Web Application Security

Raluca Ada Popa
Feb 25, 2013

6.857: Computer and Network Security See last slide for credits

Outline

~

o Web basics:

— HTTP
_ /

 Web security:

— Authentication: passwords, cookies

— Security attacks

URL (Uniform Resource Locator)

* A global reference to a resource retrievable over the
network

http //mlt edu: 81/class?name 6857#Iecture3

JU__|
| | | | | |

Protocol Hostname Port Path Query Fragment

HTTP (Hypertext transfer protocol)

The main transfer mechanism of the Web

Used to exchange resources identified by URL
petween server and clients

HTTP Request

\)(
[User L Server]

HTTP Response

HTTP Request

1. Method:
— GET: get data
— POST: put data
— others: PUT, DELETE

2. Path
3. Headers

4. Data content

HTTP Request

Method Path HTTP version

! ! !

GET /helloworld.html HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeq,
/

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0;

Windows 95)
Host: www.example.com
Referer: http://www.google.com?g=dingbats

)

QMH

Data content — none for GET

Headers

HTTP Response

1. Status code with reason text
— 200 OK
— 404 not found
— others

2. Headers
3. Data

HTTP Response

Status code Reason text

HTTP version //
—

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT

Connection: keep-alive

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie:

Content-Length: 2543

Server: Microsoft-Internet-Information-Server/5.0

—Headers

Blank

7 N

<HTML> Hello world .. </HTML>

N

Cookies <
Data
content

line

Data content

* Web page = HTML file + references

e References
* Presentation (style): CSS
 Multimedia: image, video, audio
* Behavior (scripts): JavaScript
* Behavior (plug-ins): Flash etc.

Content example

<!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML>
<HEAD>
<TITLE>A Small Hello</TITLE>
</HEAD>
<BODY>
<H1>Hi</H1>
<P>This is very minimal "hello world" HTML document.</P>
</BODY>
</HTML>

209 A Small Hello
| [A Small Hello =1

Q file:///Users/raluca/TA/helloworld.html c] ygv Google Q) @

(5] Most Visited ~ V] Gmail [] News ~ B3 Bookmarks

Hi

This is very minimal "hello world" HTML document.

HTTP is stateless

Server or client does not maintain state

* Server and client maintain state using cookies,
a database, etc.

Web security

- Authentication
- Three top attacks

Goal of web security

e Safely browse the web: Users should be able
to visit a variety of web sites, without
incurring harm:

* No one can steal or read user’s information
without permission

* No one can modify or take advantage of user’s
information

Authentication

Server authenticates a user U if the server checks
that it is indeed talking to user U

j>Common method: passwords

Passwords

(presentation is on
board, but slides posted)

Passwords

* Goal: best attacker strategy is to guess
password:

— Implemented protocol should not make it any
easier to adversary

Passwords

* Big compromise if adversary steals table of
passwords, so store hashes at server

[User } = 2 >[Server] n

username pwhash
Alice hash(pwAlice)
,, hash(pwBob)

_ Bob
Alice

Verify(U, PW): ,
table[U].pwhash = hash(PW)

Passwords (cont’d)

* Hash should be one-way:

— even if adversary steals table of hashes, adversary
should not be able to find password

Weak passwords

* People often choose passwords from a small set:

— The 6 most common passwords (sample of 32x10¢ pwds):
123456, 12345, Password, iloveyou, princess, abc123

— 23% of users choose passwords in a dictionary
of size 360,000,000

Dictionary attack

e Given hash(PW), adversary hashes every word from
a dictionary Dict until it matches hash(PW)

* Online attack: server prevents it by using increasing
delay after each incorrect password attempt

Offline dictionary attack

 Time O(|Dict|) per password

e Off the shelf tools (John the ripper, Cain and Abel, etc.)

e Scan through 360,000,000 guesses in few minutes
* Will recover 23% of passwords

Batch Offline Dictionary Attacks

username pwhash

([
Suppose attacker steals table T — h(owAlico
and wants to crack all passwords | gob hash(pwBob)

e Builds list L containing (w, H(w)) for all w &€ Dict
* Finds intersectionof L and T

e Total time: O(|Dict| + |T|)

 Much better than a dictionary attack on each
password O(|Dict| X |T])

Preventing Batch Dictionary Attacks

e Use a random 64-bit salt with each hash

username salt pwhash
Alice 5939 | hash(5939, pwAlice)
Bob 2341 | hash(2341, pwBob)

* To verify (U, PW) for a user, test
table[U].pwhash = hash(table[U].salt, PW)

* Batch attack time is now: O(|Dict| x |T|)

Reusing password across sites

e Resulting security is the one of weakest site

e Solution: use client side software to convert a
common password pw into a unique site
password pw’

’

pw < H(pw, server-id)

* Required hash properties: one-wayness, non-
malleability

Cookies

«£5 = files stored by the server at the client
* maintain state

e also useful for authentication:
— Server can remember client logged in

»Avoids sending password over the network many
times

Cookie contents

name: 6857cookie

value: e.g., uid, number of visits
Domain: mit.edu

path: /courses/2013/
expiration: in 7 days

HTTP with cookies

g (server B

browser

HTTP request for login U, PW Ry

cookie jar

_ check password
HTTP response; header contains

g2 cookie (domain: Facebook.com,
Ty “ 7
*value: “U logged in”, exp: 2 days)

no need to check

HTTP request for loading profile
e > password
“ 44 Facebook.com
} ¢
HTTP response; header g#&
contains (updated) cookie ¥+
N y N /

Browser automatically includes cookies whose domain match the
suffix of URL

Cookies have no integrity!
* Anyone can change them, copy them, etc.

