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Practice Number Theory Problems

Problem 3-1. GCD

(a) Compute gcd(85, 289) using Euclid’s extended algorithm. Then compute x and y such that 85x +
289y = gcd(85, 289).

Recall Euclid’s extended algorithm:

a = bq1 + r1

b = r1q2 + r2

. . .

rn−1 = rnqn+1 + rn+1.

We stop when we reach a remainder of 0, that is, when rn+1 = 0. We obtain gcd(a, b) = rn.

Fact 1 For all a, b ∈ N, if gcd(a, b) = d, then there exists x, y ∈ Z such that ax + by = d.

To compute x and y from Fact 1, we can use Euclid’s extended algorithm above: starting from rn,
we iterate backwards, by expressing rn in terms of ri, a and b, for i decreasing until rn is expressed
in terms of a and b only, as in the example below.

Let’s apply Euclid’s extended algorithm to compute gcd(289, 85).

289 = 85 · 4 + 34

85 = 34 · 2 + 17

34 = 17 · 2 + 0

The gcd is the last remainder, non-zero: 17. Let’s now work backwards and compute x and y:

17 = 85− 34 · 2 = 85− (289− 85 · 4) · 2 = 85− 289 · 2 + 85 · 8 = 85 · 9− 289 · 2,

and thus x = 9 and y = −2.

(b) Show that if k | mn, but gcd(m, k) = 1 then k | n.

Let’s first argue intuitively: since k divides m and n and k has no factors in common with m, it must
be that all factors of k divide n and hence k divides n.

Let’s prove this statement formally: k | mn implies that

∃ q s.t. mn = kq. (1)

Since gcd(m, k) = 1, we know by Fact 1 that there exists x, y s.t. mx + ky = 1 and therefore
m = (1− ky)/x.

By replacing m in Eq. (1), we obtain n(1− ky) = xkq and thus n = nky + xkq = k(ny + xq) so k | n.

Someone asked me in recitation if it is ok that k is multiplied by a term containing n: the term
(ny + xq). The reason this is fine is that all we need from ny + xq is to be an integer, which it is
because all of n, y, x, q ∈ Z. Then, we get that n equals k times some integer, which means that n is
a multiple of k.
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(c) Show that if m > n then gcd(m,n) = gcd(m− n, n).

Let d = gcd(m,n). We know that d | m and d | n so d | m− n. Indeed, d is now a common divisor of
m− n and n.

To show that d is the largest such divisor, assume by contradiction that it is not the largest divisor.
That is, assume that there exists a divisor d′ > d such that d′ | m − n and d′ | n. This means that
d′ | m and that gcd(m,n) ≥ d′ > d, which achieves a contradiction.

(d) Show that gcd(m,n) is a linear combination of m and n. Write 1 as a linear combination of 18 and
31.

The first part of this problem follows trivially from Fact 1.

The second part just involves computing the Euler’s extended algorithm:

31 = 18 · 1 + 13

18 = 13 · 1 + 5

13 = 5 · 2 + 3

5 = 3 · 1 + 2

3 = 2 · 1 + 1

2 = 1 · 2 + 0

Working backwards (the first equality of each line indicates a substitution from the equations above):

1 = 3− 2 · 1
= 3− (5− 3) = 3 · 2− 5

= (13− 5 · 2) · 2− 5 = 13 · 2− 5 · 5
= 13 · 2− (18− 13) · 5
= 13 · 7− 18 · 5
= (31− 18) · 7− 18 · 5
= 31 · 7− 18 · 12.

(e) Show that if gcd(a,m) = 1 and gcd(a, n) = 1 then gcd(a,mn) = 1.

Recall that

Fact 2 For all a, b ∈ N, for all x, y ∈ Z, if ax + by = d, then gcd(a, b) | d.

Proof. The proof of this fact is easy. Let d∗ = gcd(a, b). Since d∗ | a and d∗ | b, it means that
d∗ | ax + by = d.

Since gcd(a,m) = 1, by Fact 1, we have that there exists x, y such that ax+my = 1. Thus my = 1−ax.
Similarly, there exists v and w such that av + nw = 1 and thus nw = 1− av.

Therefore, we obtain that my · nw = (1 − ax)(1 − av) and therefore mn · yw + a(v + x − avx) = 1,
which by Fact 2, gives us that gcd(m,n) | 1 so gcd(m,n) = 1.

Problem 3-2. Modular arithmetic

(a) Show that if a ≡ b mod n, then for all integers c, a + c ≡ b + c mod n.

Since a ≡ b mod n, there exists q ∈ Z such that a = b + nq. This means that a + c = b + c + nq. If
we compute mod n on both sizes, nq cancels out and we obtain a + c ≡ b + c mod n.
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(b) Show that if a ≡ b mod n, then for all positive integers c, ac ≡ bc mod n.

