.