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Abstract

Whereas a block cipher enciphers messages of some one particular length (the blocklength), a

variable-input-length cipher takes messages of varying (and preferably arbitrary) lengths. Still,

the length of the ciphertext must equal the length of the plaintext. This paper introduces the

problem of constructing such objects, and provides a practical solution. Our VIL mode of oper-

ation makes a variable-input-length cipher from any block cipher. The method is demonstrably

secure in the provable-security sense of modern cryptography: we give a quantitative security

analysis relating the di�culty of breaking the constructed (variable-input-length) cipher to the

di�culty of breaking the underlying block cipher.
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1 Introduction

This paper introduces the question of how to construct ciphers which operate on messages of varying

lengths. Such a cipher, F , maps a key K and a plaintext M in f0; 1g� (or M in some other set

containing strings of various lengths) into a ciphertext C = FK(M) having the same length as M .

Note that the length ofM is not restricted to some �xed blocklength n, or even to some multiple of

a blocklength. At the same time, being a cipher, FK is a length-preserving permutation for which

possession of K enables the e�cient computation of both FK and F�1
K .

The ciphers we construct have a strong security property: we want that no e�cient adversary

can distinguish an oracle for FK(�), for a random and secret K, from an oracle for a random

length-preserving permutation �(�) (having the same domain as FK). This is the (now customary)

requirement for a block cipher (security in the sense of being a \pseudorandom permutation," or

\PRP") originally suggested in [10, 4], and so it is the property we want for any variable-input-

length cipher as well.

One could try to construct a variable-input-length cipher from scratch, in the confusion/di�usion

tradition. But that approach is specialized and error-prone. Instead, we provide constructions

which assume one already has in hand some underlying block cipher. We give a \mode of operation"|

VIL mode (for \variable-input-length enciphering") which enciphers strings of arbitrary length (but

at least n) using an n-bit block cipher.

We prove the soundness of VIL mode in the provable-security sense of modern cryptography: if

the underlying block cipher is secure then so is the variable-input-length cipher we construct from

it. VIL is actually more than one particular mode of operation; it is an approach for making a

variable-input-length cipher that can be realized in many di�erent ways.

Why variable-input-length ciphers? The obvious use of variable-input-length ciphers is to

encrypt (ie, provide privacy protection) without any increase in message length. Suppose we'll be

encrypting messages M1;M2; � � � where the lengths of these message may vary. We want to create

ciphertexts C1; C2; � � � where jCij = jMij and where ciphertext Ci hides everything about Mi (with

respect to e�cient computation) except for the length of Mi and which earlier plaintext, if any,

equals Mi.

It is important to understand that the last sentence embodies a weaker notion of privacy than

the customary one|semantic security, and its equivalent formulations [7, 3]. A semantically secure

encryption computationally hides all information about Mi except for jMij|in particular, one

does not allow to be leaked which earlier plaintext (if any) a given ciphertext corresponds to.

But you pay a price for this added security|semantically secure encryption cannot possibly be

length preserving. Thus length-preserving \encryption" (enciphering) embodies a tradeo�: shorter

ciphertexts at the cost of an inferior security guarantee (and slower encryption/decryption).

Is this tradeo� a good one? If you don't know anything about how the encryption will be used,

then we'd have to say no. But there are applications when the tradeo� is a good one. Let us give

an example.

In networking applications a \packet format" may have been de�ned, this packet format having

various �elds, none of which were intended for cryptographic purposes. Now suppose a need arises

to add in privacy features but, at the same time, it is no longer desirable (or feasible) to adjust the

packet format. It cannot be lengthened by even one bit. Enciphering with a variable-input-length

cipher leaves the packet size alone, and it leaves packets looking identical (after deciphering) to

the way they looked before. This contributes to ease-of-acceptance, an easier migration path, and
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better code-reuse. These factors may outweigh the security consideration that we will be leaking

which packets of a session are identical to which earlier ones.

