Practice Number Theory Problems

Problem 3-1. GCD

(a) Compute gcd(85, 289) using Euclid's extended algorithm. Then compute x and y such that 85x + 289y = gcd(85, 289).

Recall Euclid's extended algorithm:

 $a = bq_1 + r_1$ $b = r_1q_2 + r_2$... $r_{n-1} = r_nq_{n+1} + r_{n+1}.$

We stop when we reach a remainder of 0, that is, when $r_{n+1} = 0$. We obtain $gcd(a, b) = r_n$.

Fact 1 For all $a, b \in \mathbb{N}$, if gcd(a, b) = d, then there exists $x, y \in \mathbb{Z}$ such that ax + by = d.

To compute x and y from Fact 1, we can use Euclid's extended algorithm above: starting from r_n , we iterate backwards, by expressing r_n in terms of r_i , a and b, for i decreasing until r_n is expressed in terms of a and b only, as in the example below.

Let's apply Euclid's extended algorithm to compute gcd(289, 85).

$$289 = 85 \cdot 4 + 34 85 = 34 \cdot 2 + 17 34 = 17 \cdot 2 + 0$$

The gcd is the last remainder, non-zero: 17. Let's now work backwards and compute x and y:

 $17 = 85 - 34 \cdot 2 = 85 - (289 - 85 \cdot 4) \cdot 2 = 85 - 289 \cdot 2 + 85 \cdot 8 = 85 \cdot 9 - 289 \cdot 2,$

and thus x = 9 and y = -2.

(b) Show that if $k \mid mn$, but gcd(m, k) = 1 then $k \mid n$.

Let's first argue intuitively: since k divides m and n and k has no factors in common with m, it must be that all factors of k divide n and hence k divides n.

Let's prove this statement formally: $k \mid mn$ implies that

$$\exists q \text{ s.t. } mn = kq. \tag{1}$$

Since gcd(m,k) = 1, we know by Fact 1 that there exists x, y s.t. mx + ky = 1 and therefore m = (1 - ky)/x.

By replacing m in Eq. (1), we obtain n(1 - ky) = xkq and thus n = nky + xkq = k(ny + xq) so $k \mid n$. Someone asked me in recitation if it is ok that k is multiplied by a term containing n: the term (ny + xq). The reason this is fine is that all we need from ny + xq is to be an integer, which it is because all of $n, y, x, q \in \mathbb{Z}$. Then, we get that n equals k times some integer, which means that n is a multiple of k. (c) Show that if m > n then gcd(m, n) = gcd(m - n, n).

Let d = gcd(m, n). We know that $d \mid m$ and $d \mid n$ so $d \mid m - n$. Indeed, d is now a common divisor of m - n and n.

To show that d is the largest such divisor, assume by contradiction that it is not the largest divisor. That is, assume that there exists a divisor d' > d such that $d' \mid m - n$ and $d' \mid n$. This means that $d' \mid m$ and that $gcd(m,n) \ge d' > d$, which achieves a contradiction.

(d) Show that gcd(m, n) is a linear combination of m and n. Write 1 as a linear combination of 18 and 31.

The first part of this problem follows trivially from Fact 1.

The second part just involves computing the Euler's extended algorithm:

$$31 = 18 \cdot 1 + 13$$

$$18 = 13 \cdot 1 + 5$$

$$13 = 5 \cdot 2 + 3$$

$$5 = 3 \cdot 1 + 2$$

$$3 = 2 \cdot 1 + 1$$

$$2 = 1 \cdot 2 + 0$$

Working backwards (the first equality of each line indicates a substitution from the equations above):

$$1 = 3 - 2 \cdot 1$$

= 3 - (5 - 3) = 3 \cdot 2 - 5
= (13 - 5 \cdot 2) \cdot 2 - 5 = 13 \cdot 2 - 5 \cdot 5
= 13 \cdot 2 - (18 - 13) \cdot 5
= 13 \cdot 7 - 18 \cdot 5
= (31 - 18) \cdot 7 - 18 \cdot 5
= 31 \cdot 7 - 18 \cdot 12.

(e) Show that if gcd(a, m) = 1 and gcd(a, n) = 1 then gcd(a, mn) = 1. Recall that

Fact 2 For all $a, b \in \mathbb{N}$, for all $x, y \in \mathbb{Z}$, if ax + by = d, then $gcd(a, b) \mid d$.

Proof. The proof of this fact is easy. Let $d^* = \text{gcd}(a, b)$. Since $d^* \mid a$ and $d^* \mid b$, it means that $d^* \mid ax + by = d$.

Since gcd(a, m) = 1, by Fact 1, we have that there exists x, y such that ax + my = 1. Thus my = 1 - ax. Similarly, there exists v and w such that av + nw = 1 and thus nw = 1 - av.

Therefore, we obtain that $my \cdot nw = (1 - ax)(1 - av)$ and therefore $mn \cdot yw + a(v + x - avx) = 1$, which by Fact 2, gives us that $gcd(m, n) \mid 1$ so gcd(m, n) = 1.

Problem 3-2. Modular arithmetic

(a) Show that if $a \equiv b \mod n$, then for all integers $c, a + c \equiv b + c \mod n$.

Since $a \equiv b \mod n$, there exists $q \in \mathbb{Z}$ such that a = b + nq. This means that a + c = b + c + nq. If we compute mod n on both sizes, nq cancels out and we obtain $a + c \equiv b + c \mod n$.

