Admin:

Today: (- More hash function applications \square Kercak overview (SH A-3)

Theorem: If h is $C R$, then h is TCR. (But converse doesn't hold.)

Theorem: h is $O W \Leftrightarrow h$ is CR
(neither implication holds)
But if h "compresses", then $C R \Rightarrow O W$.
Hash function applications
(1) Password storage (for login)

- Store h(PW), not PW, on computer
- When user logs in, check hash of his PW agaist table.
- Disclosure of h (PW) should not reveal PW (or any equivalent pre-image)
- Need OW
(2) File modification detector
- For each file F, store $h(F)$ securely (erg. on offline DVD)
- Can check if F has been modified by recomputing $h(F)$
- need WCR (aka TCR) (Adversary wants to change F but not $h(F)$.)
- Hashes of downloadable software = equivalent problem.
(3) Digital signatures ("hash \& sign")
$P K_{A}=$ Alice's public key (for signature verification)
$5 K_{A}=$ Alice's secret key (for signing)
Signing: $\sigma=\operatorname{sign}\left(S K_{A}, M\right) \quad[$ Slices sig on M]
Verify: Verify $\left(M, \sigma, P K_{A}\right) \&\{$ True, False $\}$
Adversary wank to forge a signature that verifies.
- For large M, easier to sign $h(M)$:

$$
\sigma=\operatorname{sign}\left(S K_{A}, h(M)\right) \quad[\text { "hash \& sign" }]
$$

Verifier recomputes $h(M)$ from M, then verifies σ. In essence, $h(M)$ is a "proxy" for M.

- Need CR (Else Alice gats Bob to $\operatorname{sign} x$, where $h(x)=h\left(x^{\prime}\right)$, then claims Bob really signed x^{\prime}, not x.)
- Don't need ow (e.g. $h=$ identity is OK here.)
(4) Commitments
- Alice has value x (e.g. auction bid)
- Alice computes $C(x)$ ("commitment to x ") \& submits $C(x)$ as her "sealed bid"
- When bidding hos closed, Alice should be able to "open" $C(x)$ to reveal x
- Binding property: Alice should not be able to open $C(x)$ in more than one way! (she is committed to just one x.)
- Secrecy (hiding): Auctioneer (or anyone else) seeing $C(x)$ should not learn anything about x.
- Non-malleability: Given $c(x)$, it shouldn't be possible to produce $C(x+1)$, say...
- How:

$$
C(x)=h(r \| x) \quad r \varepsilon_{R}\{0,1\}^{256}
$$

To open: reveal $r \& x$

- Note that this method is randomized las it must be for secrecy.
- Need: OW, CR, NM
(really need more, for secrecy, as $C(x)$ should not reveal partial information about x, even.)
(5) To authenticate a collection of n objects:

Build a tree with n leaves $x_{1}, x_{2}, \ldots, x_{n}$ \& compute authentizator node as for ot values at children... This is a "Merkle tree":

value at x

$$
=h \text { (value at \|value at } z \text {) }
$$

Root is authenticator for all n values $x_{1}, x_{2}, \ldots, x_{n}$
To authenticate x_{i}, give sibling of $x_{i} \&$ sibling of all his ancestors up to root
Apply to: time-stamping data
authenticating whole file system
Need: CR

Hash function construction ("Merkle-Damgard" style)

- Choose output size d (e.g. $d=256$ bits)
- Choose "chaining variable" size c (e.g. $c=512$ bits) [Must have $c \geqslant d$; better if $c \geqslant 2 \cdot d \ldots$...]
- Choose "message block size" b (e.g. $b=512$ bits)
- Design "compression function" f

$$
f:\{0,1\}^{c} \times\{0,1\}^{b} \rightarrow\{0,1\}^{c}
$$

[f should be ow, CR, PR, NM, TCR,....]