» Attacker can claim he is logged in to Alice’s
account

e Amazon attack

Fix: Unmodifiable cookies

4)
User

browser

Login: U, PW

/Server I
SK E

response cookie “¥~

€

value: U, expiry, Hash(U, expiry, SK)

Read profile %7

check password

check cookie

value is Hash(U,
expiration, SK)

answer with (updated) cookie @z

. /

Hash properties?
Cookie value: U, expiry, Hash(U, expiry, SK)

At least one-wayness and non-malleability, but not
enough. Need unforgeability.

Would suffice if hash were a random oracle

MACs or signatures used instead

Attacks on Web Applications

Three top web site vulnerabilites

1. SQL Injection
2. CSRF — Cross-site request forgery
3. XSS — Cross-site scripting

Number of vulnerability

Reported Web Vulnerabilities "In the Wild"

Evolution of the web vulnerabilities over the years by types

1000 -

i -®- XSS
900 — =& SQLi

| - XCS

O Session

800 — CSRF

| = ssL
700 — = Infomation Leak
600 —
500 —
400 —
300 —
200 —

W :
0 ol i = I

2005 2006 2007 2008

Data from aggregator and validator of NVD-reported vulnerabilities

SQL Injection

e Attacker sends malicious input to server

* Bad input checking leads to malicious SQL
query

Example: buggy login page

User sends uname and pw to server

Server code:

ok = execute (
"SELECT count (*) FROM Users WHERE user='

&[uname] directly from user

< " 7 AND pwd="' " uname pwW
Alice pwAlice
Bob pwBob

& pw & \\ V77
) ;

If ok login success else fail;

Bad input

 Suppose wuser=“"or 1=1 —- " (URLencoded)

* Then scripts does:
ok = execute (“"SELECT ...
WHERE user= ' ' or 1=1 —-—— ..)

— The “--" causes rest of line to be ignored.

— Login succeeds!

* Bad news: easy login to many sites this way.

Attack affected and affects sites

* CardSystems Y
— credit card payhent processing company
— SQL injection attack in June 2005
— put out of business
— 263,000 credit card #s stolen from database
— credit card #s stored unencrypted
— 43 million credit card #s exposed

Fixes

e Sanitize input: make sure SQL arguments are
properly escaped

ok = execute (“"SELECT ..
WHERE user= ' \' or 1=1 —--\'

— Username does not match!

CSRF — Cross-site request forgery

— Bad web site sends a request to good web site
pretending to be the browser of an innocent user,
using credentials of the innocent victim

Examples

bankofam.com

\
User

browser

-

Trusted server

_

~

Bankof America

= <

J

-

€

. Alice wants to chat and gets
_ / webpage:

. Malicious server

Chat' i

<img src="http://bankofam.com/withdraw?
account=Alice&amount=1000000&for=Eve">

Alice’s browser wants to render image so it makes the
withdrawal request automatically using Alice’s cookie!

CSRF Countermeasure

 Good server needs to ensures that user really intended
action:

e User fetched a page, filled in the form for the
request, and sent the request
e Attacker did not fetch page, sends request directly

~ -
Include random token in fetched page —not
known to attacker

Random tokens

* When user fetches a page, server embeds a token in
forms; server stores token for a user in a database

Webpage rendering: Recipient: [Subnﬁt]

Webpage code: <% <form>
<lnput <input <input <input
</form>
<input name=“Recipilent”>
<lnput type=" ">
<ilnput name=%"99438"” type="hidden” value=“99438">
</form>>

* When user sends form, token is sent to server along
with user cookie

Server checks:

*~J

token from database for

token from form . .
omTo user with that cookie

N
|
., Attacker does not know token!

XSS — Cross-site scripting

— Attacked web site sends innocent victim a script
that steals information from an honest web site

XSS

e Attackers sends data with script to server

e Server stores it thinking it is data and then serves it

to other users

/

_

\

User Eve

“Hello Everyone” <script> evil </script>

Q\gi
==

J

HTML page: “Hello Everyone”
<script> evil </script>

-
Server: Forum Ap

™ -

alaYa

2]

i A

N
P

J

\) . N .
~ DB N
N A

“Hello Everyone”
<script> evil
</script>

N

When browser renders page...

e Shows content to user

B yourdomain.com

inkes 9 shorttestta descrbe your torum

FOUse Control Panel (0 nes ieeseces) » bies sour aosle ZIFa0 FURGers O Logout T admin]

“Hello Everyone”

e .. and executes script!

Script can ...

steal all user cookies or other credentials and send to
Eve

change the rest of the forum webpage and ask for
credit card number

p hpB B yourdomain.com

T e et :
“raating Qocmeniges O shorttestts descrbe your torum

7 voard index

FOser Control Panel (0 (s 1 easenes) v bies soue aosts ZiFan JRamoes O loqout T admin]

Lis oorrently Fro Har 27 .
reee s v Insert credit card number

Fixes

Difficult to prevent, must employ a set of fixes, example:

e Server web app escapes any user-provided data before
sending it to other users

<script> — <script>

Script displayed instead of run

phpBB yourdomain.com
zraating ® ocrarnk

ankes 9 shorttexttd descrbe your torum

“"Hello Everyone”
<script> evil </script>

Sum up

e Passwords and cookies used for authentication

* Three top attacks:

— SQL injection: bad input checking allows malicious
SQL query

— CSRF: attacker makes victim user browser issue
request with victim credentials

— XSS: victim user browser runs script from attacker

Resources used for these slides

Stanford CS155, 2012

Victor Costan’s MIT 6.857 lecture, 2012
Wellesley CS110, lecture M13

MIT 6.033 lecture 22, 2012

Book: Tangled Web

