
Massachusetts Institute of Technology Handout 4
6.857: Network and Computer Security April 1, 2013
Professor Ron Rivest Due: April 12, 2013

Problem Set 4

This problem set is due on Friday, April 12 at 11:59 PM. Please note that no late submissions will be
accepted. Please submit your problem set, in PDF format, by email to 6857-staff@mit.edu. Submit only
one problem set per group (with all of your group members’ names on it).

You are to work on this problem set with a group of three or four people. You may choose your own groups
for this problem set. If you do not have a group, please email 6857-tas@mit.edu. Be sure that all group
members can explain the solutions. See Handout 1 (Course Information) for our policy on collaboration.

Homework must be submitted electronically! Each problem answer must appear on a separate page. Mark
the top of each page with your group member names, the course number (6.857), the problem set number
and question, and the date. We have provided templates for LATEX and Microsoft Word on the course website
(see the Resources page).

Grading: All problems are worth 10 points.

With the authors’ permission, we will distribute our favorite solution to each problem as the “official”
solution—this is your chance to become famous! If you do not wish for your homework to be used as an
official solution, or if you wish that it only be used anonymously, please note this in your profile on the
homework submission website.

Problem 4-1. Discreteness is the Better Part of Valor

As seen in class, the Discrete Logarithm Problem is very important to public-key cryptography. In this
problem, you will explore ways to solve this problem (using smaller primes than are typically used for
cryptography).

(a) Assume you are given a k-bit prime p, generator g for Z∗
p, and element y ∈ Z∗

p, and you wish to find

x such that gx ≡ y mod p. Of course, a brute-force search would be expected to take Θ(p) = Θ(2k)
time.

We know that x is at most p− 1, so it is at most k bits long. Express it as a · 2k/2 + b, where a and b
are both k/2-bit numbers. (Essentially, a is the high-order bits of x, and b is the low-order bits of x.)

Consider the algorithm that calculates gi mod p and (g2
k/2

)j mod p for increasing values of i and j,

and tests each pair (i, j) to see if gi · (g2k/2

)j ≡ y. With a smart algorithm, approximately how many
pairs (i, j) do you expect to test (on average) in order to find x? How much memory do you expect
this algorithm to use?

(b) Other algorithms for the discrete log exist that are more practical than the one in part (a). These
generally work by defining a sequence of values xi such that xi = gviywi , using a deterministic function
to define xi+1 from xi. They then attempt to find a cycle in that sequence in order to find two indices
i, j such that xi = xj . If gviywi = gvjywj for (vi, wi) 6= (vj , wj), one can solve for the discrete
logarithm of y.

Two examples of cycle-finding algorithms are:

• The Pollard rho algorithm: This algorithm uses two pointers (a “fast” and “slow” pointer that go
through the sequence {xi} at different speeds. If there is a cycle, the “fast” pointer will make a
full cycle and catch up to the “slow” pointer. For more information about this algorithm, you can
consult The Handbook of Applied Cryptography, by Menezes, van Oorschot, and Vanstone, Section
3.6.3, which is online at http://cacr.uwaterloo.ca/hac/. (Wikipedia also has a reasonable
summary. Note that there is also a similar “Pollard rho algorithm” for the factoring problem.)
You can also find a suggestion for the function to obtain xi+1 from xi here.



2 6.857 : Handout 4: Problem Set 4

• The Nivasch stack algorithm: This algorithm maintains a stack of values in order with the least
value on top. When a new element is processed, any element less than it is popped from the
stack, and that element is pushed to the stack. Eventually, this algorithm detects pushing the
same element that is already at the top of the stack, at which point you have found a cycle. For
more information, see http://www.gabrielnivasch.org/fun/cycle-detection.

Consider primes of the form p = 2rs + 1 where r and s are prime. The multiplicative group Z∗
p has

size 2rs. If we consider all the squares (or quadratic residues) in this group, they form a subgroup–if
g0 is a generator of Z∗

p, then g1 = g20 is a generator of the squares of Z∗
p. This subgroup has order rs.

We can consider various subgroups of this group–for example, g = (g1)s is a generator of a subgroup
of order r, and h = (g1)r is a generator of a subgroup of order s. Any square modulo p can be
represented by a pair of elements of these two subgroups.1

Specifically, you can express each square z as gahb for a ∈ {0, 1, ..., r − 1}, b ∈ {0, 1, ...s− 1}.
On the class website, we have provided a text file with a table of decimal values. Each line is arranged
in the form i, ri, si, pi, gi, hi. (For ease in notation, we will omit the subscripts in the rest of the
explanation, so the values in a single line will be called i, r, s, p, g, h.) Each p is an i-bit prime that is
equal to 2rs + 1; r and s are both prime. g is a generator of the subgroup of size r modulo p, and h
is a generator of the subgroup of size s modulo p.

On the class website, there is also a list of students and associated square numbers. Let z for your
group be equal to the product of the numbers associated with your group members.

Find (a, b) such that gahb ≡ z mod p for as many i as you can.

Turn in:

• Your group’s number z

• As many (ai, bi) as you can find such that gai
i hbi

i ≡ z mod pi (please use decimal notation, and
label which i they correspond to)

• Any code you used for this problem

• A brief explanation of how the code works (no more than half a page).

Please do not turn in large outputs/data–only the code and the answers.