As a second example, we may have a priori reason to believe that all the plaintexts M1;M2; � � �

will be distinct. For example, each message may be known to contain a sequence number. In such a

case the additional piece of information that secure encipherment leaks amounts to no information

at all, and so here enciphering provides a way to achieve semantic security in a way that is both

length-minimal and oblivious to the formatting conventions of each message (eg, where the sequence

number appears in each message). This obliviousness contributes to the making of robust software;

when message formats change the cryptography need not be adjusted. With typical length-minimal

approaches this would not have been true.

Variable-input-length ciphers may prove to be useful tools for protocol design. As an example,

Rivest put forward the idea of \strongly non-separable encryption" [23], wherein an adversary with

a ciphertext C who guesses an encryption key K should have to invest 
(jCj) time before obtain-

ing information useful to verify if C was enciphered under K. Variable-input-length enciphering

provides a simple way to provably achieve Rivest's goal.

The difficulty. It is not so clear how to construct a secure variable-input-length cipher from a

block cipher. We are making a stringent security requirement: we expect our ciphers to approximate

a family of random permutations. In addition, we want them to be length-preserving permutations.

This eliminates any hope of using conventional modes of operation. Consider, for example, using

DES in CBC mode with a zero initialization vector (IV). For simplicity, assume the message length

is a multiple of the blocklength.1 This does not give a cipher that approximates a family of random

permutation: if two plaintexts agree on blocks 1; : : : ; i then their ciphertexts agree on blocks 1; : : : ; i,

which is almost never true of a random permutation. To get around this one might try to make the

IV some sort of hash of the message|but then how could one get a length-preserving construction?

Our method. We suggest simple and e�cient ways for making variable-input-length ciphers from

block ciphers. Our VIL mode of operation makes two passes over the message. In our preferred

instantiation, the �rst pass computes some sort of CBC MAC over the messageM , while the second

pass encrypts M (in counter mode, for example) using the pass-one MAC as the IV. However, one

cannot take the ciphertext C for M to be the pass-two ciphertext (including the IV), since this

would be too long. Instead, we exploit a certain feature of the CBC MAC, which we call its

\parsimoniousness." This enables us to drop one block from the pass-two ciphertext and still be

able to recover the plaintext. (This is the main idea of our construction.) There are some technical

matters that complicate things; see Section 2 and Figure 1.

Our approach can be instantiated in many further ways; it actually encompasses many modes of

operation. We describe VIL mode in terms of two specialized-tools: what we call a \parsimonious"

pseudorandom function (PRF) and a \parsimonious" encryption scheme. Both of these tools can

be constructed from block ciphers, and we show a few ways to do this. Thinking of VIL mode

in these general terms not only provides versatility in instantiation, but, equally important, our

proof of correctness is made much simpler by the added generality: what is irrelevant is out of

sight, and what is relevant can be singled out and separately proved, in part by invoking known

results [4, 21, 3].

1The di�cult issue is not in dealing with messages of length not a multiple of the blocklength; there are well-known

methods for dealing with this, like stream-cipher encrypting the short block and ciphertext stealing. See [13, Chapter

2] for a description of these techniques.

3



Related work. There is a quite a lot of work on constructing block ciphers of one blocklength

given block ciphers of another blocklength. Luby and Racko� [10] consider the question of how to

turn an n-bit to n-bit pseudorandom function (PRF) into a 2n-bit to 2n-bit block cipher. They show

that three rounds of the Feistel construction su�ces for this purpose, and that four rounds su�ce

to obtain a \super" PRP from a PRF. The paper has spawned much work, with [12, 22, 19, 20, 25]

to name a few.

Naor and Reingold [15] provide a construction which extends a block cipher on n-bits to a block

cipher on N = 2ni bits, for any desired i � 1. A variation on their construction yields a cipher

on N = ni bits for any i � 1 [18]. It is unclear how to use these constructions for arbitrary N

(meaning not necessarily a multiple of n) and across assorted input lengths.