- Merkle-Dangard i) essentially a "mode of operation" allowing for variable -length inputs:
* Choose a c-bit initialization vector IV, c_{0} [Note that c_{0} is fixed \&public.]
* [Padding] Given message, append
- 10^{*} bits
- fixed-length representation of length of input so result is a multiple of b bits in length:

Theorem: If f is $C R$, then so is h.
Proof: Given collision for h, con find one for f by working backwards through chain,
The: Similarly for OW.
Common design pattern for f :

$$
f\left(C_{i-1}, M_{i}\right)=C_{i-1} \oplus E\left(M_{i}, C_{i-1}\right)
$$

where $E(K, M)$ is an encryption function
(block cipher) with b-bit key and c-bit input/output blocks.
(Davie s-Meyer construction)
"Merkle-Damgaird Revisited" (Coon, Dodis, Malinaud, Puniya)
Is MD a "good" method?
What does this mean?
Suppose that f is a random oracle (fixed input length)

$$
f:\{0,1\}^{b+c} \rightarrow\{0,1\}^{c}
$$

Then is $M D^{f}$ indistinguishable from a VIL RO?
(VIL = "variable input length")

Adversary has access to:
(A) $M D^{f}$ and also to f (f is FIL)
(B) RO h and also to g (h is VIL \& , FIL) where g is constructed to bear same relation to h as f does to MD ${ }^{f}$ ("simulator")

A world B world
Note: 9 may all h, but doesn't see Adv's calls to h.

Standard construction MD fails (for $c=d$):
Can't build simulator g to bear right rektion to h (ie. so that h appears to be $M D^{9}$)
Example of problem (message extension): (sketch)
h \& g should satisfy

$$
M D^{g}\left(m_{1} \| m_{2}\right)=h\left(m_{1} \| m_{2}\right)=g\left(g\left(I V, m_{1}\right), m_{2}\right)
$$

Adv: [computes $u=h\left(m_{1}\right)$
computes $v=g\left(u, m_{2}\right)$
computes $w=h\left(m_{1}, m_{2}\right)$
if $v=w$: answer "A world"
else: answer "B world"
Adv always right in A world, and almost always right in B world, since simulator g doesn't know how to answer query $(*)$. [It didn't see quern, for u, so even though it can access h, it doesn't have ability to figure out m_{1}, and so reply to (*) in way that makes it consistent with $h\left(m_{1}, m_{2}\right)$.]

But, it is not hard to fix MD construction so it becomes "indistinguishable from RO" (given FIL ROE) [technically this is called "indifferentiability"].
Four methods: (any work to fix MD)
(1) Encode m to be "prifix-free" before applying MD:
e.g. $\quad\left\|\left\|m_{1}\right\| \circ\right\| m_{2}\|\circ\| m_{3}\|\cdots\|!\| m_{n}$
$\stackrel{\text { or }}{=} \quad L\left\|m_{1}\right\| m_{2}\|\cdots\| m_{n}$ length of message in bits m_{n} padded with 10^{*}
(2) Drop output bits:

Let $d=c / 2$. Drop $c / 2$ bits of output.
(3) NMAC construction

$$
g\left(M D^{f}(M)\right) \quad[g \text { indee.function }
$$

(4) HMAC construction:

$$
\text { from } \left.\{0,1\}^{c} \text { to }\{0,1\}^{d}\right]
$$

$$
M D^{f}\left(M D^{f}(M)\right)
$$

* With such methods, it is then "safe" to treat (modified) $M D^{f}$ as a RO (assuming f is indistinamisubble from. FIL R.O.)

From Wikipedia, the free encyclopedia
SHA-3, originally known as Keccak (pronounced [ket $\left.\int \mathrm{ak}\right]$, like "ketchak"), ${ }^{[1]}$ is a cryptographic hash function designed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche, building upon RadioGatún. On October 2, 2012, Keccak was selected as the winner of the NIST hash function competition. ${ }^{\text {[2] }}$ SHA-3 is not meant to replace SHA-2, as no significant attack on SHA-2 has been demonstrated. Because of the successful attacks on MD5, SHA-0 and theoretical attacks on SHA-1, NIST perceived a need for an alternative, dissimilar cryptographic hash, which became SHA-3. The authors claim 12.5 cycles per byte ${ }^{[3]}$ on an Intel Core 2

SHA-3

General

Designers Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche.

Certification SHA-3 winner

Detail

Digest sizes arbitrary
Speed $\quad 12.5 \mathrm{cpb}$ on Core $2[\mathrm{r}=1024, \mathrm{c}=576]$. CPU. However, in hardware implementations it is notably faster than all other finalists. ${ }^{\text {[4] }}$

SHA-3	
Designers	General
	Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche.
Certification SHA-3 winner	
Digest sizes	arbitrary
Speed	12.5 cpb on Core $2[\mathrm{r}=1024, \mathrm{c}=576]$.