Since a ≡ b mod n, there exists q ∈ Z such that a = b + nq. This means that ac = (b + nq)c. If we
compute mod n on both sizes, nqc cancels out and we obtain ac ≡ bc mod n.

(c) Show that if a and n are relatively prime, then there is an integer a′ such that aa′ ≡ 1 mod n.

By Fact 1, we know that there exists x, y ∈ Z such that ax + ny = 1. Taking mod n on both sides,
we obtain ax ≡ 1 mod n.

(d) Show that if a and n are not relatively prime, then a has no multiplicative inverse modulo n.

Let’s proceed by contradiction: assume that a has an inverse mod n, denoted a′. Then aa′ ≡ 1
mod n, which means that there exists q such that aa′ = nq + 1 and thus aa′−nq = 1. Let d 6= 1 be a
divisor of a and n. This means that d | aa′ − nq, but aa′ − nq = 1, so d | 1 which is a contradiction.

Problem 3-3. Euclid’s Algorithm, Inverses, and Fermat’s Little Theorem

Recall

Theorem 1 (Fermat’s Little Theorem)If p is prime, then for all a ∈ Z∗p, ap−1 ≡ 1 mod p.

(a) Find the gcd(13, 5) using Euclid’s extended algorithm.

13 = 5 · 2 + 3

5 = 3 · 1 + 2

3 = 2 · 1 + 1

2 = 1 · 2 + 0.

Thus gcd(13, 5) = 1, which is of no surprise, but we can use the equations above to determine: x and
y such that 13x + 5y = 1.

1 = 3− 2 = 3− (5− 3) = 3 · 2− 5 = (13− 5 · 2) · 2− 5

= 13 · 2− 5 · 5. (2)

(b) Using your results from (a), what is 5−1 modulo 13?

Therefore, 5−1 ≡ −5 mod 13 because we can apply mod 13 in Eq. (2). We also know that −5 ≡ 8
mod 13, so 5−1 ≡ 8 mod 13.

(c) Compute 361 mod 7 (use Fermat’s Little Theorem).

Using Fermat’s little theorem, we know that 37−1 ≡ 1 mod 7. Therefore, 36 ≡ 1 mod 7 and hence
360 ≡ 1 mod 7. Therefore, 361 ≡ 360 · 3 ≡ 3 mod 7.

(d) Can you apply Fermat’s Little Theorem to compute 461 mod 16?

No, because Fermat’s little theorem is only guaranteed to hold modulo a prime and 16 is not a prime.

Problem 3-4. Order of Group Elements
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(a) What is the order of 5 in Z∗13?

51 = 5

52 = 12 mod 13

53 = 8 mod 13

54 = 1 mod 13

Order is thus 4.

(b) Find an element of order 3 mod 7.

Try out a few values

13 = 1, 23 mod 7 = 1: thus 2 has order 3 mod 7.

Problem 3-5. Generators

(a) Find a safe prime ≥ 20 and it’s corresponding Sophie-Germain prime.

Recall that a safe prime p is a prime such that p = 2q + 1 where q is a prime. q is called a Sophie-
Germain prime.

p = 23 and q = 11.

(b) Find a generator of Z∗11 - note that 11 is a safe prime, so you should be able to do this by hand!

All you need to try is whether the generator to the power of the factors of p− 1 (p = 11 here) is not
one. If gx ≡ 1 mod p for x < p− 1, g cannot be a generator because it has shorter cycles than p− 1
and thus cannot generate all p− 1 values.

25 = 32 6= 1 mod 11.

22 ≡ 4 6= 1 mod 11.

(c) Test 3 is a generator for Z∗7 by computing only two exponentiations.

32 ≡ 2 mod 7 6= 1

33 ≡ 6 mod 7 6= 1.

Problem 3-6. Discrete log and related assumptions

(a) Compute the discrete log3 2 mod 7.

3x ≡ 2 mod 7. x = 2.

(b) Prove that if the Computational Diffie-Hellman assumption is hard, then Discrete Log assumption is
also hard.

It is enough to prove the counterpositive: if we can break DL, then we can break CDH.

To break CDH, we are given ga, gb and we need to compute ab. Since we know how to break DL, we
can compute a and b and then we just multiply them. So we can break CDH.

Problem 3-7. Quadratic Residue

(a) Find Q7, the set of quadratic residues mod 7.



6.857 : Handout 9: Practice Number Theory Problems 5

12 = 1 mod 7

22 = 4 mod 7

32 = 2 mod 7

42 = 2 mod 7

52 = 4 mod 7

62 = 1 mod 7

Therefore, Q7 = {1, 2, 4}.


