6.857: Computer and Network Security (Spring 2009) Guest lecturer: Eran Tromer

Lecture 7: Generic Attacks and Large-Scale Cryptanalysis

February 25, 2009

1 Time/memory tradeoff for function inversion

- Function Inversion Problem: let $f : \{0, \ldots, N-1\} \to \{0, 1\}^n$. Given $y \in \{0, \ldots, N-1\}$, find a preimage $x \in \{0, \ldots, N-1\}$ such that f(x) = y.
- Cryptanalytic applications:
 - Break MACs and signatures: find a hash function preimage via f(x) = SHA1(x)
 - Break encryption: given the AES encryption of m, find the key: $f(x) = AES_x(m)$
 - Recover passwords from their hashes (Unix /etc/passwd file, Word passwords, SMB file share passwords)
 - Most general: "one-way functions" which underlie all of cryptography
- Trivial algorithms
 - Exhaustive search: time $T \approx N$, memory $M \approx 1$
 - Exhaustive table:
 - * Off-line preprocessing (just once!)

- For f that is a single-cycle permutation

- * Memory $M \approx N$
- * On-line time: $T \approx 1$
- For $N = 2^{64}$: 2^{64} nanoseconds = 584 years / 2^{64} bytes = 16 exibytes
- Hellman's Time/Memory Tradeoff
 - * Off-line: pick t and x_0 , compute a table $(f^{it}(x_0))_{i=0,\dots,N/t-1}$. Memory: M = N/t
 - * On-line: compute $f^{j}(y)$ for increasing j until you hit f^{it} in the table, then output $f^{(i-1)t+j-1}$. Time: M = t. Tradeoff: TM = N.
 - For random f, naive version:

[Hellman 1980]

- * Off-line: pick *m* random start points x_0, \ldots, x_{m-1} and chain length *t*. Traverse each chain and save a table $(m_i, f^t(m_i))$ indexed by end point. Memory: $M \approx mt$.
- * On-line: traverse from y until the end of the chain (table hit), then traverse that chain from the beginning.
- * Problem: table must "cover" most of $\{0, \ldots, N-1\}$ but it's difficult to cover more than N/t values: Once we have t rows covering mt > N/t values, a new row of t elements is likely to collide (Birthday paradox: $mt \cdot t > N$).
- For random f, naive version:
 - * Build t different tables using t functions f_0, \ldots, f_{t-1} , such that each f_k induces a different graph structure, but inverting f_k suffices for inverting f.
 - Example: $f_k(x) = f(x \oplus k)$. (This is heuristic, and in this case will fail is f ignores the $\log_2 t$ least-significant bits of its input).
 - * Empirically: with $mt^2 \approx N$, each table covers about 0.8mt values, and t tables cover about 0.55N.
 - * Memory: $M \approx mt$. Time: $T \approx t^2$. Hence $TM^2 \approx m^2 t^4 \approx N^2$
 - * Tradeoff: $\underline{TM^2 = N^2}$.
 - For example, $T = M = N^{2/3}$.
 - · For $N = 2^{64}$: roughly 2 hours, 6 terabyte (with 1ns table lookup time...)
- Variants:
 - Distinguished points [Rivest 1982][Standaert Rouvroy Quisquater Legat 2002] * Reduces disk accesses from T to \sqrt{T}
 - Time/memory/data tradeoffs for stream ciphers [Biryukov Shamir 2000]
 - Rainbow tables: $2TM^2 = N^2$ (but slightly longer table...) [Oeschlin 2003]
 - * Use different functions in each iteration
 - * Free Rainbow Tables http://www.freerainbowtables.com
 - \cdot MD5
 - \cdot SMB passwords (LM and NTLM)
 - \ast Offer a 500GB disk with the MD5 rainbow table for US\$400.
 - * Distributed computation: chain-traversing client ran on volunteer's computer
 - Invert any function (no randomness assumption) [Fiat Naor 1991]
 - Lower bound of $T = \Omega\left(\frac{N^2}{M^2 \lg N}\right)$ for on "natural variants" [Barkan Biham Shamir 2006]

2 The rho method for finding collisions

• Collision Finding Problem: given access to $f : \{0, \ldots, N-1\} \rightarrow \{0, \ldots, N-1\}$, find $x, y \in \{0, \ldots, N-1\}$ such that f(x) = f(y).

- Cryptanalytic applications:
 - Finding collisions in hash functions
 - Discrete logarithm problem (sort of)
 - Problem Set 2
- Collision finding via birthday paradox (time \sqrt{N} , space \sqrt{N}).
- Pollard's rho
 - " ρ " structure (Birthday paradox still holds)
 - Floyd's "two-finger" / "tortoise and hare" cycle finding algorithm
 - * Let α be the leader and β be the cycle length.
 - * Traverse $f^{i}(x_{0})$ and $f^{2i}(x_{0})$ concurrently.
 - * When the sequences collide, $f^i(x_0) = f^{2i}(x_0)$, we have $i = \alpha + \gamma$ and $2i = \alpha + k\beta + \gamma$ for some k, γ . Thus $i = k\gamma$, a multiple of the cycle length.
 - * Traverse $f^{j}(x_{0})$ (starts at origin) and $f^{i+j}(x_{0})$ (starts inside the cycle) concurrently. When the sequences first collide, $f^{j}(x_{0})$ has just entered the cycle and we have the collision in f.
- Variants
 - Leave "bread crumbs" (distinguished points) improves constants
 - Brent's "binary search" algorithm improves constants
 - Parallelized version [van Oorschot, Wiener 1996]

3 Massive cryptanalytic computations

- Exhaustive search
 - 56-bit DES broken in 1997
 - * 1997: 96 days using ~14,000 volunteers (DESCHALL)
 - * 1999: 22.5 hours
 - \cdot distributed.net: >100,000 voluntee
 - \cdot EFF DES Cracker: 36,864 custom-produced ASIC chips, $<\!\rm US\$250K$
 - * 2006: 9 days US\$10000 (COPACOBANA)
 - * 2006: <1hr using a LAN Party's worth of PlayStations
 - 56-bit RC5 broken in 1997 (distributed.net)
 - 64-bit RC5 in 2002 (distributed net)
 - 72-bit RC5 challenge remains unbroken

- Hash function collisions
 - Structured MD5 collision: a PlayStation running for 20 days generating a rogue CA certificate
- Factoring (RSA)
 - Brute force: out of the question (key size $k \gg 100$). Best algorithm: Number Field Sieve with subexponential complexity $2^{(k^{1/3}(\log k)^{2/3}(1+o(1))}$.

 Factoring records: 	Year	Size of composite (bits)
	1991	330
	1994	426
	1999	512
	2003	576
	2005	663
	?	768

- Breaking 1024-bit RSA using NFS on standard PCs estimated (until recently) to take $\sim 10^{12}$ US\$×year (100M PCs with 170GB each)
 - * Enshrined for many years to come in government standards and industry practice (e.g., SSL Certificate Authority keys trusted by your browser)
- Special-purpose hardware
 - * Bicycle chains
 - * Opto-electronics (TWINKLE)
 - * Massively-parallel custom chips (TWIRL, SHARK)
 - * Currently: down to 1M US\$×year (but: power, cooling, network, initial investment...)
 - * See more at http://people.csail.mit.edu/tromer/cryptodev