SHA-3 uses the sponge construction ${ }^{[5][6]}$ in which message blocks are XORed into the initial bits of the state, which is then invertibly permuted. In the version used in SHA-3, the state consists of a 5×5 array of 64 -bit words, 1600 bits total.

Keccak's authors have proposed additional, not-yet-standardized uses for the function, including an authenticated encryption system and a "tree" hash for faster hashing on certain architectures. ${ }^{[7]} \mathrm{Keccak}$ is also defined for smaller power-of-2 word sizes w down to 1 bit (25 bits total state). Small state sizes can be used to test cryptanalytic attacks, and intermediate state sizes (e.g., from $w=4,100$ bits, to $w=32,800$ bits) could potentially provide practical, lightweight, alternatives.

Contents

- 1 The block permutation
- 2 Hashing variable-length messages
- 3 Tweaks
- 4 Examples of SHA-3 (Keccak) variants
- 5 References
- 6 External links

The block permutation

This is defined for any power-of-two word size, $w=2^{\ell}$ bits. The main SHA-3 submission uses 64-bit words, $\ell=6$.

The state can be considered to be a $5 \times 5 \times w$ array of bits. Let $a[i][j][k]$ be bit $(i \times 5+j) \times w+k$ of the input, using
a little-endian convention. Index arithmetic is performed modulo 5 for the first two dimensions and modulo w for the third.

The basic block permutation function consists of $12+2 \ell$ iterations of five sub-rounds, each individually very simple:
θ
Compute the parity of each of the $5 \times w(320$, when $w=64) 5$-bit columns, and exclusive-or that into two nearby columns in a regular pattern. To be precise, $a[i][j][k] \oplus=\operatorname{parity}(\mathrm{a}[0 . .4][j-1][k]) \oplus$ parity(a[0..4][j+1][k-1])

Bitwise rotate each of the 25 words by a different triangular number $0,1,3,6,10,15, \ldots$ To be precise, $a[0][0]$ is not rotated, and for all $0 \leq t \leq 24, a[i][j][k]=a[i][j][k-(t+1)(t+2) / 2]$, where
$\binom{i}{j}=\left(\begin{array}{ll}3 & 2 \\ 1 & 0\end{array}\right)^{t}\binom{0}{1}$.
Permute the 25 words in a fixed pattern. $a[j][2 i+3 j]=a[i][j]$
Bitwise combine along rows, using $a=a \oplus(\neg b \& c)$. To be precise, $a[i][j][k] \oplus=\neg a[i][j+1][k] \& a[i]$ $[j+2][k]$. This is the only non-linear operation in SHA-3.

Exclusive-or a round constant into one word of the state. To be precise, in round n, for $0 \leq m \leq \ell, a[0][0]$ [$2^{m}-1$] is exclusive-ORed with bit $m+7 n$ of a degree- 8 LFSR sequence. This breaks the symmetry that is preserved by the other sub-rounds.

Hashing variable-length messages

SHA-3 uses the "sponge construction", where input is "absorbed" into the hash state at a given rate, then an output hash is "squeezed" from it at the same rate.

To absorb r bits of data, the data is XORed into the leading bits of the state, and the block permutation is applied. To squeeze, the first r bits of the state are produced as output, and the block permutation is applied if additional output is desired.

Central to this is the "capacity" of the hash function, which is the $c=25 w-r$ state bits that are not touched by input or output. This can be adjusted based on security

The sponge construction for hash functions. p_{i} are input, z_{i} are hashed output. The unused "capacity" c should be twice the desired resistance to collision or preimage attacks. requirements, but the SHA-3 proposal sets a conservative $c=2 n$, where n is the size of the output hash. Thus r, the number of message bits processed per block permutation, depends on the output hash size. The rate r is $1152,1088,832$, or $576(144,136,104$ and 72 bytes) for 224, 256, 384 and 512-bit hash sizes, respectively, when w is 64 .

To ensure the message can be evenly divided into r-bit blocks, it is padded with the bit pattern $10^{*} 1$: a 1 bit, zero or more 0 bits (maximum $r-1$), and a final 1 bit. The final 1 bit is required because the sponge
construction security proof requires that the final message block is not all-zero.
To compute a hash, initialize the state to 0 , pad the input, and break it into r-bit pieces. Absorb the input into the state; that is, for each piece, XOR it into the state and then apply the block permutation.

After the final block permutation, the leading n bits of the state are the desired hash. Because r is always greater than n, there is actually never a need for additional block permutations in the squeezing phase. However, arbitrary output length may be useful in applications such as optimal asymmetric encryption padding. In this case, n is a security parameter rather than the output size.

