## Recitation 1 Notes: Number theory

Feb 15, 2013

We covered some number theory background useful for the class. Below I will provide a list of the topics we covered. All this material is presented in detail in Dana Angluin's Lecture Notes on the "Complexity of Some Problems in Number Theory" in Chapters 3-10 http://courses.csail.mit.edu/6.857/2013/files/angluin.ps.

## Divisor

We say that "d divides a", written $d \mid a$, if there exists an integer $k$ such that $a=k d$ and that $d$ is a divisor of $a$.

If $\mathrm{d} \mid$ a and $d \mid b$, then $d$ is a common divisor of $a$ and $b$.
Example: What numbers divide 9? 1, 3, 9

## Prime number

An integer $p>1$ is prime if its only divisors are 1 and $p$.

## Modular arithmetic

For $a$ and $b$ integers, the quotient expression is
$a=b * q+r$, where $r, q \in \mathbb{Z}$ and $r<b$. We also write:
$a \equiv r(\bmod b)$
Example: What is $19 \bmod 17 ? 2$. What is $181282347^{*} 34 \bmod 34 ? 0$.

## GCD

The greatest common divisor, $\operatorname{gcd}(a, b)$, of two integers $a$ and $b$ is the largest of their common divisors.

Example: What is the $\operatorname{gcd}(12,18) ? 6$.
Example: what is $\operatorname{gcd}(12,7) ? 1$.
Integers $a$ and $b$ are relatively prime if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$.
We then covered Euclid's algorithm for computing the gcd together with proof of correctness. This is detailed in Dana Angluin's notes.

Example:

$$
\begin{aligned}
& \operatorname{gcd}(234,108) \\
& 234=108 \cdot 2+18 \\
& 108=18 * 6 \\
& \operatorname{gcd}=18
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gcd}(233,144): \\
& 233=144 * 1+89 \\
& 144=89 * 1+55 \\
& 89=55 * 1+34 \\
& 55=34 * 1+21 \\
& 34=21 * 1+13 \\
& 21=13 * 1+8 \\
& 13=8 * 1+5 \\
& \cdots \\
& 3=2 * 1+1 \\
& 2=2 * 1
\end{aligned}
$$

$\operatorname{gcd}(233,144)=1$ so they are relatively primes.

We also looked at the extended Euclid's algorithm that allows us to compute $x, y \in \mathbb{Z}$ such that $d=x a+y b$, where $d=\operatorname{gcd}(a, b)$.

The number of steps in Euclid's algorithm is $O(\log n)$, where $n=\max (a, b)$. Recall that a function $f$ is $f=O(g)$ for another function $g$, if for all constants $C>0$, there exists $N$ such that for all $n>N, f(n) \leq C g(n)$.

## Groups

We recalled the definition of groups. A group is a set, $G$, with an associated operation • such that the following properties hold:

- Closure: For all $a, b \in G$, the result of the operation, $a \cdot b$, is also in $G$.
- Associativity: For all $a, b, c \in G,(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
- Identity element or 1: There exists an element $e \in G$, such that for every element $a \in G$, the equation $e \cdot a=a \cdot e=a$ holds. There is a unique such element.
- Inverse element: For each $a \in G$, there exists an element $b \in G$ such that $a \cdot b=b \cdot a=e$.


## Multiplicative group mod a prime p

$\mathbb{Z}_{p}^{*}=\{1, \ldots, p-1\}$
We argued why $\mathbb{Z}_{p}^{*}$ is a group.
Example: What is the inverse of $4 \bmod 7 ? 2$.
Example: What is the inverse of $3 \bmod 13 ? 9$.
Multiplicative group mod $n$
$\mathbb{Z}_{n}^{*}=\{x: 1 \leq x \leq n$ and $\operatorname{gcd}(x, n)=1\}$
The totient function $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$ is the size of the group, also called the order of the group.

Any element of a group raised to the power of the order of the group is 1 :

Euler's theorem: for any $n>1$ and $a \in \mathbb{Z}_{n}^{*}, a^{\phi(n)} \equiv 1(\bmod n)$.

Fermat's little theorem: if p is prime and $a \in \mathbb{Z}_{p}^{*}$ then $a^{p-1} \equiv 1(\bmod p)$.

Example: The problem from the signup sheet: $8^{962}(\bmod 97)=8^{2}(\bmod 97)=64$.
Consequence of Euler, we have $a^{d} \equiv a^{d \bmod \phi(p)} \bmod p$.
Example: $7^{78} \bmod 11=7^{1} \bmod 11=7$
If $\operatorname{gcd}(m, n)=1$ then $\phi(m n)=\phi(m) \phi(n)$.
So if $n=p q$, we have $\phi(n)=(p-1)(q-1)$.
Fast exponentiation We covered the algorithm for repeated squaring that computes $a^{b} \bmod n$ by performing $\log b$ squarings. See Dana Angluin's notes (page 12) for the algorithm.

## Generators

A finite group $(G, \cdot)$ may be cyclic, which means that it contains a generator g such that every group element $h \in S$ is a power $h=g^{k}$ of g for some $k \geq 0$.

The group $\mathbb{Z}_{5}^{*}$ is generated by $g=2$, since the powers of $2(\bmod 5)$ are: $2,4,3,1$.
Chinese remainder theorem (CRT) See page 11 of Dana Angluin's notes for CRT.