Hint: You can certainly do this by taking discrete logs modulo p, but there’s a more efficient way
that involves taking discrete logs modulo smaller values. Consider Fermat’s Little Theorem, and its
extension to general finite fields.

Note that we do not expect you to get all of these!

Problem 4-2. The Secure Remote Password Protocol (SRP)

The SRP protocol is a protocol designed at Stanford that allows a client to authenticate to a server using
his/her password as well as exchange a secret key with the server for future secure communication. The
homepage of the protocol is http://srp.stanford.edu/ which contains the protocol description:

• the main paper describing SRP is http://srp.stanford.edu/doc.html#papers

• a second paper describing a follow-up improvement to SRP is http://srp.stanford.edu/srp6.ps.

You might find the Wikipedia article http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
useful to provide you with a quick overview and then you can refer to the papers above for details; the
Wikipedia article already incorporates the improvement.

In this problem, we will explore the security properties of SRP.

1This can be seen as analogous to the Chinese Remainder Theorem. You will not need to apply the Chinese Remainder
Theorem for this problem, but the idea that a value can be represented in this way is central.



6.857 : Handout 4: Problem Set 4 3

(a) A first observation is that the server does not store in the clear the salted hash of the password,
H(salt, I, p), for p being the password and I the identity of a user; instead, the server stores gH(salt,I,p)

(concretely, it stores 〈salt, I, gH(salt,I,p)〉 for each user I). What is the reason for this decision? And
what, if any, cryptographic assumption does the argument rely on? Can the adversary still mount a
dictionary attack on gH(salt,I,p) as it would on H(salt, I, p)?

(b) The Diffie-Helman key exchange protocol suffers from a man-in-the-middle (MITM) attack. Eve, the
“man in the middle”, can interpose in the key exchange protocol between Alice (with secret a) and
Bob (with secret b). Eve can intercept the message from Alice ga and respond with ge to Alice (where
e is some value chosen by Eve) and send Bob ge and receive gb from Bob. In this way, Alice establishes
a secret key gae with Eve, and Bob establishes a secret key gbe with Eve, without knowing that Eve
is in the middle. From now on, Even can snoop on all conversation of Alice and Bob, by playing as
an intermediary on all their messages.

1. Explain why the SRP protocol does not suffer from the man-in-the-middle problem if the adver-
sary does not have the 〈salt, I, gH(salt,I,p)〉 authentication information of the user. That is, why
can’t the adversary authenticate himself to the client as the server and to the server as the client?

Now consider that the adversary was able to steal the password tables 〈salt, I, gH(salt,I,p)〉 but it does
not know and cannot compute H(salt, I, p). Can the adversary mount a MITM attack and be able
to subsequently eavesdrop on the conversation between the server and the client? (That is, after the
authentication protocol finished, a succesful MITM adversary is able to decrypt all the messages that
the client and the server are sending to each other.) To guide you in answering this question, answer
the following smaller questions:

2. Can the adversary use the stolen information and fool the client into thinking he/she is the server
by successfully establishing a shared key with the client?

3. Can the adversary use the stolen information and authenticate himself/herself to the server as
the legitimate client? In other words, at the end of the authentication protocol, can the adversary
convince the server that their keys match?

4. If the adversary simply eavesdrops on the authentication protocol of the client and the server
(by watching the values exchanged) and does not inject any messages, can the adversary use the
〈salt, I, gH(salt,I,p)〉 information to learn the secret key that the client and the server agree on?

5. Conclude whether or not the adversary is able to launch a MITM attack.

(c) Consider modifying the SRP protocol by setting u := 1 instead of H(A,B). The SRP protocol now
becomes less secure because an adversary who stole 〈salt, I, gH(salt,I,p)〉 from the server can now au-
thenticate to the server as the legitimate client. How? Provide the concrete steps of the authentication
protocol for such an attack.

Problem 4-3. Authenticated Encryption

The goal of authenticated encryption (AE) is to provide confidentiality, integrity, and authentication (CIA).
A natural idea to construct such a scheme is to combine an encryption scheme and a MAC scheme; however,
one must be careful about the method to combine these schemes for not all possibilities are secure.

Let MAC be a secure MAC scheme with the unforgeability property: no adversary can forge a MAC for a
new message (for which it did not observe a MAC already) or a new MAC for a message it already saw.
Let E be a symmetric key encryption scheme that is IND-CCA secure. Let kE be a key for the encryption
scheme and kM be a key for the MAC scheme. The desired AE scheme should also be IND-CCA and have
the property that an adversary cannot come up with a new encryption (that it did not see before) that
passes the authenticity/integrity verification. (Warning: E is IND-CCA rather than IND-CPA or semantic
security: similar questions have been answered online using IND-CPA, but things may be different with
IND-CCA).



4 6.857 : Handout 4: Problem Set 4

Below is a list of candidate AE schemes, where we only show the encryption algorithm (the decryption and
verification algorithm is straightforward). For each of these, decide if it is a secure authenticated encryption
scheme and describe a flaw or argue its security. We use | to denote concatenation.

(a) AE(kE , kM ,message) = E(kE ,message) | MAC(kM ,message).

(b) AE(kE , kM ,message) = E

(
kE ,message | MAC(kM ,message)

)
.

(c) AE(kE , kM ,message) = E(kE ,message) | MAC(kM , E(kE ,message)).


