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1 Time/memory tradeo� for function inversion

• Function Inversion Problem: let f : {0, . . . , N − 1} → {0, 1}n. Given y ∈ {0, . . . , N − 1},
�nd a preimage x ∈ {0, . . . , N − 1} such that f(x) = y.

• Cryptanalytic applications:

� Break MACs and signatures: �nd a hash function preimage via f(x) = SHA1(x)

� Break encryption: given the AES encryption of m, �nd the key:f(x) = AESx(m)

� Recover passwords from their hashes (Unix /etc/passwd �le, Word passwords, SMB �le
share passwords)

� Most general: �one-way functions� which underlie all of cryptography

• Trivial algorithms

� Exhaustive search: time T ≈ N , memory M ≈ 1

� Exhaustive table:

∗ O�-line preprocessing (just once!)

∗ Memory M ≈ N

∗ On-line time: T ≈ 1

� For N = 264: 264 nanoseconds = 584 years / 264 bytes = 16 exibytes

• Hellman's Time/Memory Tradeo� [Hellman 1980]

� For f that is a single-cycle permutation

∗ O�-line: pick t and x0, compute a table (f it(x0))i=0,...N/t−1. Memory: M = N/t

∗ On-line: compute f j(y) for increasing j until you hit f it in the table, then output
f (i−1)t+j−1. Time: M = t. Tradeo�: TM = N .

� For random f , naive version:
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∗ O�-line: pick m random start points x0, . . . , xm−1and chain length t. Traverse each
chain and save a table (mi, f

t(mi)) indexed by end point. Memory: M ≈ mt.

∗ On-line: traverse from y until the end of the chain (table hit), then traverse that
chain from the beginning.

∗ Problem: table must �cover� most of {0, . . . , N − 1} but it's di�cult to cover more
than N/t values:
Once we have t rows covering mt > N/t values, a new row of t elements is likely to
collide (Birthday paradox: mt · t > N).

� For random f , naive version:

∗ Build t di�erent tables using t functions f0, . . . , ft−1, such that each fk induces a
di�erent graph structure, but inverting fk su�ces for inverting f .

· Example: fk(x) = f(x ⊕ k). (This is heuristic, and in this case will fail is f
ignores the log2 t least-signi�cant bits of its input).

∗ Empirically: with mt2 ≈ N , each table covers about 0.8mt values, and t tables
cover about 0.55N .

∗ Memory: M ≈ mt. Time: T ≈ t2. Hence TM2 ≈ m2t4 ≈ N2

∗ Tradeo�: TM2 = N2.

· For example, T = M = N2/3.

· For N = 264: roughly 2 hours, 6 terabyte (with 1ns table lookup time...)

• Variants:

� Distinguished points [Rivest 1982][Standaert Rouvroy Quisquater Legat 2002]

∗ Reduces disk accesses from T to
√
T

� Time/memory/data tradeo�s for stream ciphers [Biryukov Shamir 2000]

� Rainbow tables: 2TM2 = N2 (but slightly longer table...) [Oeschlin 2003]

∗ Use di�erent functions in each iteration

∗ Free Rainbow Tables http://www.freerainbowtables.com

· MD5

· SMB passwords (LM and NTLM)

∗ O�er a 500GB disk with the MD5 rainbow table for US$400.

∗ Distributed computation: chain-traversing client ran on volunteer's computer

� Invert any function (no randomness assumption) [Fiat Naor 1991]

� Lower bound of T = Ω
(

N2

M2 lg N

)
for on �natural variants� [Barkan Biham Shamir 2006]

2 The rho method for �nding collisions

• Collision Finding Problem: given access to f : {0, . . . , N − 1} → {0, . . . , N − 1}, �nd
x, y ∈ {0, . . . , N − 1} such that f(x) = f(y).
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• Cryptanalytic applications:

� Finding collisions in hash functions

� Discrete logarithm problem (sort of)

� Problem Set 2

• Collision �nding via birthday paradox (time
√
N, space

√
N).

• Pollard's rho

� �ρ� structure (Birthday paradox still holds)

� Floyd's �two-�nger� / �tortoise and hare� cycle �nding algorithm

∗ Let α be the leader and β be the cycle length.

∗ Traverse f i(x0) and f
2i(x0) concurrently.

∗ When the sequences collide, f i(x0) = f 2i(x0), we have i = α+γ and 2i = α+kβ+γ
for some k, γ. Thus i = kγ, a multiple of the cycle length.

∗ Traverse f j(x0) (starts at origin) and f
i+j(x0) (starts inside the cycle) concurently.

When the sequences �rst collide, f j(x0) has just entered the cycle and we have the
collision in f .

• Variants

� Leave �bread crumbs� (distinguished points) � improves constants

� Brent's �binary search� algorithm � improves constants

� Parallelized version [van Oorschot, Wiener 1996]

3 Massive cryptanalytic computations

• Exhaustive search

� 56-bit DES broken in 1997

∗ 1997: 96 days using ~14,000 volunteers (DESCHALL)

∗ 1999: 22.5 hours

· distributed.net: >100,000 voluntee

· EFF DES Cracker: 36,864 custom-produced ASIC chips, <US$250K

∗ 2006: 9 days US$10000 (COPACOBANA)

∗ 2006: <1hr using a LAN Party's worth of PlayStations

� 56-bit RC5 broken in 1997 (distributed.net)

� 64-bit RC5 in 2002 (distributed net)

� 72-bit RC5 challenge remains unbroken
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• Hash function collisions

� Structured MD5 collision: a PlayStation running for 20 days generating a rogue CA
certi�cate

• Factoring (RSA)

� Brute force: out of the question (key size k � 100). Best algorithm: Number Field

Sieve with subexponential complexity 2(k1/3(log k)2/3(1+o(1).

� Factoring records:

Year Size of composite (bits)

1991 330
1994 426
1999 512
2003 576
2005 663
? 768

� Breaking 1024-bit RSA using NFS on standard PCs estimated (until recently) to take
∼ 1012 US$×year (100M PCs with 170GB each)

∗ Enshrined for many years to come in government standards and industry practice
(e.g., SSL Certi�cate Authority keys trusted by your browser)

� Special-purpose hardware

∗ Bicycle chains

∗ Opto-electronics (TWINKLE)

∗ Massively-parallel custom chips (TWIRL, SHARK)

∗ Currently: down to 1M US$×year (but: power, cooling, network, initial invest-
ment...)

∗ See more at http://people.csail.mit.edu/tromer/cryptodev
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