(b) Show that if $a \equiv b \mod n$, then for all positive integers $c, ac \equiv bc \mod n$.

Since $a \equiv b \mod n$, there exists $q \in \mathbb{Z}$ such that a = b + nq. This means that ac = (b + nq)c. If we compute mod n on both sizes, nqc cancels out and we obtain $ac \equiv bc \mod n$.

- (c) Show that if a and n are relatively prime, then there is an integer a' such that $aa' \equiv 1 \mod n$. By Fact 1, we know that there exists $x, y \in \mathbb{Z}$ such that ax + ny = 1. Taking mod n on both sides, we obtain $ax \equiv 1 \mod n$.
- (d) Show that if a and n are not relatively prime, then a has no multiplicative inverse modulo n.

Let's proceed by contradiction: assume that a has an inverse mod n, denoted a'. Then $aa' \equiv 1 \mod n$, which means that there exists q such that aa' = nq + 1 and thus aa' - nq = 1. Let $d \neq 1$ be a divisor of a and n. This means that $d \mid aa' - nq$, but aa' - nq = 1, so $d \mid 1$ which is a contradiction.

Problem 3-3. Euclid's Algorithm, Inverses, and Fermat's Little Theorem

Recall

Theorem 1 (Fermat's Little Theorem) If p is prime, then for all $a \in \mathbb{Z}_p^*$, $a^{p-1} \equiv 1 \mod p$.

(a) Find the gcd(13, 5) using Euclid's extended algorithm.

$$13 = 5 \cdot 2 + 3$$

$$5 = 3 \cdot 1 + 2$$

$$3 = 2 \cdot 1 + 1$$

$$2 = 1 \cdot 2 + 0$$

Thus gcd(13, 5) = 1, which is of no surprise, but we can use the equations above to determine: x and y such that 13x + 5y = 1.

$$1 = 3 - 2 = 3 - (5 - 3) = 3 \cdot 2 - 5 = (13 - 5 \cdot 2) \cdot 2 - 5$$

= 13 \cdot 2 - 5 \cdot 5. (2)

(b) Using your results from (a), what is 5^{-1} modulo 13?

Therefore, $5^{-1} \equiv -5 \mod 13$ because we can apply $\mod 13$ in Eq. (2). We also know that $-5 \equiv 8 \mod 13$, so $5^{-1} \equiv 8 \mod 13$.

(c) Compute $3^{61} \mod 7$ (use Fermat's Little Theorem).

Using Fermat's little theorem, we know that $3^{7-1} \equiv 1 \mod 7$. Therefore, $3^6 \equiv 1 \mod 7$ and hence $3^{60} \equiv 1 \mod 7$. Therefore, $3^{61} \equiv 3^{60} \cdot 3 \equiv 3 \mod 7$.

(d) Can you apply Fermat's Little Theorem to compute $4^{61} \mod 16$?

No, because Fermat's little theorem is only guaranteed to hold modulo a prime and 16 is not a prime.

Problem 3-4. Order of Group Elements

- (a) What is the order of 5 in \mathbb{Z}_{13}^* ?
- $5^1 = 5$ $5^2 = 12 \mod 13$ $5^3 = 8 \mod 13$ $5^4 = 1 \mod 13$

Order is thus 4.

(b) Find an element of order 3 mod 7.

Try out a few values

 $1^3 = 1, 2^3 \mod 7 = 1$: thus 2 has order 3 mod 7.

Problem 3-5. Generators

(a) Find a safe prime ≥ 20 and it's corresponding Sophie-Germain prime.

Recall that a safe prime p is a prime such that p = 2q + 1 where q is a prime. q is called a Sophie-Germain prime.

p = 23 and q = 11.

(b) Find a generator of \mathbb{Z}_{11}^* - note that 11 is a safe prime, so you should be able to do this by hand! All you need to try is whether the generator to the power of the factors of p-1 (p=11 here) is not one. If $g^x \equiv 1 \mod p$ for x < p-1, g cannot be a generator because it has shorter cycles than p-1and thus cannot generate all p-1 values.

$$2^5 = 32 \neq 1 \mod 11.$$
$$2^2 \equiv 4 \neq 1 \mod 11.$$

(c) Test 3 is a generator for \mathbb{Z}_7^* by computing only two exponentiations. $3^2 \equiv 2 \mod 7 \neq 1$ $3^3 \equiv 6 \mod 7 \neq 1$.

Problem 3-6. Discrete log and related assumptions

- (a) Compute the discrete $\log_3 2 \mod 7$. $3^x \equiv 2 \mod 7$. x = 2.
- (b) Prove that if the Computational Diffie-Hellman assumption is hard, then Discrete Log assumption is also hard.

It is enough to prove the counterpositive: if we can break DL, then we can break CDH.

To break CDH, we are given g^a, g^b and we need to compute ab. Since we know how to break DL, we can compute a and b and then we just multiply them. So we can break CDH.

Problem 3-7. Quadratic Residue

(a) Find Q_7 , the set of quadratic residues mod 7.

 $1^{2} = 1 \mod{7}$ $2^{2} = 4 \mod{7}$ $3^{2} = 2 \mod{7}$ $4^{2} = 2 \mod{7}$ $5^{2} = 4 \mod{7}$ $6^{2} = 1 \mod{7}$

Therefore, $Q_7 = \{1, 2, 4\}.$