Lucks [11] generalizes Luby-Racko� to consider a three round unbalanced Feistel network, using

hash functions for round functions. This yields a block cipher on any given length N by starting

with a PRF of r bits to ` bits and another of ` bits to r bits where r + ` = N . Of course this

requires the availability of the latter primitives for given values of r; `.

Anderson and Biham [1] provide two constructions for a block cipher (BEAR and LION) which

use a hash function and a stream cipher. This too is an unbalanced Feistel network.

Some ciphers which are intended to operate on blocks of various lengths have been constructed

from scratch. The CMEA (attacked by [24]) is an example.

A \forward-then-backwards" mode of operation is described in [8], under the names \Triple-

DES Key Wrap" and \RC2 Key Wrap." While not length-preserving, a length-preserving variant

is possible, and it might be a good cipher across messages of assorted lengths. See Section 5 for

further discussion.

We have already mentioned Rivest's \strongly non-separable" encryption [23] and that variable-

input-length enciphering provides one mechanism to achieve that goal.

The VIL mode of operation was invented in 1994 when the authors were at IBM [2]. No security

analysis was provided at that time.

2 VIL Mode Example

In this section we describe one particular instantiation of VIL mode enciphering. For concreteness,

let us start from DES, a map DES : f0; 1g56 � f0; 1gn ! f0; 1gn where n = 64. Using this map

we construct the function F : f0; 1g56�3 � f0; 1g�64 ! f0; 1g�64 for enciphering strings of length

at least 64. (Extending to messages of length less than 64 will be discussed later.) Given a key

K = K1 k K2 k K3, partitioned into three 56-bit pieces, and given a plaintext M 2 f0; 1g�64,

form the ciphertext C = FK(M) as depicted in Figure 1 and as speci�ed here:
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Algorithm FK1 k K2 k K3 (M)

(1) LetMpre�x be the �rst jM j�n bits ofM . LetMsu�x be the remaining

bits.

(2) Let pad be a \1" followed by the minimum number of \0" bits such

that jM j+ jpadj is divisible by 64.

(3) Partition Mpre�x k pad kMsu�x into 64-bit blocks M1 � � �Mm.

(4) Let C0 = 0n, and let Ci = DESK1(Ci�1 �Mi) for all 1 � i � m.

(5) Let � = DESK2(Cm).

(6) Let P be the �rst jM j � n bits of

DESK3(�) k DESK3(� + 1) k DESK3(� + 2) � � � :

(7) Let Cpre�x = P �Mpre�x.

(8) Return ciphertext C = � k Cpre�x.

The computation of C can be looked at as having two stages. In the �rst stage (Steps 1{5) we

compute �, which is some sort of CBC-MAC of M under the key K1 k K2. In the second stage

(Steps 6{7) we encrypt M , except for M 's last 64 bits, under key K3. We use counter-mode

encryption with an initialization vector of �. The ciphertext is the MAC � together with the

encrypted pre�x of M .

The MAC � is not computed by the \basic" CBC-MAC, but some variant of it. Our constraints

preclude using the CBC-MAC in its customary form. First we need to be able to properly handle

messages of arbitrary length (the basic CBC-MAC is only secure on messages of some �xed length,

this length being a multiple of the blocklength). But in addressing this issue we must ensure that

given � and an jM j � 64 bit pre�x of M , we are able to reconstruct the last 64 bits of M . That

this can be done can be seen in the following algorithm for computing F�1
K1 k K2 k K3

(C). As before,

C 2 f0; 1g�64 and K1;K2;K3 2 f0; 1g56. The existence of the following algorithm demonstrates

that F is indeed a cipher.

Algorithm F
�1
K1 k K2 k K3

(C)

(1) Let � be the �rst 64 bits of C. Let Cpre�x be the remaining bits.

(2) Let P be the �rst jCpre�xj bits of

DESK3(�) k DESK3(� + 1) k DESK3(� + 2) � � � :

(3) Let Mpre�x = P � Cpre�x.

(4) Let pad be a \1" followed by the minimum number of \0" bits such

that jMpre�xj+ jpadj is divisible by 64.

