6.857: Computer and Network Security (Spring 2009)

Guest lecturer: Eran Tromer

Lecture 7: Generic Attacks and Large-Scale Cryptanalysis
February 25, 2009

1 Time/memory tradeoff for function inversion

- Function Inversion Problem: let $f:\{0, \ldots, N-1\} \rightarrow\{0,1\}^{n}$. Given $y \in\{0, \ldots, N-1\}$, find a preimage $x \in\{0, \ldots, N-1\}$ such that $f(x)=y$.
- Cryptanalytic applications:
- Break MACs and signatures: find a hash function preimage via $f(x)=\operatorname{SHA1}(x)$
- Break encryption: given the AES encryption of m, find the key: $f(x)=\operatorname{AES}_{x}(m)$
- Recover passwords from their hashes (Unix /etc/passwd file, Word passwords, SMB file share passwords)
- Most general: "one-way functions" which underlie all of cryptography
- Trivial algorithms
- Exhaustive search: time $T \approx N$, memory $M \approx 1$
- Exhaustive table:
* Off-line preprocessing (just once!)
* Memory $M \approx N$
* On-line time: $T \approx 1$
- For $N=2^{64}: 2^{64}$ nanoseconds $=584$ years $/ 2^{64}$ bytes $=16$ exibytes
- Hellman's Time/Memory Tradeoff
[Hellman 1980]
- For f that is a single-cycle permutation
* Off-line: pick t and x_{0}, compute a table $\left(f^{i t}\left(x_{0}\right)\right)_{i=0, \ldots N / t-1}$. Memory: $M=N / t$
* On-line: compute $f^{j}(y)$ for increasing j until you hit $f^{i t}$ in the table, then output $f^{(i-1) t+j-1}$. Time: $M=t$. Tradeoff: $T M=N$.
- For random f, naive version:
* Off-line: pick m random start points x_{0}, \ldots, x_{m-1} and chain length t. Traverse each chain and save a table $\left(m_{i}, f^{t}\left(m_{i}\right)\right)$ indexed by end point. Memory: $M \approx m t$.
* On-line: traverse from y until the end of the chain (table hit), then traverse that chain from the beginning.
* Problem: table must "cover" most of $\{0, \ldots, N-1\}$ but it's difficult to cover more than N / t values:
Once we have t rows covering $m t>N / t$ values, a new row of t elements is likely to collide (Birthday paradox: $m t \cdot t>N$).
- For random f, naive version:
* Build t different tables using t functions f_{0}, \ldots, f_{t-1}, such that each f_{k} induces a different graph structure, but inverting f_{k} suffices for inverting f.
- Example: $f_{k}(x)=f(x \oplus k)$. (This is heuristic, and in this case will fail is f ignores the $\log _{2} t$ least-significant bits of its input).
* Empirically: with $m t^{2} \approx N$, each table covers about $0.8 m t$ values, and t tables cover about 0.55 N .
* Memory: $M \approx m t$. Time: $T \approx t^{2}$. Hence $T M^{2} \approx m^{2} t^{4} \approx N^{2}$
* Tradeoff: $T M^{2}=N^{2}$.
- For example, $T=M=N^{2 / 3}$.
- For $N=2^{64}$: roughly 2 hours, 6 terabyte (with 1 ns table lookup time...)
- Variants:
- Distinguished points
[Rivest 1982]|Standaert Rouvroy Quisquater Legat 2002]
* Reduces disk accesses from T to \sqrt{T}
- Time/memory/data tradeoffs for stream ciphers
[Biryukov Shamir 2000]
- Rainbow tables: $2 T M^{2}=N^{2}$ (but slightly longer table...)
[Oeschlin 2003]
* Use different functions in each iteration
* Free Rainbow Tables http://www.freerainbowtables.com
- MD5
- SMB passwords (LM and NTLM)
* Offer a 500 GB disk with the MD5 rainbow table for US $\$ 400$.
* Distributed computation: chain-traversing client ran on volunteer's computer
- Invert any function (no randomness assumption)
[Fiat Naor 1991]
- Lower bound of $T=\Omega\left(\frac{N^{2}}{M^{2} \lg N}\right)$ for on "natural variants" [Barkan Biham Shamir 2006]

2 The rho method for finding collisions

- Collision Finding Problem: given access to $f:\{0, \ldots, N-1\} \rightarrow\{0, \ldots, N-1\}$, find $x, y \in\{0, \ldots, N-1\}$ such that $f(x)=f(y)$.
- Cryptanalytic applications:
- Finding collisions in hash functions
- Discrete logarithm problem (sort of)
- Problem Set 2
- Collision finding via birthday paradox (time \sqrt{N}, space \sqrt{N}).
- Pollard's rho
- " ρ " structure (Birthday paradox still holds)
- Floyd's "two-finger" / "tortoise and hare" cycle finding algorithm
* Let α be the leader and β be the cycle length.
* Traverse $f^{i}\left(x_{0}\right)$ and $f^{2 i}\left(x_{0}\right)$ concurrently.
* When the sequences collide, $f^{i}\left(x_{0}\right)=f^{2 i}\left(x_{0}\right)$, we have $i=\alpha+\gamma$ and $2 i=\alpha+k \beta+\gamma$ for some k, γ. Thus $i=k \gamma$, a multiple of the cycle length.
* Traverse $f^{j}\left(x_{0}\right)$ (starts at origin) and $f^{i+j}\left(x_{0}\right)$ (starts inside the cycle) concurently. When the sequences first collide, $f^{j}\left(x_{0}\right)$ has just entered the cycle and we have the collision in f.
- Variants
- Leave "bread crumbs" (distinguished points) — improves constants
- Brent's "binary search" algorithm - improves constants
- Parallelized version
[van Oorschot, Wiener 1996]

3 Massive cryptanalytic computations

- Exhaustive search
- 56-bit DES broken in 1997
* 1997: 96 days using ~14,000 volunteers (DESCHALL)
* 1999: 22.5 hours
- distributed.net: $>100,000$ voluntee
- EFF DES Cracker: 36,864 custom-produced ASIC chips, <US\$250K
* 2006: 9 days US $\$ 10000$ (COPACOBANA)
* 2006: <1hr using a LAN Party's worth of PlayStations
- 56-bit RC5 broken in 1997 (distributed.net)
- 64-bit RC5 in 2002 (distributed net)
- 72-bit RC5 challenge remains unbroken
- Hash function collisions
- Structured MD5 collision: a PlayStation running for 20 days generating a rogue CA certificate
- Factoring (RSA)
- Brute force: out of the question (key size $k \gg 100$). Best algorithm: Number Field Sieve with subexponential complexity $2^{\left(k^{1 / 3}(\log k)^{2 / 3}(1+o(1)\right.}$.
- Factoring records:

Year	Size of composite (bits)
1991	330
1994	426
1999	512
2003	576
2005	663
$?$	768

- Breaking 1024-bit RSA using NFS on standard PCs estimated (until recently) to take $\sim 10^{12}$ US $\$ \times$ year (100 M PCs with 170 GB each)
* Enshrined for many years to come in government standards and industry practice (e.g., SSL Certificate Authority keys trusted by your browser)
- Special-purpose hardware
* Bicycle chains
* Opto-electronics (TWINKLE)
* Massively-parallel custom chips (TWIRL, SHARK)
* Currently: down to 1 M US $\$ \times$ year (but: power, cooling, network, initial investment...)
* See more at http://people.csail.mit.edu/tromer/cryptodev

