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6.857: Network and Computer Security April 22, 2013
Professor Ron Rivest Due: May 6, 2013

Problem Set 5

This problem set is due on Monday, May 6 at 11:59 PM. Please note that no late submissions will be
accepted. Please submit your problem set, in PDF format, by email to 6857-staff@mit.edu. Submit only
one problem set per group (with all of your group members’ names on it).

You are to work on this problem set with a group of three or four people. You may choose your own groups
for this problem set. If you do not have a group, please email 6857-tas@mit.edu. Be sure that all group
members can explain the solutions. See Handout 1 (Course Information) for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must appear on a separate page. Mark
the top of each page with your group member names, the course number (6.857), the problem set number
and question, and the date. We have provided templates for N TEX and Microsoft Word on the course website
(see the Resources page).

Grading: All problems are worth 10 points.

With the authors’ permission, we will distribute our favorite solution to each problem as the “official”
solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on the
homework submission website.

Problem 4-1. Unlinkable Serial Transactions
In this problem, we will explore unlinkable serial transactions, as described by Stubblebine, Syverson, and
Goldschlag; the paper is available on the course website. The general model is that:

e There is a server providing some service to multiple clients.

e Clients must “subscribe” initially (in the real world, this may involve payment, age verification, or
some other check). After subscribing, clients may use the service as often as they wish.

e The server wishes to verify that every time it receives a request, the client has previously subscribed.

e To protect the privacy of the clients, the server should not be able to trivially correlate different requests
as being from the same client. Thus, simply making each client provide a username and password does
not work, since the server could simply look at all requests coming from the same username. !

Many existing services require the first three points, and solve the problem by having users create accounts
with usernames and passwords. However, this does not meet the final criterion, since the server could easily
look for all transactions associated with one account. (Ideas along the lines of creating multiple “one-time
accounts” encounter difficulties with ensuring that the owner of each account is properly subscribed, without
tying them together.)

The proposal uses blind signatures, a technique for creating digital signatures where the signer does not know
the message. The idea works as follows:

e The user signs up for a subscription at which time she submits payment and a message of the form
blind(hash(N1))

(e.g. (r¢hash(N1)) (mod n) where server’s PK = (n,e)), where Nj is her initial nonce.

IHere we won’t consider traffic/timing analysis, or looking at the IP address of the incoming request, or the like; we’ll just
consider the interaction at the cryptographic/protocol level.
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e The server accepts payment and gives the user
blind(sign(hash(Ny))
(e.g. 7 (hash(Ny))* (mod n) where server’s SK = (n, d), from which the user can obtain
sign(hash(Ny))
(e.g. by dividing by 7 to obtain (hash(N;))? (mod n)). This is the server’s hash on her first nonce

(which the server hasn’t seen).

eLater on, the user can request service by sending a message of the form:
“request”, sign(hash(N;)), N;, blind(hash(N;11))

e Upon receiving such a request, the server checks that the nonce N; is previously unused, but that the
signature is valid. If so, it provides service, and also returns

blind(sign(hash(N;t1))
so the user now has a token for her next request.

For this problem, we will use RSA signatures for the signature algorithm, and SHA-256 for the hash function.
The server has a public key (n,e) and a secret key d. It signs messages m by generating o, = m¢ (mod n).

We have set up a server that follows the above protocol. The service it provides is simply returning different
plaintext ASCII strings. We will skip the “subscription” step, so all the requests will be service requests;
thus, there’s no need to include the string “request” as part of the request.

On the course website you will find a file USTclient.py that includes skeleton code for communicating with
the server. (It uses HTTP, so you can access it in other ways if you wish, but using this code is almost
certainly easiest.) This code includes the server host:port and its public verification key.

You will also need an initial (nonce,signature) pair (N;, sig(hash(N;))) to get started (the one that normally
would be provided with subscription). Each student can get ONE such nonce/signature pair by going to
https://6857.scripts.mit.edu:444/2013ps5/index.py with their MIT certificate. (Remember that the
server will only accept each nonce once, so be careful with your code!)

Find eight of the strings returned by the server. (Once you find some of the strings, do not share them with
other groups!) Submit the strings you found, and any code you used.

Remember that in order to be successfully anonymous, both the nonces and the blinding must be random!

Problem 4-2. Digital Signatures.

You are going to design a new type of signature scheme called TwoSign in which the signer of a message
could be one of two people, but the verifier of the signature cannot learn who the signer is.