(5) Partition Mpre�x k pad into 64-bit blocks M1 � � �Mm�1.

(6) Let C0 = 0n, and let Ci = DESK1(Ci�1 �Mi) for all 1 � i � m� 1.

(7) Let Mm = DES�1
K1(DES

�1
K2(�))) � Cm�1.

(8) Return M =Mpre�x kMm .

The interesting step is Step 7, where one exploits the structure of (this version of) the CBC-MAC

to compute the last block of plaintext.

We remark that standard methods, like setting Ki = DESK(i)[1::56], would allow K1, K2 and

K3 to be derived from a single 56-bit key, in which case F would be a map F : f0; 1g56�f0; 1g�64 !
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Figure 1: An example way to realize VIL-mode encipherment. Here we use the block cipher DES.

In this example the message M to encipher is a few bits longer than 64 � 3 bits. The underlying

key is K = K1 k K2 k K3. The ciphertext is C = � k Cpre�x.

f0; 1g�64.

We also remark that that the domain can be extended to all of f0; 1g� (that is, we can encipher

strings of fewer than < 64 bits) using methods which we will later discuss. However, these methods

have not been proven secure with desirable security bounds.

It should be kept in mind that the above example is just one way to instantiate VIL-mode enci-

pherment. Both stages (the computation of � and the encryption of Mpre�x) can be accomplished

in other ways. We now move towards these generalizations.

3 The General Approach

Towards the general description of VIL and its proof of correctness we now make some de�nitions.

Preliminaries. A message space M is a nonempty subset of f0; 1g� for which M 2 M implies

that M 0 2 M for all M 0 of the same length of M . A ciphertext space (or range) C is a nonempty

subset of f0; 1g�. A key space K is a nonempty set together with a probability measure on that

set. A pseudorandom function (PRF) with key space K, message spaceM and range C is a set of
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functions F = fFK j K 2 Kg where each FK : M ! C. We usually write F : K �M ! C. We

assume that jFK(M)j depends only on jM j. A cipher is a PRF F : K �M ! M in which each

FK :M!M is a bijection. A block-cipher is a cipher F : K � f0; 1gn ! f0; 1gn. The number n

is called the blocklength.

Let M be a message space and let ` : N ! N be a function. We de�ne \reference" PRFs

Rand(M; `) and Perm(M). A random function �  Rand(M; `) is de�ned as follows: for each

M 2M, let �(M) is a random string in f0; 1g`(jM j). A random function �  PermM is de�ned as

follows: for each number i such thatM contains strings of length i, let �i be a random permutation

on f0; 1gi, and de�ne �(M) = �i(M) where i = jM j.

We de�ne security following [6], adapted to concrete security as in [4]. A distinguisher is a

(possibly probabilistic) algorithm A with access to an oracle. Let A be a distinguisher and let

F = fFK j K 2 Kg be a PRF with key space K and jFK(M)j = `(jM j). Then we let

Adv
prf

F (A) = Pr[K  K : AFK(�) = 1]� Pr[� Rand(M; `) : A�(�) = 1] and

Adv
prp
F (A) = Pr[K  K : AFK(�) = 1]� Pr[�  Perm(M) : A�(�) = 1] :

De�ne the functions Adv
prf

F (t; q; �) = maxAfAdv
prf

F (A)g and Adv
prp

F (t; q; �) = maxAfAdv
prp

F (A)g

where the maximum is over all adversaries which run in time at most t and ask at most q oracle

queries, these queries totaling at most � bits. We omit the argument � whenM contains strings

of just one length. Time is always understood to include the space for the description of the

distinguishing algorithm. Throughout, if the distinguisher inquires as to the value of oracle f at

a point M 62 M then the oracle responds with the distinguished point ?. We assume there is a

(simple) algorithm to decide membership in M and so we may assume adversaries do not make

such queries.

