Massachusetts Institute of Technology Handout 9
6.857: Network and Computer Security March 21, 2013
Professor Ron Rivest Due: N/A

Practice Number Theory Problems
Problem 3-1. GCD

(a) Compute gecd(85,289) using Euclid’s extended algorithm. Then compute 2 and y such that 85z +
289y = gcd(85,289).

Recall Euclid’s extended algorithm:
a=bq +r
b=r1g2 + 12
Tn—1 = nqn+1 + Tn+1-

We stop when we reach a remainder of 0, that is, when r,,11 = 0. We obtain gcd(a, b) = r,,.

Fact 1 For all a,b € N, if ged(a,b) = d, then there exists x,y € Z such that ax + by = d.

To compute x and y from Fact 1, we can use Euclid’s extended algorithm above: starting from r,,,
we iterate backwards, by expressing r,, in terms of r;, ¢ and b, for i decreasing until r,, is expressed
in terms of a and b only, as in the example below.

Let’s apply Euclid’s extended algorithm to compute ged(289, 85).

280 =85-4+434
86=34-2+17
34=17-2+0

The gcd is the last remainder, non-zero: 17. Let’s now work backwards and compute x and y:
17=85-34-2=85—(280—-85-4)-2=85—-289-2+85-8=85-9—289-2,

and thus x =9 and y = —2.

(b) Show that if k | mn, but ged(m, k) =1 then k | n.
Let’s first argue intuitively: since k divides m and n and k has no factors in common with m, it must
be that all factors of k divide n and hence k divides n.

Let’s prove this statement formally: k | mn implies that
3 g s.t. mn = kq. (1)

Since ged(m, k) = 1, we know by Fact 1 that there exists x,y s.t. mz + ky = 1 and therefore
m=(1—ky)/x.

By replacing m in Eq. (1), we obtain n(1 — ky) = xkq and thus n = nky + zkq = k(ny + xq) so k | n.
Someone asked me in recitation if it is ok that k is multiplied by a term containing n: the term
(ny + xq). The reason this is fine is that all we need from ny + xq is to be an integer, which it is
because all of n,y,z,q € Z. Then, we get that n equals k times some integer, which means that n is
a multiple of k.
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(¢) Show that if m > n then ged(m,n) = ged(m — n, n).
Let d = ged(m,n). We know that d | m and d | n so d | m —n. Indeed, d is now a common divisor of
m —n and n.

To show that d is the largest such divisor, assume by contradiction that it is not the largest divisor.
That is, assume that there exists a divisor d’ > d such that d’ | m —n and d’' | n. This means that
d’ | m and that ged(m,n) > d’' > d, which achieves a contradiction.

(d) Show that ged(m,n) is a linear combination of m and n. Write 1 as a linear combination of 18 and
31.

The first part of this problem follows trivially from Fact 1.
The second part just involves computing the Euler’s extended algorithm:

31=18-1+13

18=13-145

13=5-243
5=3-1+2
3=2-1+1
2=1-240

Working backwards (the first equality of each line indicates a substitution from the equations above):

1=3-2-1
=3-(5-3)=3-2-5
=(13-5-2)-2-5=13-2-5-5
—13.2— (18— 13)-5

=13.7-18-5
=(31-18)-7—18-5
=31.7-18-12.

(e) Show that if ged(a,m) =1 and ged(a,n) =1 then ged(a, mn) = 1.
Recall that

Fact 2 For all a,b €N, for all x,y € Z, if ax + by = d, then ged(a,b) | d.

Proof.  The proof of this fact is easy. Let d* = ged(a,b). Since d* | a and d* | b, it means that
d* | ax 4+ by = d.

Since ged(a, m) = 1, by Fact 1, we have that there exists x, y such that ax+my = 1. Thus my = 1—axz.
Similarly, there exists v and w such that av + nw =1 and thus nw =1 — av.

Therefore, we obtain that my - nw = (1 — az)(1 — av) and therefore mn - yw + a(v +  — avz) = 1,
which by Fact 2, gives us that ged(m,n) | 1 so ged(m,n) = 1.

Problem 3-2. Modular arithmetic

(a) Show that if a =b mod n, then for all integers ¢, a + ¢ =b+ ¢ mod n.