Although not part of the SHA-3 competition requirements, smaller variants of the block permutation can be used, for hash output sizes up to half their state size, if the rate r is limited appropriately. For example, a 256bit hash can be computed using 25 32-bit words if $r=800-2 \times 256=288$ (36 bytes per iteration).

Tweaks

Throughout the NIST hash function competition, entrants are permitted to "tweak" their algorithms to address issues that are discovered. Changes that have been made to Keccak are:

- The number of rounds was increased from $12+\ell$ to $12+2 \ell$ to be more conservative about security.
- The message padding was changed from a more complex scheme to the simple $10^{*} 1$ pattern described above.
- The rate r was increased to the security limit, rather than rounding down to the nearest power of 2 .

Examples of SHA-3 (Keccak) variants

Note: Pending the standardization of SHA-3, there is no specification of particular SHA-3 functions yet.
Hash values of empty string.

```
Meccak-224("")
0x f71837502ba8e10837bdd8d365adb85591895602fc552b48b7390abd
'Keccak-256("")
0x c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470
Keccak-384("")
10x 2c23146a63a29acf99e73b88f8c24eaa7dc60aa771780ccc006afbfa8fe2479b2dd2b21362337441acl2b515911957ffi
Keccak-512("")
0x 0eab42de4c3ceb9235fc91acffe746b29c29a8c366b7c60e4e67c466f36a4304c00fa9caf9d87976ba469bcbe06713b4
```

Even a small change in the message will (with overwhelming probability) result in a mostly different hash, owing to the avalanche effect. For example, adding a period to the end of the sentence:

```
Keccak-224("The quick brown fox jumps over the lazy dog")
Ox 310aee6b30c47350576ac2873fa89fdl90cdc488442f3ef654cf23fe
!Keccak-224("The quick brown fox jumps over the lazy dog.")
Ox c59d4eaeac728671c635ff645014e2afa935bebffdb5fbd207ffdeab
Keccak-256("The quick brown fox jumps over the lazy dog")
0x 4d741b6f1eb29cb2a9b9911c82f56fa8d73b04959d3d9d222895df6c0b28aa15
!Keccak-256("The quick brown fox jumps over the lazy dog.")
0x 578951e24efd62a3d63a86f7cd19aaa53c898fe287d2552133220370240b572d
```


References

1. ^ "The Keccak sponge function family: Specifications summary" (http://keccak.noekeon.org/specs_summary.html) . http://keccak.noekeon.org/specs_summary.html. Retrieved 2011-05-11.
2. ^ "NIST Selects Winner of Secure Hash Algorithm (SHA-3) Competition" (http://www.nist.gov/itl/csd/sha100212.cfm) . NIST. http://www.nist.gov/itl/csd/sha-100212.cfm. Retrieved 2012-10-02.
3. ^ Keccak implementation overview Version $3.2 \mathrm{http}: / / \mathrm{keccak}$.noekeon.org/Keccak-implementation-3.2.pdf
4. ^ Guo, Xu; Huang, Sinan; Nazhandali, Leyla; Schaumont, Patrick (Aug. 2010), "Fair and Comprehensive Performance Evaluation of 14 Second Round SHA-3 ASIC Implementations" (http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SCHAUMONT_SHA3.pdf) , NIST 2nd SHA-3 Candidate Conference: 12, http://csrc.nist.gov/groups/ST/hash/sha3/Round2/Aug2010/documents/papers/SCHAUMONT_SHA3.pdf, retrieved 2011-02-18 Keccak is second only to Luffa, which did not advance to the final round.
5. ^ "Sponge Functions" (http://sponge.noekeon.org/) . Ecrypt Hash Workshop 2007. http://sponge.noekeon.org/.
6. ^ "On the Indifferentiability of the Sponge Construction" (http://sponge.noekeon.org/) . EuroCrypt 2008. http://sponge.noekeon.org/.
7. ^ NIST, Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition (http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf) , sections 5.1.2.1 (mentioning "tree mode"), 6.2 ("other features", mentioning authenticated encryption), and 7 (saying "extras" may be standardized in the future)