Parsimonious PRF. Let G : f0; 1g� �M ! f0; 1gn be a PRF whereM only includes strings of

length at least n. Then G is said to be parsimonious if for all K 2 K and all M 2 M, the last n

bits of M are uniquely determined by the remaining bits of M , the key K, and GK(M). In other

words, with a parsimonious PRF G, if you know K and receive the n-bit value � = GK(M) then

you don't need to receive all of M in order to know what it is: it is su�cient to get the jM j � n

bit pre�x of M , Mpre�x: from that you can recover the n missing bits by applying some function

RecoverK(Mpre�x; �) associated to the PRF.

Examples. The (basic) CBC-MAC is a parsimonious PRF. Assume a block cipher E : K �

f0; 1gn ! f0; 1gn. Fix a constant m � 1. Consider the PRF G : K�f0; 1gnm ! f0; 1gn de�ned by

GK(M1 � � �Mm) = Cm, where C0 = 0n and Ci = EK(Mi � Ci�1) for 1 � i � m. To recover Mm

from K, M1 � � �Mm�1, and � = GK(M1 � � �Mm), compute C0; C1; : : : ; Cm�1 by C0 = 0n and Ci =

EK(Ci�1 �Mi) and then, since Cm = EK(Mm � Cm�1), recover Mm as Mm = E
�1
K (�) � Cm�1.

Note that it is crucial that we use the \full" CBC MAC (that is, the MAC is all of Cm, not a

proper pre�x). In [4] it is shown that the CBC MAC is secure whenever E is, in the sense that

Adv
prf

G (t; q) � Adv
prf

E (t0; q0) + 3q2m22�n�1 where t0 � t and q0 = qm.

The computation of � in the algorithm of Section 2 builds on the idea described above. We

extend the CBC-MAC variant analyzed in [21] to domain f0; 1g�, doing this in a way that retains

parsimoniousness (padding the second-to-last block instead of the last one). This CBC-MAC

variant is once again secure. Let G : K2 � f0; 1g� ! f0; 1gn be the PRF obtained from the block

cipher E by the method illustrated in Lines 1{5 in the description of Algorithm FK1 k K2 k K3(M)
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in Section 2 (where we had E = DES). Then the results of [21] can be adapted to establish that

that Adv
prf
G (t; q; �) � 2 � Adv

prf
E (t0; q0) + (�=n+ q)22�n + 2�n where t0 � t and q0 = �=n+ q.

Parsimonious encryption. A parsimonious encryption scheme is a triple of algorithms S =

(K; E ;D). Algorithm K returns a random element from the key space (which we likewise denote

K). Encryption algorithm E : K � M takes a key K 2 K and M 2 M, chooses a random

IV f0; 1gn, and then encrypts the message M into a ciphertext C = IV k C�, where jC�j = jM j.

The process is denoted C  EK(M), or C  EK(M ; IV) when we regard IV as an explicitly given

input to E . The decryption algorithm has domain K � f0; 1g� and, given K 2 K and C 2 f0; 1g�,

DK(C) =M whenever C = EK(M ; IV) for some M 2M and IV 2 f0; 1gn.

We de�ne security following [3]. The idea is that an adversary cannot distinguish the encryption

of text from the encryption of an equal-length string of garbage. Let S = (K; E ;D) be a parsimonious

encryption scheme and let A be a distinguisher. Then

Adv
priv

A (S) = Pr
h
K  K : AEK(�) = 1

i
� Pr

h
K  K : AEK($j�j) = 1

i
:

In the �rst experiment the oracle, given M , returns a random encryption of M under K, while in

the second experiment it returns a random encryption of a random string of length jM j. De�ne

Adv
priv

S
(t; q; �) to be maxAfAdv

priv

S
(A)g where the maximum is over all adversaries who run in

time at most t and ask at most q oracle queries, these totaling at most � bits.

Examples. Common methods of symmetric encryption using a block cipher are parsimonious. For

example, CBC-mode encryption with a random IV is parsimonious. Its domain isM = (f0; 1gn)+,

where n is the blocklength of the underlying block cipher. The domain for CBC-mode encryption

is easily enlarged to M = f0; 1g�; for example, if the last \block" Mm of plaintext has length

less than the blocklength n then encrypt it as Cm = EK(Cm�1)[1::jMmj) �Mm. Alternatively,

counter-mode encryption (with a random initial counter) is parsimonious and has domain f0; 1g�.