Since a = b mod n, there exists g € Z such that a = b + ng. This means that a + ¢ =b+ ¢+ nq. If
we compute mod n on both sizes, nqg cancels out and we obtain a + ¢ = b+ ¢ mod n.
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(b)

(c)

(d)

Show that if @ = b mod n, then for all positive integers ¢, ac = bc mod n.

Since a = b mod n, there exists ¢ € Z such that a« = b+ ng. This means that ac = (b + ng)c. If we
compute mod n on both sizes, nqc cancels out and we obtain ac = bc mod n.

Show that if a and n are relatively prime, then there is an integer a’ such that aa’ =1 mod n.

By Fact 1, we know that there exists x,y € Z such that ax + ny = 1. Taking mod n on both sides,
we obtain ax =1 mod n.

Show that if @ and n are not relatively prime, then a has no multiplicative inverse modulo n.

Let’s proceed by contradiction: assume that a has an inverse mod n, denoted a’. Then aa’ = 1
mod n, which means that there exists ¢ such that aa’ = ng+1 and thus aa’ —ng =1. Let d # 1 be a
divisor of a@ and n. This means that d | aa’ — ng, but aa’ — ng =1, so d | 1 which is a contradiction.

Problem 3-3. Euclid’s Algorithm, Inverses, and Fermat’s Little Theorem

Recall

Theorem 1 (Fermat’s Little Theorem)If p is prime, then for all a € Ly, a’~'=1 mod p.

(a)

(b)

(c)

(d)

Find the ged(13,5) using Euclid’s extended algorithm.

13=5-243
5=3-1+2
3=2-1+1
2=1-2+0.

Thus ged(13,5) = 1, which is of no surprise, but we can use the equations above to determine: x and
y such that 13z + 5y = 1.

1 =3-2=3-(5-3)=3-2-5=(13-5-2)-2—5
=13-2-5-5. (2)

Using your results from (a), what is 51 modulo 13?

Therefore, 571 = —5 mod 13 because we can apply mod 13 in Eq. (2). We also know that —5 = 8
mod 13, so 57! =8 mod 13.

Compute 31 mod 7 (use Fermat’s Little Theorem).

Using Fermat’s little theorem, we know that 37! = 1 mod 7. Therefore, 35 = 1 mod 7 and hence
360 =1 mod 7. Therefore, 36 = 3% .3 =3 mod 7.

Can you apply Fermat’s Little Theorem to compute 45! mod 167?

No, because Fermat’s little theorem is only guaranteed to hold modulo a prime and 16 is not a prime.

Problem 3-4. Order of Group Elements




(a)

(b)
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What is the order of 5 in Zj3?

51 =5

52 =12 mod 13
52 =8 mod 13
5% =1 mod 13

Order is thus 4.
Find an element of order 3 mod 7.

Try out a few values
12 =1, 23 mod 7 = 1: thus 2 has order 3 mod 7.

Problem 3-5. Generators

()

(b)

(c)

Find a safe prime > 20 and it’s corresponding Sophie-Germain prime.

Recall that a safe prime p is a prime such that p = 2¢ + 1 where ¢ is a prime. ¢ is called a Sophie-
Germain prime.

p =23 and ¢ = 11.

Find a generator of Z3; - note that 11 is a safe prime, so you should be able to do this by hand!

All you need to try is whether the generator to the power of the factors of p — 1 (p = 11 here) is not
one. If ¢* =1 mod p for x < p— 1, g cannot be a generator because it has shorter cycles than p — 1
and thus cannot generate all p — 1 values.

2°=32#1 mod 11.
22=4+#1 mod 11.

Test 3 is a generator for Z% by computing only two exponentiations.
32=2 mod 7T#1
32=6 mod 7 # 1.

Problem 3-6. Discrete log and related assumptions

()

(b)

Compute the discrete logs 2 mod 7.
=2 mod 7. z=2.
Prove that if the Computational Diffie-Hellman assumption is hard, then Discrete Log assumption is
also hard.
It is enough to prove the counterpositive: if we can break DL, then we can break CDH.

To break CDH, we are given ¢%, ¢® and we need to compute ab. Since we know how to break DL, we
can compute a and b and then we just multiply them. So we can break CDH.

Problem 3-7. Quadratic Residue

(a)

Find @7, the set of quadratic residues mod 7.
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Therefore, Q7 = {1, 2,4}.

mod 7
mod 7
mod 7
mod 7
mod 7
mod 7