Concretely, consider that each user U has a public key PKy and a secret key SKy. In particular, Alice has a
public/secret keys pair (PK4,5K4), and Bob has the pair (PKg, SKp). Alice can use her public/secret keys
and Bob’s public key (PKa,SK4,PKg) can create a signature that can be verified as having been created
by one of the two parties, but the verifier cannnot tell which one (i.e., cannot tell if it was Alice or Bob
that signed the message). In other words, the scheme consists of three routines TwoKeyGen, TwoSign and
TwoVerify such that

e TwoKeyGen(1*) = (PK, SK)
e TwoSign(M, SK4, PK4, PKp) =0
e TwoVerify(M, o, PK4,PKp) = True/False
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with the properties that

e Correctness: TwoVerify(M, TwoSign(M,SK 4, PK 4, PKg), PK4, PKp) = True

e Public keys can be input in any order to the verification:

TwoVerify(M, o, PK 4, PKg) = TwoVerify(M, o, PKg, PK4)

e Unforgeability: no one can forge a signature for a new message that verifies with the public key of
party A and party B without having the secret key of either of these two parties.

e Signer anonymity: no adversary can guess with a chance better than 1/2+ negl whether A or B signed
the message.

Note that A does not know SKg and B does not know SK 4. Moreover, A does not need B’s cooperation to
produce such a signature, only B’s public key PKg. So, you can produce a message that was signed by either
yourself or by President Obama (by only using his public key), and no one can tell which of you actually
signed it! (Of course, the signature does not convince them that it was Obama either :)). There, it is not
reasonable to have the parties agree on a shared key.

Devise such a signature scheme, describe each of its three protocols (TwoKeyGen, TwoSign, TwoVerify), and
show it satisfies the three properties above.

Hint: Assume you have an unforgeable signature scheme with the original Diffie-Hellman notion of a signature
(this is not referring to Diffie-Hellman key exchange!), where the public-key+verification algorithm maps the
message space to the ciphertext space one-to-one, and the secret-key-+signing algorithm provides the inverse
mapping; then Verify(PKy, Sign(SKy, M)) = M where PKy /SKy are the keys of a user U.

Start by noting that while a signature scheme in the D/H model may be unforgeable for any given message,
it can’t be existentially unforgeable, since x is the signature for the random-looking message Verify(PKy, x).
Extend this observation to design your routines.

Hint: Think about two-out-of-two secret-sharing schemes.

Hint: If convenient, you may assume that all PK/SK pairs have the same message and ciphertext space,
which is the set of all bit-strings of length A. (This is not quite true for RSA, and it is an annoying detail...)
Recall that one typically signs a hash of the message instead of the message itself; you may also assume that
you have a one-way hash function thatmaps arbitrary strings into bit strings of length A.

Problem 4-3. EvilKeyGen again!

On the quiz, you defined the hiding/Nifty property of EvilKeyGen. In this problem, let’s actually construct
this evil key generation algorithm!

Suppose the Adversary can surreptitiously replace KeyGen in a public-key encryption scheme software library
with EvilKeyGen. A user calling KeyGen is in fact calling EvilKeyGen (without knowing). EvilKeyGen also
receives as input the security parameter 1* and returns a public-key /secret-key pair (PK, SK) just as KeyGen
would. The EvilKeyGen code may have embedded within it code and cryptographic parameters constructed
by the Adversary. Using these, the Adversary could subsequently extract a SK from a PK of a user who used
EvilKeyGen, and thus learn the secret key of the user.

A proper EvilKeyGen satisfies the following three properties:

1. Evil. Whenever a user generates (PK, SK) from EvilKeyGen, the Adversary can efficiently determine
SK given only PK—that is, he can easily extract the SK from any PK generated by EvilKeyGen. (!)

2. Hiding/Nifty. EvilKeyGen is considered to be “Nifty” if any user who only ezecutes the code and
examines the output, but does not ezamine the code, cannot tell if he/she is using KeyGen or EvilKeyGen.
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3. Exclusivity. Only the Adversary can exercise the Evil property (1) —even if the user examines the
code, and sees that it has been hacked, he is unable to extract the SK’s from the PK’s for PK’s produced
by EvilKeyGen (say by other users using this hacked software library); the Adversary is the only party
who can take advantage of the “evil trapdoor” of (1).

Devise such an EvilKeyGen (by providing the algorithmic description of EvilKeyGen) for RSA and argue why
it respects each of the three properties above. You can assume that in the standard RSA KeyGen, p and ¢
are randomly chosen safe primes of length A, and that e is a randomly chosen odd integer of length A-2.

Hint: To achieve Exclusivity, the adversary should be using his own cryptography. How could the adversary
send himself a message via (n,e) (while not breaking the Nifty property)?