This was the choice for Stage 2 in our example scheme of Section 2. The security of CBC-mode

and counter-mode encryption are established in [3].

VIL: General scheme. We are now ready to give the general description of VIL mode. LetM0 be

a message space, let n � 1 be a number, and letM =M0f0; 1gn (strings n-bits longer than strings

inM). Let G : Kprf�M! f0; 1g
n be a parsimonious PRF, and let Recover : Kenc�M

0�f0; 1gn !

f0; 1gn be its associated recovery algorithm. Let S = (K; E ;D) be a parsimonious encryption scheme

in which E : Kenc�M
0 !M. Then we construct the cipher F = VIL[G;S], where F : K�M!M,

by setting K = Kprf �Kenc and de�ning:

Algorithm FKprf k Kenc
(M)

Mpre�x =M [1::jM j � n]

� = GKprf
(M)

Cpre�x = EKenc(Mpre�x;�)

return C = � k Cpre�x

Algorithm F
�1
Kprf k Kenc

(C)

� be the �rst n bits of C

Mpre�x = DKenc(C)

Msu�x = RecoverKprf
(Mpre�x; �)

return M =Mpre�x kMsu�x

For a picture of the general scheme, see the Figure 2.

4 Analysis

The following theorem says that F as constructed above is a secure variable-input-length cipher,

as long as both G and S are secure.
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Kprf

σ

ε
parsimonious

encryption 

Kenc

σ = IV

Figure 2: A general description of VIL mode. The ciphertext is � k Cpre�x. The value � is the

output of the PRF G, the IV to the encryption scheme, and the �rst n bits of ciphertext.

Theorem 4.1 Let F = VIL[G;S] be the cipher obtained from the parsimonious PRF G : Kprf �

M! f0; 1gn and the parsimonous encryption scheme S = (K; E ;D). Then

Adv
prp

F (t; q; �) � Adv
prf

G (t0; q; �) + Adv
priv

S
(t0; q; �) +

q2

2n
;

where t0 = t+O(qn+ �).

Proof. Let A be an adversary attacking F , and let t be its running time, q the number of queries

it makes, and � the total length of all its queries put together. We assume without loss of generality

that A never repeats an oracle query. This is important to some of the claims made below. We

consider various probabilities related to running A under various di�erent experiments:

p1 = Pr[K  K : AFK(�) = 1]

p2 = Pr[Kenc  Kenc ; g  Rand(M; n) : AEKenc ((�)pre�x;g(�)) = 1]

p3 = Pr[Kenc  Kenc ; A
EKenc ((�)pre�x) = 1]

p4 = Pr[Kenc  Kenc ; A
EKenc ($

j(�)pre�xj) = 1]

p5 = Pr[�  Perm(M) : A�(�) = 1]

Let us explain the new notation. In the experiment de�ning p2, A's oracle, on query M , responds

by encrypting the �rst jM j�n bits ofM using coins IV = g(M). In the experiment de�ning p3, A's

oracle, on queryM , responds by randomly encrypting the �rst jM j�n bits ofM . In the experiment

de�ning p4, A's oracle, on query M , responds by randomly encrypting a string of jM j � n random

bits.

Our goal is to upper bound Adv
prp

F (A) = p1 � p5. We do this in steps.

Claim 4.2 p1 � p2 � Adv
prf
G (t0; q; �).

Proof: Consider the following distinguisher D for G. It has an oracle for g: M! f0; 1gn. It picks

Kenc  Kenc. It runs A, and when A makes oracle query M it returns EKenc(Mpre�x; g(M)) to A as

9



the answer (where Mpre�x is the �rst jM j � n bits of M .) Finally D outputs whatever A outputs.

Then

Pr[Kprf  Kprf : D
GKprf

(�)
= 1] = p1

Pr[g  Rand(M; n) : Dg(�) = 1] = p2

So Adv
prf

G (D) = p1 � p2. The claim follows.

