6.857 - C	Computer & Network Security	DATE: 4/10/13
EUNDER:		PAGE: L17.1
Admin:	Quiz 4/17 open notes Discuss projects with TA's this week Vinod talk Thu 4/11 326-449 (funct Vaikuntanathan	nuxl Enc.) 4pm
Digital Sigs.	Hash d sign PKCS PSS El Gamal dig sig El-Gamal based Digital sig standard	

TOPIC:	DATE:	
FILE UNDER:	PAGE: L1	7. 2
	Digital signalures Def of digital signalure scheme Def of weak/strong existential unforgeability under adaptive chosen message attack.	see notes from last lecture
	Hash & Sign: For efficiency reasons, usually best to sign	
	cryptographic hash h (M) of message, rether than signing M. Modular exponentiations are slow compared to (say) SHA-256.	
	Hash function h should be collision-resistan	nt.

TOPIC:	

DATE

FILE UNDER

PAGE: L17.3

Signing with RSA - PKCS

· PKCS = "Public key cryptography standard"

(early industry standard)

· Hashasign method. Let H be C.R. hash for.

· Given message M to sign:

Let m = H(M)

Define pad(m) =

Ox 00 DI FF FF ... FF 00 | hash-name | m

where # FF bytes enough to make |pad(m) | = |n| in bytes.

where hash-name is given in ASN-I syntax (ugly!)

· Seems secure, but no proofs (even assuming H is CR

and RSA is hard to innert)

· 5 (M) = (pad (m)) d (mod n)

programme and the second		
TOPIC:		
I CI IC.		

DATE:

FILE UNDER

PAGE: LI7.4

PSS - Probabilistic Signalure Scheme [Bellare &	Rogeway 1996]
• RSA-based	
· "Probabilistiz" = randomized [one M h	ies many sigs
M I r	
D 29. 10	92
	T
	92(11)
RSA	
$\sigma(m) = y^{d} \pmod{n}$	
Sign (M): r < R = 80,13 kg	
w h (M r)	w =k,
r*← g,(w)⊕r	r* = ko
y ← pllwllr* g2(w)	1y1= n
output o(m) = yd (mod n)	
Verify (M, σ) : $y \leftarrow \sigma^{e} \pmod{n}$	
Parse y as bliwlintilly	
1 ← (*⊕g,(~)	
return True iff b=0 & h(MNr)=w	8 g2 (w)=8

TÓPIC:		DATE:
FILE UNDER:		PAGE: L17.5
	· We can model h, g, and g as ra Theorem:	indom oracles.
	PSS is (weakly) existentially unfi	orgeoble
	against a chosen message attack	
	random oracle model if RSA is	not
	invertible on random inputs.	

TOPIC:	
	4

DATE

FILE UNDER

PAGE L17.6

	digital signat		
		generator	g & Zp*
Keygen:	$x = g^{\times} \pmod{g}$		SK=x PK=y
Sign (M):			
m =	hash (M)	CR hash	fn into Zp.,
K < R	- Z γ*,		k, p-1)=1]
r = 9) ⁴	[had work	e is indep of M]
s= <u>(</u>	m-rx) (mod	ρ-1)	
6 (M) = (r,s)		
Verify (M,	y,(r,s)):		
A STATE OF THE STA	that OKRKI	> (els	e reject)
Chech	that yrrs=	g (mod p)	
	there m = has		

TOPIC:	
--------	--

DATE

FILE UNDER

Correctness of
$$E \mid Gama \mid signatures$$
:

$$y \Gamma S = g^{rx}gsk = g^{rx+sk} \stackrel{?}{=} g^{m} \pmod{p}$$

$$\Gamma X + kS \stackrel{?}{=} m \pmod{p-1}$$
or $S \stackrel{?}{=} (m-rx) \pmod{p-1}$

$$k$$

$$(assuming k \in \mathbb{Z}_{p-1}^{+})$$

TOPIC:	
TOPIC	17

DATE:

FILE UNDER

PAGE: L17.8

Theorem: El Gamal signatures are existentially forgedle (without h, or h=identity (note: this is CR!)) Proofs Let e = Zp-1 r < gery (mod p) 5 - r (mad p) Then (r,s) is valid El Gamal sig. for message m = e.s (med p-1). Chede: yrns = qm g (g y) = g = g = g / 111 But: It is easy to fix. Modified El Gamal (Pointcheval & Stern 1996) Sign (M): K = Zp $r = q^k \pmod{p}$ m = h (Mlc) <= X X X S= (m-rx)/k (mod p-1) 5(M)= (r.s) Verify: check ocrop& y'r=g" where m=h (Mlr). Theorem: Modified El Gamal is existentially unforgeable against adaptive chosen message attack, in ROM, assuming DLP is hard.

TOPIC:	DATE
FILE UNDER:	PAGE: L17.9

p = ng + 1 prime go generales Z_{p}^{*} $g = g_{o}^{*}$ generales subgroup (Keygen: X \(R - Z_{g} \) 5K	p = 160 bits p = 1024 bits
$p = ng + l$ prime $g_0 = g_0 = rates = \frac{1}{2}$ $g = g_0 = g_0 = rates = subgroup = g_0$ Keygen: $g = g_0 = g_0 = rates = subgroup = g_0 = g_0 = g_0 = rates = subgroup = subgroup = subgroup = g_0 = rates = subgroup = subgroup = subgroup = g_0 = rates = subgroup = subgr$	
g = g generates Zpt g = g generates subgroup (Keygen: X R Zg SK	pl = 1024 bits
g = g? generates subgroup (Keygen: X R Z SK	
Keygen: X R Z SK	
X CR Zg SK	of Ept of order g
	x =160 bits
y + gx (mod p) PK	1y = 1024 bits
Sign (m):	191-10010.03

Note: if k is reused for different messages m, one could solve for x so it is not secure. If k is reused for the same m, we obtain the same signature so this is not a problem. If k is

same signature so this is not a problem. If k is different for the same m, it should be random and unknown (any known relation between the two k-s allows to solve for x)

Bottomline: All of the above are enforced by k chosen at random from Z_q^* for large enough q

k < Z * (i.e. 1 = k < g)

r = (gk mod p) (mod q)

m = h (M)

15 = 160 bits

|r = 160 bits

$$\frac{\text{redo if } r=0 \text{ or } s=0}{6(m)=(r,s)}$$

TOPIC.	

DATE:

FILE UNDER

PAGE: L17,10

11.5	_
Verity	<u> </u>
CV	reck Ocreg & ocseg
Ch	$eck y^{r/s}g^{m/s} \pmod{\rho} \pmod{q} = r$
	where m = h (M)
Correct) PC C 0
-	
	3(rx+m)/s = r (mod p) (mod g)
=	gh = r (mod p) (mod g)
As it s	tands, existentially forgeable for h = identity.
Provabl	y secure (as with Modified El Gamal)
IF.	we replace m=h(m) by m=h(M /r), as before
Note:	As with El Gamel, secrecy & uniquess of K
	is essential to security.