External links

- The Keccak web site (http://keccak.noekeon.org/)
- A Cryptol implementation of Keccak (http://plaintext.crypto.lo.gy/article/495/untwisted-a-cryptol-implementation-of-keccak-part-1)
- A VHDL source codes developed in the Cryptographic Engineering Research Group (CERG) at George Mason University (http://cryptography.gmu.edu/athena/index.php?id=source_codes)
- Erlang NIF implementation based on the NIST reference code (http://github.com/b/sha3)

Retrieved from "http://en.wikipedia.org/w/index.php?title=SHA-3\&oldid=539034891"
Categories: Cryptographic hash functions NIST hash function competition

- This page was last modified on 19 February 2013 at 13:11.
- Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

The Keccak sponge function family

Guido Bertoni ${ }^{1}$, Joan Daemen ${ }^{1}$, Michaël Peeters ${ }^{2}$ and Gilles Van Assche ${ }^{1}$
${ }^{1}$ STMicroelectronics
${ }^{2}$ NXP Semiconductors

Pages

- Home
- News
- Files
- Specifications summary
- Tune Keccak to your requirements
- Third-party cryptanalysis
- Our papers
- Keccak Crunchy Crypto Collision and Pre-image Contest
- The Keccak Team

Documents

- The Keccak reference
- Files for the Keccak reference
- The Keccak SHA-3 submission
- Keccak implementation overview
- Cryptographic sponge functions
- all files...

Notes

- Note on side-channel attacks and their countermeasures
- Note on zero-sum distinguishers of KЕссак-f
- Note on Keccak parameters and usage
- On alignment in Keccak

Software and other files

- Reference and optimized code in C
- Hardware implementation in VHDL
- Known-answer and Monte Carlo test results
- KeccakTools
- Keccak in Python
- all files...

Figures

- KECCAK- f state [ODG] [PDF] [PNG]
- Pieces of state [ODG] [PDF] [PNG]
- Step θ [ODG] [PDF] [PNG]
- Step ρ [ODG] [PDF] [PNG]
- Step n [ODG] [PDF] [PNG]
- Step \times [ODG] [PDF] [PNG]

The figures above are available under the Creative Commons Attribution license. In short, they can be freely used, provided that attribution is properly done in the figure caption, either by linking to this webpage or by citing the article where the particular figure first appeared.

- KeccakToous documentation
- RadioGatún
- Cryptographic sponges
- NIST SHA-3 hash function competition
- The SHA-3 zoo
- eBASH
- Animated Keccar (in German)

Specifications summary

Keccak (pronounced [ketjak], like "ketchak") is a family of hash functions that has been submitted as candidate to NIST's hash algorithm competition (SHA-3). The text below is a quick description of Keecak using pseudo-code. In no way should this introductory text be considered as a formal and reference description of Kессак. Instead the goal here is to present Keccak with emphasis on readability and clarity. For a more formal description, the reader is invited to read the reference specifications in [1].

Structure of Кессак

Kессак is a family of hash functions that is based on the sponge construction, and hence is a sponge function family. In Кессак, the underlying function is a permutation chosen in a set of seven Keccak-f permutations, denoted Кессак- $f[b]$, where $b \in\{25,50,100,200,400,800,1600\}$ is the width of the permutation. The width of the permutation is also the width of the state in the sponge construction.

The state is organized as an array of 5×5 lanes, each of length $w \in\{1,2,4,8,16,32,64\}$ ($b=25 w$). When implemented on a 64-bit processor, a lane of Keccak-f[1600] can be represented as a 64-bit CPU word.

We obtain the $\operatorname{Keccak}[r, c]$ sponge function, with parameters capacity c and bitrate r, if we apply the sponge construction to Kессак- $f[r+c]$ and by applying a specific padding to the message input.

Pseudo-code description

We first start with the description of Kессак-f in the pseudo-code below. The number of rounds n_{r} depends on the permutation width, and is given by $n_{r}=12+2 l$, where $2^{\prime}=w$. This gives 24 rounds for Keccak-f[1600].

```
Kессак-f[b](A) {
    forall i in 0...nrn-1
            A = Round[b](A, RC[i])
    return A
}
Round[b](A,RC) {
    0 step
    C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], forall x in 0...4
    D[x] = C[x-1] xor rot(C[x+1],1), forall }x\mathrm{ in 0...4
    A[x,y] = A[x,y] xor D[x], forall (x,y) in (0...4,0...4)
    \rho and \pi}\mathrm{ steps
    B[y,2*x+3*y] = rot(A[x,y], r[x,y]), forall (x,y) in (0...4,0...4)
    X step
    A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]), forall (x,y) in (0..4,0..4)
```

```
    l step
    A[0,0] = A[0,0] xor RC
    return A
}
```