Claim 4.3 p2 = p3.

Proof: The only di�erence between the experiment underlying p2 and that underlying p3 is that

in the former, the IV used for encryption is a random function of M , while in the latter it is chosen

at random by the encryption algorithm. These are the same as long as all the oracle queries are

di�erent, which is what we assumed about A.

Claim 4.4 p3 � p4 � Adv
priv

S
(t0; q; �).

Proof: Consider the following adversary B for S that is given an oracle O. It runs A, and when A

makes oracle query M it returns O(Mpre�x) to A as the answer (where Mpre�x is the �rst jM j � n

bits of M). Finally D outputs whatever A outputs. Then

Pr[Kenc  Kenc : B
EKenc (�) = 1] = p3

Pr[Kenc  Kenc : B
EKenc($

j�j) = 1] = p4 :

So Adv
priv

B (S) = p3 � p4. The claim follows.

Claim 4.5 p4 � p5 � q2=2n.

Proof: Let r = Pr[h  Rand(M) : Ah(�) = 1]. We argue that p4 � r � q2=2n+1 and also r � p5 �

q2=2n+1. The claim follows by the triangle inequality. It remains to prove the two subclaims.

The second subclaim, that r � p5 � q2=2n+1, is of course clear; the statistical distance between a

family of functions and a family of permutations is given by the collision probability under q queries.

So consider the �rst subclaim, namely p4�r � q2=2n+1. This is true because the encryption scheme

is parsimonious. The IV is chosen at random, and for each �xed IV, the map EKenc((�)pre�x; IV) is

a permutation onM. Thus, p4 � r is the statistical distance between a family of permutations on

M and a family of random functions onM, which is again q2=2n+1 because all strings inM have

length at least n.

Given these claims, we can complete the proof of the theorem by noting that

Adv
prp
F (A) = p1 � p5 = (p1 � p2) + (p2 � p3) + (p3 � p4) + (p4 � p5) :

5 Comments and Open Problems

Our security bound for VIL mode enciphering degrades with q2, as do the bounds for other common

modes of operation. It would be interesting to �nd a method and analysis which had better

quantitative security.
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It would be desirable to have a good constructions for a super variable-input-length cipher

(again, starting with a block cipher). Following [10], a super pseudorandom cipher F is one for

which no reasonable adversary can do well at distinguishing a pair of oracles (FK(�); F
�1
K (�)), for a

random K 2 K, from a pair of oracles (�(�); ��1(�)), for a random permutation �(�). This question

has been investigated by Bleichenbacher and Desai, who point out that our VIL construction is not

a super variable-input-length cipher, and they propose a construction for such a cipher [5].

We have focussed on the case in which the message length is at least the blocklength n of the

underlying block cipher. For shorter messages of even length 2` one can proceed as follows. First

map the underlying enciphering key K into subkeys (Kenc;Kprf ;K1;K2; : : : ;K`) using standard

key-separation techniques. Now when jM j � n, proceed according to VIL mode, using keys Kenc

and Kprf . But when jM j < n encipher M using an r-round Feistel network, keying the block-

cipher-derived round function by KjM j=2. We point out that while such an approach may work

well in practice, the bounds one gets following [10] and its follow-on work will be very weak for

our purposes, since these bounds degrade as the blocklength shrinks and we are here imagining

a blocklength of just a few bits. Thus enciphering very short messages in a provably-good way

remains open.

When this paper was presented at FSE '99, Mike Matyas described an alternative construction

to encipher a message M : �rst, CBC-encrypt M (with zero IV) to get a ciphertext N ; and then,

to generate the ciphertext C, CBC-encrypt N , but starting from the its last black and working

back towards the �rst block. A similar scheme is given in [8]. Ciphertext stealing can be used to

handle inputs of length not a multiple of the blocklength. This sort of \forward-then-backwards"

CBC sounds like an elegant approach, and it would be interesting to know if some version of it can

be proven secure.
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