In the pseudo-code above, the following conventions are in use. All the operations on the indices are done modulo 5. A denotes the complete permutation state array, and $\mathrm{A}[\mathrm{x}, \mathrm{y}]$ denotes a particular lane in that state. $\mathrm{B}[\mathrm{x}, \mathrm{y}], \mathrm{C}[\mathrm{x}], \mathrm{D}[\mathrm{x}]$ are intermediate variables. The constants $\mathrm{r}[\mathrm{x}, \mathrm{y}]$ are the rotation offsets (see Table 2), while RC[i] are the round constants (see Table 1). $\operatorname{rot}(\mathrm{W}, \mathrm{r})$ is the usual bitwise cyclic shift operation, moving bit at position i into position $i+r$ (modulo the lane size).

Then, we present the pseudo-code for the $\operatorname{Keccak}[r, c]$ sponge function, with parameters capacity c and bitrate r. The description below is restricted to the case of messages that span a whole number of bytes. For messages with a number of bits not dividable by 8, we refer to the specifications [1] for more details. Also, we assume for simplicity that r is a multiple of the lane size; this is the case for the SHA-3 candidate parameters in [2].

```
Keccak[r,c](M) {
    Initialization and padding
    S[x,y] = 0,
    P = M || 0x01 || 0x00 || ... || 0x00
    P}=P\mathrm{ xor ( 0x00 || .. || 0x00 || 0x80)
    Absorbing phase
    forall block }\mp@subsup{P}{i}{}\mathrm{ in P
            S[x,y] = S[x,y] xor P Pi[x+5*y], forall (x,y) such that x+5*y < r/w
            S = Keccak-f[r+c](S)
    Squeezing phase
    Z = empty string
    while output is requested
        Z = Z || S[x,y], forall (x,y) such that x+5*y<r/w
        S = Keccak-f[r+c](S)
    return Z
}
```

In the pseudo-code above, S denotes the state as an array of lanes. The padded message P is organised as an array of blocks P_{i}, themselves organized as arrays of lanes. The || operator denotes the usual byte string concatenation.

Round constants

The round constants RC[i] are given in the table below for the maximum lane size 64 . For smaller sizes, they are simply truncated. The formula can be found in [1].

Table 1: The round constants RC[i]
RC[O] $0 \times 0000000000000001$ RC[12] $0 \times 000000008000808 \mathrm{~B}$
RC[1] $0 \times 0000000000008082 \mathbf{R C}[13] 0 \times 800000000000008 \mathrm{~B}$
RC[2] $0 \times 800000000000808 \mathrm{ARC}[14] 0 \times 8000000000008089$
RC[3] $0 \times 8000000080008000$ RC[15] $0 \times 8000000000008003$
RC[4] $0 \times 000000000000808 \mathrm{BRC}[16] 0 \times 8000000000008002$
RC[5] $0 \times 0000000080000001 \mathbf{R C}[17] 0 \times 8000000000000080$

RC[6] $0 \times 8000000080008081$ RC[18] $0 \times 00000000000800 \mathrm{~A}$
RC[7] 0×800000000008009 RC[19] 0x800000008000000A
RC[8] 0×000000000000008 A RC[20] $0 \times 8000000080008081$
RC[9] $0 \times 0000000000000088$ RC[21] 0x8000000000008080
RC[10] 0x0000000080008009 RC[22] 0x0000000080000001
RC[11] 0×00000008000000 A RC[23] $0 \times 8000000080008008$

Rotation offsets

The rotation offsets $r[x, y]$ are given in the table below. The formula can be found in [1].
Table 2: the rotation offsets
$\mathrm{x}=3 \mathrm{x}=4 \mathrm{x}=0 \mathrm{x}=1 \mathrm{x}=2$

$\mathbf{y}=\mathbf{2} 25$	39	3	10	43
$\mathbf{y}=\mathbf{1} 55$	20	36	44	6
$\mathbf{y}=\mathbf{0} 28$	27	0	1	62
$\mathbf{y}=\mathbf{4} 56$	14	18	2	61
$\mathbf{y}=\mathbf{3} 21$	8	41	45	15

References

[1] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, The Keccak reference, 2011
[2] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, The Keccak SHA-3 submission, 2011

This current page is in the public domain.
Last updated: 2011-01-27

